Incremental Methods for Bayesian Network Learning

Josep Roure Ramon Sangiiesa

September 20, 1999



Abstract

In this work we analyze the most relevant, in our opinion, algorithms for learning Bayesian
Networks. We analyze methods that use goodness-of-fit tests between tentative networks and
data. Within this sort of learning algorithms we distinguish batch and incremental methods.
Finally, we propose a system, called BANDOLER, that incrementally learns Bayesian Net-
works from data and prior knowledge. The incremental fashion of the system allows to modify
the learning strategy and to introduce new prior knowledge during the learning process in the
light of the already learnt structure.



1 Introduction

The aim of this work is twofold. On the one hand, we introduce the state of the art on
learning Bayesian networks. It is intended to be a tutorial on the learning methods based
on goodness-of-fit tests. We present the most significant, in our opinion, learning algorithms
found in the literature, as well as the theory they are based on. On the other hand, we propose
a research framework. The field of learning Bayesian networks has been largely developed
from the numerical (i.e. statistical) viewpoint. As we shall see, we belief that it is worth
developing this field from the Machine Learning viewpoint.

Here is a brief sketch of what the remaining sections deal with:

Machine Learning We recall some concepts and definitions from the Machine Learning
community. Our aim is to state some basic concepts, which we will use to analyze the
algorithms proposed by the Bayesian network learning community. We also will base
our research framework proposal on these concepts.

More precisely, we introduce Machine Learning as a search process and present unsu-
pervised learning. We argue that, in the context of unsupervised learning, background
knowledge may be very important since it is a source of bias for any learning process. We
also introduce the incremental learning approach and learning when the world changes
over time.

Bayesian Networks We briefly recall the definition of the Bayesian networks and the con-
cept of d-separation.

Learning Bayesian Networks: batch methods We go through the most significant Ba-
yesian network learning algorithms. We review the methods based on goodness-of-fit
tests between the probability distribution of a tentative structure and the true joint
distribution implied by data.

We divide methods accordingly to the sort of test they use. Namely, tests based on
information theory, Bayesian theory and Minimum Description Length approach. We
introduce the basic concepts on each of these sort of test.

Learning Bayesian Networks: the incremental approach We consider the main bibli-
ography about incremental learning algorithms for Bayesian networks. Up to 1998, there
are only three proposals for incremental algorithms. The aim of this sort of algorithms
is to modify an already learnt structure when new data is available.

At the end of the section we compare the reviewed algorithms with the definition given
in the Machine Learning section. We also compare the the three proposals between
them.

Our Proposal We propose a framework for research on learning Bayesian networks. The
framework recalls some of the concepts proposed in the Machine Learning field and
applies them to learning Bayesian networks. The proposed framework is quite compre-
hensive, hence we choose some parts of it to be developed in our PhD thesis. We belief
that the rest of the framework is a research field worth being developed in the future.



2 Machine Learning

Artificial Intelligence has proposed several models in order to describe domains. Most of these
models have successfully been used for diagnosis, prediction and decision making. Real-world
applications made evident the need for automatic knowledge elicitation processes in order to
construct such domain models. The need appeared for two reasons, firstly the elicitation of
knowledge from experts has always been a difficult and time-consuming task and, secondly,
large databases are becoming increasingly abundant in many areas like science, engineering
and business, so it is natural to explore them in order to derive new knowledge.

Knowledge acquisition from experts is difficult because of different well known reasons.
Sometimes communication between domain experts and knowledge engineers is difficult as
they come from different knowledge areas and therefore speak different jargons. Other times
there are few, if any, experts on a given domain and it is almost impossible to reach them.
Also, when domains are complex or ill-structured it is simply impossible for experts to give a
precise model [2]. However, it is not always expert’s shortcomings what cause the difficulties
of the knowledge elicitation process. Many times, domain models may be very large and may
need large collections of precise quantitative information (i.e. real numbers). Computers are
much better and faster in processing large collections of data than human beings. When large
databases are available, automatic elicitation process from data are needed because processing
data manually would take an unfeasible amount of time. Databases may be a rich source of
knowledge of great interest. Knowledge is “hidden” among the vast amounts of data and must
be distilled into domain models. The distillation processes are called learning algorithms by
the artificial intelligence community.

2.1 Machine Learning as search

We may begin with a broad and general definition of Machine learning;:

Definition: A computer program is said to learn from experience E with respect
to some class of tasks T" and performance measure P, if its performance at tasks
in T, as measured by P, improves with experience FE.

This definition, stated by Tom. M. Mitchell [25], includes any computer system that improves
its performance at tasks through experience. As we shall see, we are interested in a particular
sort of Machine Learning.

When the system improves its performance at tasks by means of rising the quality of its
model of the domain, and, in turn, the domain model is learnt from the information in a
database, we say that the system performs inductive inference learning.

Michalski and Ram [23] characterize inference learning as a process of inferential search
through a knowledge space. The knowledge space is a space of knowledge representations
that can represent all possible inputs, all of the learner’s background knowledge, and all
knowledge that the learner can potentially generate. The search is done by the application
of knowledge transmutations. Knowledge transmutations are operators that make changes to
the knowledge representations in the knowledge space. In order to characterize the inferential
search they consider the following entailment

PUBKDO>C



where P stands for a set of statements called the premise, BK stands for a set of statements
representing the reasoner’s background knowledge, and C' stands for a set of statements called
the consequent. P is assumed to be consistent with BK. Inductive learning hypothesizes
(learns) the premise P, given C and BK. On the contrary, deductive learning derives the
consequent C given P and BK.

We, in the inductive inference approach, shall think of C' as the database (the description
of a set of consequences from the domain) and of P as the domain the system learns. Note
that actually the system learns a model P’ of the domain P.

Michalschi and Ram’s definition casts learning as a searching process among the knowledge
space. The system, in order to perform this search, needs the following components:

e A language to describe the domain models. This description may be partial when the
system has not yet gained a full picture of the domain. These descriptions, including
partial ones, are usually said to form the knowledge or search space.

e A set of operators in order to perform the knowledge transmutations. The learning
system uses these operators to transform an already existing domain description into
a new, possibly better, one. The system moves through the search space, using these
operators, looking for the best model.

e An evaluation function that measures the quality of the domain descriptions. This
function is used in order to compare different domain models (or knowledge states).

e A search strategy in order to find the best model description. Usually the search
space is so huge that it is not computationally feasible to perform an exhaustive search.
Therefore, some search strategy (i.e. hill-climbing) or some heuristics is needed in order
not to search all the knowledge space. Usually strategies are not able to reach the best
domain model but they may find a reasonably good one.

Finally, we may distinguish between supervised and unsupervised learning. In the former,
there is a teacher that knows in advance the structure of the domain. The teacher sup-
plies significant examples (or consequences) together with the structure of the domain to the
learning system. Thus, the learning system only has to build a description of the domain
structure by inducing it from the examples. On the other hand, the unsupervised learning
system has to extract both the structure and its description from a dataset hoping that they
are a representative sample of the domain.

Our work shall focus on inductive unsupervised learning, since our aim is to study the field
of Bayesian network learning. As we shall see, in later sections, learning Bayesian networks
may be classified as a sort of inductive, unsupervised and data-driven learning.

2.2 Background knowledge and the role of bias in Machine Learning

At the beginning of this section we have already argued that sometimes there is not a precise
model of a domain when it is complex or ill-structured. Other times it is difficult to find an
expert able to supply both the domain structure and examples in order to perform inference
and gain a computerized domain description.

However, even an expert cannot give a precise and complete domain description, she may
be able to provide a partial one. This partial description given by an expert is usually called
background or prior knowledge. This sort of knowledge may help in two ways. First, the



knowledge may narrow the search space, by discarding solutions which may be bad, and let
the search process to rapidly form on a good description. Second, the knowledge may be used
to guide the search towards that part of the knowledge space where best domain descriptions
are obtaining, hence, solutions of higher quality.

It is also widely accepted in the literature that biases play an important role in Machine
Learning. For example Tom M. Mitchell [24] states that although removing all biases from a
learning system may seem to be a desirable goal, in fact the result is nearly useless.

Before going ahead, we should give a definition for bias. Following Tom M. Mitchell [24]
and Gordon and Desjardins [14] we may say

Definition: Bias is any basis for choosing one domain model over another, other
that strict consistency with the instances.

It is not clear in this definition whether background knowledge should be considered a kind
of bias or, on the contrary, they are different concepts. We agree with Gordon and Desjardins
[14] who say that background knowledge has the supportive role of providing information to
select a bias. Hence, it cannot be considered to be a bias per se.

Gordon and Desjardins also argue that biases should not be wired or embedded within the
search heuristics. Biases should be kept separated from the heuristics and clearly identifiable
in the program. In this way the programmers will be able to easily modify biases in case they
are faulty. Gordon and Desjardins also argue that it could be desirable to have dynamic biases
in order to automaticly adapt biases to the specific learning problem during the process. See
[14] for a deeper discussion.

There are many types of biases that can be applied in order to improve the performance of
the learning processes. We may classify biases depending on which of the different components
of a search learning process is used:

e Database: biases may be applied in order to filter the examples of the database. For
example when it is known that certain variable does not provide any useful information
or when it is known that some kind of examples are not significant, they should not be
used to learn the domain model.

e Language to describe the domain models: it may be possible to limit the representational
power of the language. It could be desirable that the language cannot represent those
models that are known beforehand to be of low quality.

e Set of operators: we may be able to construct operators that are known to perform
useful knowledge transmutations.

e Evaluation function: evaluation function may score more factors than merely accuracy
with the database. For example, the function may score higher those domain models
that are simpler in front of those which are a bit more accurate but much more complex.

e Search strategy: biases may be used to guide the search through the knowledge space.
For example in a beam search the bias may indicate how many beams should be explored.
Also, biases may be used to choose the transmutation operator to be applied.

So, we have seen that there are many different kinds of biases that can be used to achieve
rapidly a good domain model or to gain a more accurate one. We think that it is worth
keeping biases at another level, separated from the learning algorithm itself.



2.3 Machine Learning: The Incremental approach

Machine learning algorithms may also be classified according to the way they process the
data. Learning algorithms may be batch or incremental. Batch algorithms, given the whole
training data set, output a domain model after processing, possibly multiple times, data.
This sort of algorithms stop learning when they have processed the dataset and assume that
they have reach a good domain model which will be used for the whole /life of the artificial
agent. On the other hand, incremental algorithms never assume they reach a final learning
stage. They keep improving their domain model by processing new data items as long as
they are available. Incremental algorithms process each single item of data as it is available
without reprocessing previously seen ones. In this way, during the whole learning process
there is a domain model available, although incomplete, that can be used for whatever task
it is intended.

Incremental learning algorithms have desirable properties that let them overcome some
problems found in real-world application. These problems could be resumed as:

1. Time limitation: when databases are so huge that must be stored on secondary memory,
multiple inspection of such amount of data is unfeasible. Incremental methods should
process data items only once.

2. Any-time availability: sometimes, given the nature of the real-world application, an
intelligent agent needs to use a domain model in order to carry out its performance
task even if the whole dataset is not available. Incremental methods can deal with such
situations because they have a domain model during the whole learning process.

3. Changing worlds: when intelligent agents must survive in a changing world they should
be able to make their model of the world evolve. Incremental algorithms are a natural
solution to cope with such situations because they are able to incorporate into the model
new samples from the changing world.

2.3.1 Incremental algorithms: a definition

Incremental learning algorithms have been largely studied in Conceptual Clustering [1, 11, 22]
and Concept Formation [13, 2] communities.

The idea of incrementality arises from the observation that much of human learning can
be viewed as a gradual process of concept formation and human ability for incorporating
knowledge from new experiences into already learnt concept structures. The incremental
learning approach is firstly motivated, in the Concept Formation community, as a human
capability worth being held by artificial agents.

In the Bayesian network community, incremental learning algorithms are an area of re-
cent and growing interest [4, 20, 12]. The fact that Bayesian network community has a strong
numerical (statistical) background may explain its late interest in incremental learning. Con-
ceptual Clustering and Concept formation share some characteristics with learning Bayesian
networks. Namely, both perform induction from a dataset and hence are data-driven. Also
both fall into the unsupervised learning category, that is, algorithms are not provided neither
with a domain structure nor with selected examples by a teacher.

All these facts motivated us to begin our study of incremental learning algorithms in
Conceptual Clustering and Concept Formation areas. In these areas databases are called
training data sets as they are used to train software agents, and by a training experience it



is meant a single training instance or a single sample from a database. Langley [21] defined
precisely what an incremental algorithm is.

Definition: A learner L is incremental if L inputs one training experience at a
time, does not reprocess any previous experiences, and retains only one knowledge
structure in memory.

Langley’s definition is rather strong, because it imposes three constraints to an algorithm
in order to be incremental. The first two constraints require learning agents to be able to
use their knowledge at any time of the learning process. More precisely, his second constraint
rules out those agents that process new data together with old one in order to come out with a
new model. The important idea of this constraint is maintaining reasonably low and constant
the time required to process each data instance over all the data set. The third constraint
tries that learning agents do not make unreasonable memory demands.

We also want to remark that a learning algorithm may not be incremental because it learns
samples one by one but because it learns variables incrementally as they are available [21]. If
we see a database as a matrix where rows are samples and columns are variables describing
samples, an algorithm could incrementally learn variables (columns) instead of samples (rows).
In this way, an incremental algorithm grows a domain model incorporating variables to it as
they are available. We shall see that some of the learning algorithms presented in the Bayesian
network literature as batch methods could actually be considered incremental since they learn
variables in an incremental way (i.e. Herskovits and Cooper’s K2 algorithm [8]).

2.3.2 Incremental algorithms: search strategies and their drawbacks

Most incremental learning algorithms use one of two search algorithms, namely hill climbing or
beam search. Hill climbing is a search method in which one applies all operator instantiations,
compares the resulting domain models using a quality evaluation function, selects the best
model, and iterates until no more progress can be made. The beam search strategy can be seen
as a search with several searching streams, each being a hill-climbing. The main advantage
of hill climbing is its low time and memory requirements since there are never more than a
few search states (or domain models) in memory and thus searching paths (or streams) to be
explored.

However, hill climbing also suffers from well-known drawbacks, such as its tendency to
halt at local optima and a dependence on step size. In order to overcome these problems
beam search is used to maintain different searches and, in this way, explore different optima.
However, the algorithms using the beam search are usually provided with parameters which
state the number of beams to be used in order to control the amount of time and memory
required to perform the search.

In addition, it is observed [10, 13, 21, 22, 2] that incremental hill climbing, in the context
of unsupervised learning, is order sensitive. Namely, given two sample orders, O1 and O3, of a
database D an incremental hill climbing algorithm may output different domain models when
fed with order O; or with order Oy. Ordering effects are due to the nature of incremental
process of data combined with the tendency of hill climbing methods to stick to local maxima.
This sort of algorithms may output a very skewed model when the firstly observed samples
give a biased view of the domain even if the last samples give a correct one [10]. Stating this
problem in another way, it may happen that firstly seen data guide the learning process to
a local maxima surrounded by deep wvalleys. Therefore, when new data is available it is very



difficult for the hill climbing strategy to fly off the deep valleys. The capability of flying off
valleys depends very much on the step size of the knowledge transmutation operators. Local
minima and ordering problems may also be found in beam search algorithms but at a minor
scale. The more beams are maintained, the less the search is affected from order and local
minima problems.

Research in incremental clustering has approached the ordering effects problem by using
several strategies. Roure and Talavera [31, 33] reported a classification of strategies to avoid
ordering effects in incremental clustering algorithms. They also proposed an extension of
a strategy firstly proposed by Béjar [2] and Lebowitz [22]. Roughly speaking it consists
on deferring the incorporation of those samples that seem to guide, at that moment of the
learning process, the search to a local maxima.

We would like to remark, that the methods proposed in order to overcome the problems
of incremental algorithms relax in some way the three hard constrains of Langley’s definition.
These allow agents to input more than one instance at a time, allow limited reprocessing of
data and also allow keeping in memory few alternative domain models. Anyway, all these
methods try to follow the ideas which are behind Langley’s constraints.

3 Bayesian Networks

Bayesian networks are graphical representations of causal relations between variables in a
domain. Bayesian networks are also called belief networks, Bayesian belief networks or causal
probabilistic networks and they use probability theory in order to reason with uncertainty.

The advantage of graphical representations is that they allow people to express directly the
fundamental qualitative relationship of direct causation. The arcs between variables signify
the existence of direct causal influences and the strengths of these influences are quantified
by conditional probabilities.

3.1 Probabilistic networks

Probability theory views a domain U as a set of random variables U = {X1,..., X} each
of which has a domain of possible values. The key concept in probability theory is the joint
probability distribution, which specifies a probability for each possible combination of values
for all the random variables. Given this distribution, one can compute any desired posterior
probability given any combination of evidence.

Unfortunately, an explicit description of the joint distribution requires a number of pa-
rameters that is exponential in n, the number of variables. Probabilistic networks derive their
power from the ability to represent conditional independences among variables, which allows
them to take advantage of the locality of causal influences.

A Bayesian network is an annotated directed acyclic graph that encodes a joint probability
distribution of a set of random variables U. Formally, a Bayesian network for U is a pair
S = (BS, Bp):

e The first component, Bg, is a directed acyclic graph (DAG) whose vertices corresponds
to the random variables X1,..., X,,, and whose edges represent directed dependencies
between variables.

Let us give a more detailed explanation. We say that two sets of variables X and Y are
independent given Z if P(X|Y,Z) = P(X|Z) whenever P(X,Y) > 0. Recall the chain



rule of probability,

n
P(Xy,...,X,) = [[ P(Xi|X1,.... Xi1)
=1

If for each variable X;, the set Pa; C {Xi,...,X;_1} renders X; and {Xy,...,X;_1}
independent, that is, P(X;|X1,...,X;-1) = P(X;|Pa;) then one can rewrite the chain

rule as
n

P(X1,....X,) = [[ P(Xi[Pa) M
i=1
A Bayesian network structure Bg encodes the assertion of conditional independence in
equation 1. Namely, Bg is a DAG where each variable in U corresponds to a node in
Bg, and the parents of the node corresponding to X; are the nodes corresponding to
the variables in Pa;.

e The second component, Bp, represents the set of parameters that quantifies the network.
It contains a parameter 0;;, = P(X; = z¥|Pa; = pa]) for each possible state =7 of X;
and for each configuration pal of Pa;

3.2 D-separation

As we have said above, Bayesian networks represent direct causation between variables. The
power of Bayesian networks is that they have built-in independence assumptions which are
not explicitly specified.

The independence assumptions are read from a network structure by means of the d-
separation criterion. In order to understand the d-separation we need to keep in mind the
three basic connections between variables:

1. Serial connection: Consider the situation in Figure 1(a). A has an influence on B
which in turn has influence on C'. Obviously, evidence on A will influence the certainty
of B which then influences the certainty of C'. Similarly, evidence on C' will influence
the certainty of A through B. On the other hand, if the state of B is known, then
the channel is blocked, and A and C become independent. We say that A and C are
d-separated given B.

2. Diverging connection: In the situation in Figure 1(b) the influence can pass between
all the children of A unless the state of A is known. We say that B,C,..., X are
d-separated given A.

3. Converging connections: In this situation, Figure 1(c), if nothing is known about A
except what may be inferred from knowledge of its parents B, C, ..., X, then the parents
are independent, that is, evidence on one of them has no influence on the certainty of
the others. Now, if any other kind of evidence influences the certainty of A, then the
parents become dependent due to the principle of explaining away. The evidence may
be direct evidence on A, or it may be evidence from a child.

The three cases above cover all the ways in which evidence may be transmitted through
a variable, and following the rules it is possible to decide for any pair of variables in a causal
network whether they are dependent given the evidence entered into the network.



oNOY0 @\@ f

(@ (b) (©)

Figure 1: The serial, converging and diverging connections

Definition: Two variables A and B in a causal network are d-separated if for
all paths between A and B there is an intermediate variable V' such that either
the connection is serial or diverging and the state of V' is known; or the connection
is converging and neither V' nor any of V’s descendants have received evidence.

SC SC -SC -SC

Coine>
E|9|3]|5.1

(€Y (b)

Figure 2: A Bayesian network example

=
\|
ol
©

In Figure 2 we have an example of a Bayesian Network. On the left side (a), we have the
network structure Bg representing the independencies among the variables of the domain.
On the right side (b), we have the probability table 0., for the variable Emphysema

Note that in this network, if we have some evidence on Dyspnea, Smoker and CoalMiner
are d-connected, otherwise they are d-separated. If we know the state of Lungcancer, Dyspnea
and PositiveXRay are d-separated. Also Somker and Dyspnea are d-separated when the state
of Lungcancer is known.

For further reading in general theory on Bayesian networks the reader is referred to the
Pearl] (1988) [29], Neapolitan (1990) [26], Jensen (1998) [18] and a short introduction Charniak
(1991) [6].

4 Learning Bayesian Networks: batch methods

The Bayesian network learning algorithms aim at finding the network, or a reduced set of
networks, that best encodes the joint probability distribution of data. The learning problem
of this kind of networks can be stated as follows [32]:

Given a dataset, infer the topology for the belief network that may have generated
the dataset together with the corresponding uncertainty distribution.

10



This process of inferring a Bayesian network from data can be seen as search process looking
for the best network. Thus, Bayesian network learning algorithms fall indeed into the category
of unsupervised (neither a network non a selected set of examples are given by a teacher),
inductive inference (given a set of consequences, that is a dataset, the algorithm hypothesizes
a domain model), and data-driven (data guides the searching process).

In general, one can distinguish two great groups of methods. The first ones are based on
the application of conditional independence tests between variables and the construction of
the structure of the network based on the result of such tests; then the conditional probability
tables are calculated from data. The second ones are methods based on goodness-of-fit tests
between the probability distribution of a tentative structure and the true joint distribution
implied by data.

We will focus our work on this second category of methods. The main drawback of the
methods based on conditional independence information is that they need a source providing
independency statements. Independency statements can be derived from data using statistical
tests. However, when there is a weak dependence between two variables, or when binary
variables are involved, those tests require large databases to return reliable results. Together
with the restriction that the independency statements represented by the network structure
are exactly those in the domain, these methods are in general impractical for small databases
with discrete variables [3]. For us, this is an unbearable problem as we want to develop
incremental algorithms able to evolve the Bayesian networks structures when new, possibly
few, data items are available.

Within the category of methods based on goodness-of-fit tests we can distinguish different
approaches to such tests or quality measures. Namely, Cross Entropy [7], Bayesian inference
[8, 15] and Minimum Description Length (MDL) [19]. All these approaches have derived some
form of establishing the overall quality of a network in terms of its constituents, reducing
quality measures to the sum of the quality of all given child-parent configurations. This is
possible thanks to the property of factorization over distribution which is inherent to Bayesian
networks:

Quality (Network|Dataset) = Z quality (X;|Pa;, Dataset)
X;

where Pa; is the set of parents of variable X;.

During the rest of this section we briefly review the theory underlying each approach
(Entropy, Bayesian inference and MDL) followed by a review of the most significant learning
algorithms. We review the algorithms in strict temporal order which, curiously, coincides
with the three approaches as listed above.

We begin our revision with the algorithm proposed by Chow and Liu (1968) [7]. They are
considered to have developed the first method for constructing network structures (i.e. trees),
in a moment when Bayesian networks were still to be defined. They proposed a measure, based
on Cross-entropy, able to calculate the quality of the whole structure by considering the local
properties (i.e. factorization) of it.

Another algorithm, called Kutaté, based on the Entropy approach, was developed by
Herskovitz and Cooper (1990) [17]. The main contribution of this work was the algorithm
itself. By taking the idea of the local structure of networks, they proposed an heuristic in
order to find a Bayesian network (i.e. DAG) of high quality. After this work, Cooper and
Herskovitz (1992) [8], proposed another algorithm, called K2. The K2 algorithm, in fact, is
the Kutatd algorithm using a new quality measure. The new quality measure falls in the

11



Bayesian inference category, giving statistical soundness to the learning of Bayesian networks
field.

And last, we review the algorithm proposed by Lam and Bacchus (1994) [19]. They
observed that the methods above prefer more accurate networks, even if their structure is much
more complex. It is well known that networks with high connectivity are computationally,
both time and space, more demanding and in addition they are conceptually more complex.
Thus, they introduced a new quality measure, based on the Minimum Description Length
approach, that performs a tradeoff between accuracy and complexity of the learnt Bayesian
network. The algorithm itself is also a contribution as it uses different heuristics than the
previous ones.

Despite these different approaches to quality measures seem to be very different, Bouckaert
[3] demonstrated that the asymptotic behavior of the three approaches for databases of infinite
size is the same and that they will yield approximately the same results for databases where
all configurations of parent sets occur at least once.

4.1 Entropy-Based Methods

Entropy is a non-negative measure of the information content of a distribution. It also can
be seen as a measure of the uncertainty of a given variable. Entropy is defined as following;:

H(X) =~ P(w;)log P(z;) (2)
=1

Where r denotes the number of possible states for variable X. We now note some properties
of the entropy function:

e H(X) > 0 with equality iff P(z;) = 1 for one 1.

e H(X) <log(l/r) with equality iff P(z;) =1/rVi=1,...,r

e HX)=H(Y)ifVi=1,...,r P(z;) = P(y;) and p(y,4+1) =0

The first property states that entropy is a positive measure and reaches its lowest value when

the distribution’s uncertainty is minimum. The second property states that entropy reaches

its highest value when the distribution’s uncertainty is maximum. And finally, the third

property says that adding an impossible value to a distribution its entropy does not change.
The joint entropy of X,Y is:

TXTY

H(X,Y)=— Y P(z;,y;)log P(z;,y;) (3)
i,j=1

The conditional entropy of X given Y = y; is the entropy of the conditional distribu-
tion P(X|Y = y;)

X
H(X|Y =yj) = =Y P(zi]Y = y;)log P(z:]Y =) (4)
i=1
The conditional entropy of X given Y is the average over y of the conditional entropy

of X given y

12



TY X

H(X|Y) == Ply)) |>_ Pxily;) log P(xily;) | =

rx,ry
— > P(xi,y;)log P(z]y;) (5)
ij=1

This measures the average uncertainty that remains about X when Y is known.
The joint entropy and conditional entropy are related by the chain rule:

HX,)Y)=H(X)+H(Y|X)=H(Y)+ H(X|Y) (6)

The mutual information between X and Y measures the average reduction in uncer-
tainty about X that results from learning the value of Y, or vice versa. Equivalently, it
measures the average amount of information that Y conveys about X

I(X;Y) =H(X)- H(X|Y)

U i N ) (7)
— iél P(xz,y])logm

The mutual information satisfies I(X;Y) = I(Y;X) and I(X;Y) >0
The cross entropy or Kullback-Leibler divergence between two probability distribu-

tions P and P-

P(zi)

Pr(z;)

X

Dk (P||P) =) P(z;)log (8)
i

The relative entropy satisfies D (P||P7) > 0 (Gibbs’ inequality) with equality only if P =

P;. Note that in general Dk, (P||PT) # Dgr(Pr||P), so Dy, is not a distance.

4.1.1 The Chow and Liu algorithm

Chow and Liu [7] designed an algorithm to estimate the underlying n-dimensional discrete
probability distribution from a set of samples. The algorithm yields as an estimation the
product of n — 1 second order distributions that optimally approximates the probability
distribution. This product can also be formulated like a distribution of » — 1 first order
dependence relationships among the n variables, forming a tree dependence structure.

The algorithm uses the mutual information (7) as closeness measure where P(X) is the
probability distribution from a set of samples, and P, (X) is the tree dependence distribution.
It is an optimization algorithm that gives the tree distribution closest to the distribution from
the samples. Let us give some notation in order to explain the Chow and Liu’s measure and
algorithm.

Let X = {X;|1,2,---,n} be a set o variables, let j(i) be a mapping with 0 < j(i) <14, let
7 = (X, E) be a dependence tree where X is the set of nodes, £ = {(X;, X;))[1,2,--,n} is
the set of branches, and where X is the null node. If we now assign a weight I(X; Xj(z-)) to
every dependence tree branch, the maximum-weight dependence tree is defined as the tree
7t such that for all 7" in Ty, Y50 T( X5 X)) > 200 T( X5 Xjriay)-

13



Chow and Liu applied some transformations to Kullback-Leibler divergence Dy (P, P;),

Dii(P.P) = Y P(X)log P(X) — Y P(X) Y log P(Xi| X))
X X =1

n P(Xi, X))
— Y P(X)log P(X) =Y P(X o8 5 VPIX. )
L PN PX) =3 PX) 3 18 B T, )

=Y P(X)> log P(X
X i=1

Since P(X;) and P(X;, Xj(;)) are components of P(X),

=Y P(X)log P(X, ZP ) log P(X;) = H(X;)

and
P(X;, X P(Xi, Xjiy)

2. P08 5o b ) 2 P)los poypiy

— = (X5 Xjia))
X TiyTj(i) ](Z))

and obtained the following expression for the Kullback-Leibler divergence:
n
Dicr(P,Pr) == I(Xi; X +ZH (X) (9)
i=1

From the expression above, it is observed that H(X) and H (z;) for all i are independent
of the tree dependence distribution. Thus, since Dg (P, P;) is non-negative, minimizing the
closeness measure D, (P, P;) is equivalent to maximizing the term 37" | I(X;; Xj(;)). This
result allowed Chow and Liu to use the Kruskal algorithm for the construction of trees of
maximum total length where I(X;; X(;)) may represent the distance length from node X; to
node Xj;). An undirected graph is formed by starting with a graph without branches and
adding a branch between two nodes with the highest mutual information. Next, a branch is
added which has maximal mutual information associated but does not introduce a cycle in the
graph. This process is repeated until the nn-1) 3 L
associated are added.

It is important to note that, for a given distribution, the algorithm can recover different
maximal trees depending on the order in which pairs with the same weight are selected. It
can be written in an algorithmical way as algorithm 1

branches with maximum mutual information

4.1.2 The Kutaté algorithm

Herskovits and Cooper [17] designed a method to learn the structure of a Bayesian network
given a dataset. They recover the minimum entropy DAG, that is, the DAG whose associated
joint probability distribution minimizes entropy. The network with the lowest entropy is
considered to be the most informative one. Obviously, the network entropy is greater or
equal to the joint entropy associated to the dataset.

Entropy for a Bayesian network structure By is calculated as the sum over all n variables
X; of their conditional entropy given its parents Pa; in the network.

n qi
H(Bg)=)Y_ (ZP (pa) ZP z¥|pal) log P(z¥|pa] )) (10)
=1

J

14



Algorithm 1 Chow and Liu

Require: a database D on X = {Xy,---, X,,} variables

Ensure: 7 be a dependence tree structure

7 = {0} the empty tree; V =X

Calculate weights for every pair I(X;; X;)

Select the maximum cost pair (X;, X;)

T = (Xian); V=V- {XZaXJ}

repeat
Select the maximum cost pair (X;, X;) where (X;, X}) or (X3, X;) € 7and X; €V
T=T17U (Xi,Xj), V=V- {XJ}

until V=10

where r; is the number of states of variable X, Xlk represents the k-th state of the variable, g;
represents the number of configurations of the parents Pa;, and paJ; is the j-th configuration
of the parents.

The algorithm begins with a network structure with all variables and none connection
between them. Then, it uses a greedy-search to add, at each step, the arc that produces the
graph structure with minimum entropy. It stops when the network structure Bg reaches a
low enough entropy level. Kutad can be written as algorithm 2.

Algorithm 2 Kutaé
Require: a database D on variables X = {X},---, X,;}; a fixed value for entropy a and an
order Pred between variables
Ensure: a network structure Bg (an oriented DAG)
: Buil a structure on {Xy, -+, X,,} and assume all variables to be marginally independent
: 0 := H(Bg) {Calculate the entropy of the structure}
repeat
Select a link such that

(a) it creates no cycle
(b)  is the one that creates a new structure Bg with minimum entropy
(c) links variables X,Y such that X comes first in the order

Give the orientation X — Y
until g <«

>«

4.2 The Bayesian inference approach

We are interested in the most probable hypothesis (a Bayesian network in our case) from some
space H given the observed data D plus any initial knowledge about the prior probabilities
of the various hypotheses in H. Bayes theorem provides a direct method for calculation such
probabilities. More precisely, Bayes theorem provides a way to calculate the probability of
a hypothesis based on its prior probability, the probabilities of observing various data given
the hypothesis, and the observed data itself.

15



We shall write P(h) to denote the initial probability that hypothesis h holds, before we
may have observed the training data. P(h) is often called the prior probability of h and may
reflect any background knowledge we have about the chance that h is a correct hypothesis. If
we have to such prior probability that training data D will be observed. Next, we will write
P(DJh) to denote the probability of observing data D given some world in which hypothesis
h holds. In machine learning we are interested in the posterior probability of h, that is, the
probability P(h|D) that h holds given the training data D.

The Bayes theorem provides a way to calculate the posterior probability P(h|D), from
the prior probability P(h), together with P(D) and P(D|h).

P(rip) = T (11)

In machine learning, the learner considers some set of candidate hypotheses H and is
interested in finding the most probable hypothesis h € H given the observed data D. Usually,
it is computationally unfeasible to find the most probable hypothesis, thereof some heuristical
search strategies are used.

Note that in order to compare the posterior probabilities of two candidate hypotheses h,
we actually do not need to calculate the term P(D) of the Bayes theorem (see equation 11).
This holds only when the posterior probabilities are calculated with respect the same data
set D.

In some cases, we will assume that every hypothesis in H is equally probable a priori, that
is, P(h;) = P(h;) for all h; and h; in H. In this case we can also drop the term P(h) from
the Bayes theorem equation.

The reader may find a deep and an understandable introduction to the Bayesian approach
of learning from data in the Heckerman’s tutorials [15, 9].

4.2.1 The K2 algorithm

Cooper and Herskovits [8] designed a Bayesian method for constructing a probabilistic network
from data. The algorithm searches for a probabilistic network structure with high posterior
given a database of cases, and outputs the structure and its probability.

Now, we are going to develop (following [8]) the scoring function in order to measure
the posterior P(Bg|D) of the structure of a network S = (Bg, Bp), where Bg denotes the
network structure and Bp denotes the conditional probability assignments associated with
the structure. Since we want to compare networks we will compute P(Bg, |D)/P(Bs,|D)

P(Bs,,D)
P(B51|D) _W_P(BSUD) (12)

P(B52|D) B % B P(B52,D)

Thus, we will use P(Bg, D) as a scoring function for measuring quality of network struc-
tures. To do so, we will introduce four assumptions:

Assumption 1: The database variables are discrete. This assumption allows us to use a
probability mass function P(D|Bg, Bp) rather than a density function

P(Bs,D) = [ P(D|Bs,Be)f(Br|Bs)P(Bs)dBy

= P(BS)/B P(D|Bs, Bp)f(Bp|Bs) dBp (13)

16



where Bp is a vector where values denote the conditional probability assignements as-
sociated with the belief network structure Bg, and f is the conditional probability density
function over Bp given Bg

Assumption 2: Cases of the database occur independently given a belief network S.
This allows to calculate the probability of the whole dataset as the product of the probability
of each case:

P(Bg, D) = P(Bs) /B lH P( Ch|Bs,BP)] f(Bp|Bs)dBp (14)
(3 Py

where m is the number of cases in D and ¢, is the h-th case in D.
Assumption 3: There are no cases that have variables with missing values. This allow
us to calculate the probability of each case as the product of the probability of variables.

P(Bs,D) = P(Bs) |, [H I 7( h|paz,Bp>] f(Br|Bs) dBp (15)

h=1i=1

where :L“f denotes the state of variable z; in case ¢;, and pazh denotes the configuration of the
set of parents of the variable z; in the network structure Bg in case ¢;. By grouping terms,
we can rewrite equation (15) as

P(Bs,D) = P(B3) [ [ﬁ 11 11 Peatipal, Br)or

f(Bp|Bs) dBp (16)
1=1j=1k=1

where r; stands for the number of states of variable xz;, m denotes the k-th state of the
variable, ¢; denotes the number of configurations of the parent set of z;, pal denotes the j-th
configuration of the variable x; parents, and N;;; denotes the number of cases in dataset D
where z; = mf and pa; = pag .

Before going to the fourth assumption, let us introduce more notation: let 0;;; be

P(x k|pa Bp), and let call an assignment of numerical probabilities to 0;;,Vk = 1,...,r;,

a probablhty distribution, which we represent as the list (6;;1,...,6;;-,). Note that, since the
states x are exclusive and exhaustive, it follows that Y% | 0;;, = 1. In addition, for a given
z; and pal, let f(6;j1,...,0;r,) denote the probability density function over (6;j1,...,60;jr,)

Assumption 4: Before observing D, we are indifferent regarding which numerical prob-
abilities to assign to the belief network with structure Bg. From this assumption results the
following two:

4a The distribution f(6;j1,...,6;,;) is independent of the distribution f (01, ... ,0y ), for
1<d,4" <n, 1 <5 <¢, 1 <5 <gp,and ij #4'5';

4b Distribution f(6;j1,...,60ijr;) is uniform, for 1 < i, < n, 1 < j < ¢;, that is , a non
informative distribution.

From assumption 4a follows that

BP|BS H Hf %3 R z]rz) (17)

i=1j=1

By substitution in equation (16) we obtain

17



i=1j=1k=1 i=1j=1
dbr11, ..., dbijg, ..., dOpg,r,

P(Bs,D P(Bs) / ijk / [H H ﬂomgk] H Hf (Oij1,---,0ir;) (18)

where the integral is taken over all 6;;,Vi € [1,n], Vj = 1,...,¢;, and VK = 1,...,r; such that
0 < 0;x <1, and for every 4, j the following condition holds ) 0;;, = 1.
From the independence of terms in equation (18) follows

P(BS, BS HH/ l]k/[H 0”};’“] Ul,...,Hijri)dez-jl,...,dez-jri (19)

i=1j=1
By assumption 4b, it follows that f(6;1,...,0;jr;) = Cj; for some constant Cj;. Since
f(0ij1,...,0ij,) is a probability density function, it necessary follows that, for a given ¢
and 7,
/ Oije / Cij i, .. dbsjr, = 1 (20)

Now, we must solve this equation which is a special form of the Dirichlet’s integral:

z . ITi=y Niji!
/ ijk /Hoz]kzjk dozgla-'-adoijri = m (21)

where Nj; = 33" | Njjk. If now, we take N;;, = 0 (hyperparameters yielding a non informative
distribution as required by assumption 4b) for all ijk we obtain:

1
/ z,]k /1d9l]17"' l]’f‘z — m (22)

/ T / (ri = Dl dOijn, ..., dbijr, = 1 (23)

and we can solve equation (20) obtaining Cj; = (r; — 1)! and therefore f(6;j1,...,0ir;,) =
(r; — 1)! is a uniform probability density function. If we substitute this solution in equation
(19)

and thus,

P(Bs,D) = P(Bs) HH/ wk/l]‘[ 913;&] ri— D di, ..., db,

i=1j=1
— P [T 1[0 - 1)!/ i / H 0N by, ..., dOygr, (24)
i=1j=1

Note that the multiple integral in equation (24) is again the Dirichlet’s integral (equation 21)
and we can substitute it in equation (24) obtaining finally the scoring function P(Bg, D):

—1)! i

—' ol

P, D) = P [1 11 s T v (25)
i=1j= 1 k=1

Once we have the scoring function we only have to find the network structure that maximizes

that function. We assume that, before observing the dataset D, we belief that all structures

18



are equally likely. Therefore, the prior P(Bg) turns in an uniform probability distribution
(i.e. a constant c¢) which we can skip as it does not play any role in maximizing the scoring

function:
n qi (

max |P(Bg,D)| = ma
BSX[ (Bs, D)] X H(

—_ N; 26
i=1 Pai Nl] + ry — ]. ' H l]k ( )

where the maximization on equation (26) takes place over every instantiation of the parents
Pa; of the variable X;. We also must be aware of no allowing cycles in the network structure
Bg when maximizing the scoring function. In order to avoid cycles, we introduce an order
among the n variables, such that, if X; precedes X in the ordering, X; cannot be parent of
X;.

Cooper and Herskovits propose an heuristic greedy search that begins with the assumption
that a node has no parents, and then adds incrementally that parent whose addition most
increases the probability of the resulting structure. When the addition of no single parent
can increase the probability, it stops adding parents to the node. In particular, the algorithm
uses the following scoring function which follows from equation (26)

qi
(r; — 1)!
9(X;, Pa;) = H R H Niji! (27)

where the IV;j; are computed relative to Pa; and to the database D.
The K2 can be written as algorithm 3.

Algorithm 3 K2

Require: a database D on the variables {X1,..., X, }, an order Pred among the variables,
and a maximum number of parents per node u

Ensure: a DAG with maximum a posteriori probability given the database D

1: Build a structure Bg on { X1, -+, X, } and assume all variables to be marginally indepen-
dent

2: fori:=1tondo

3: Pai = @

4 Pyyq = g(X;, Pa;)

5. OK := true

6: while OK and (Pa; < u) do

7: let z be the node in Pred(X;) — Pa; that maximizes g(X;, Pa; U {z})

8: Pew = g(XZ', Pa,; U {Z})

9: if Pyeyw > Pyg then

10: Poig := Prew

11: Pa; :=Pa; U {Z}

12: else

13: OK := false

14: end if

15:  end while

16: end for

Cooper and Herskovits also proposed a closed formula in order to calculate the expec-
tations of the conditional probabilities when given a database D and a Bayesian network
structure Bg.

19



Let denote ;1. the conditional probability P(xﬂPag ), that is, the probability that X; has
value xf, for some k from 1 to r;, given that the parents of X; has the configuration Pag .
Call 6;;, a network conditional probability and let £ denote the four assumptions.

Consider the value of E[0;;.|D, Bs,] be the expected value of 6;;;, given the database D,
the Bayesian network structure Bg and the assumptions &:

Nije +1

E[OZ]k|DaBSa£]: Nii + 7
ij i

(28)
This equation is fully justified in [8].

4.3 The Minimum Description Length approach

In this section we introduce the Rissanen’s Minimal Description Length (MDL) principle.
The MDL principle is based on the idea that the best model of a database is the model that
minimizes the sum of the length of the encoding of

1. The model
2. The data given the model

In order to apply the MDL principle we first need to encode the Bayesian network, as the
model, and the raw data given the network. Afterwards, we will measure in bits the length
of both encodings.

1. Encoding the Network

A Bayesian network S = (Bg, Bp) is formed by the structure Bg (i.e. a DAG) and a
list of the conditional probabilities Bp associated to each node. So, in order to encode the
network we need to encode its structure and the set of conditional probabilities.

Suppose there are n nodes in the dataset. For a node X; with |Pa;| different parents, we
need |Pa;|logy(n) bits to list its parents. Thus, we need the following number of bits in order
to encode the structure of a network

n
> [Paj|logy(n)
i=1

The encoding length of the conditional probabilities for each node X; is the product of
the number of bits required to store the numerical value of each conditional probability and
the total number of conditional probabilities that are required. Thus, we need the following
number of bits in order to encode the conditional probabilities of a network

n

Yo d(ri—1) g

=1

where r; is the number of states of the node Xj;, ¢; is the number of configurations of its parents
and d the number of bits required to store a numerical value. Note, that since the states of
the nodes are independent and exclusive, the sum over all values of conditional probabilities
equals 1, and therefore we only need (r; — 1) ¢; numbers (instead of r; ¢;) to fully specify the
conditional probabilities. Note also, that for a given dataset D, n and d are constant.

20



Finally, the encoding length of a Bayesian network is the sum of the two values previously
stated

Z |Pa;j|logy(n) + d(r; — 1) g; (29)
i=1

2. Encoding the data given the model

Here, we want to encode the dataset D of m cases, given the model S = (Bg, Bp). Since
we are interested in comparing the length of encoding the data given a Bayesian network, we
actually do not care in using the most efficient code. We will use the character codes which
is intuitive and not very time consuming. The character codes assigns to each configuration
a unique binary string, and the dataset D is encoded by concatenating the m binary strings
of the cases. It is well known that we can minimize the length of the final binary string by
giving the shortest code to the cases with the highest frequency. We minimize the coding
length by applying the Huffman algorithm:

If we want to encode an alphabet A, construct the code backward starting from
the tail of the codewords,

1. Take the two least probable symbols in the alphabet. These two symbols will
be given the longest codewords, which will have equal length, and differ only
in the last digit.

2. Combine these two symbols into a new single symbol, calculate the proba-
bility of the new symbol, and repeat.

Since each step reduces the size of the alphabet by one, this algorithm will have
assigned strings to all the symbols after |A| — 1 steps.

Huffman’s algorithm requires as input the frequency of occurrence of each configuration ap-
pearing in the database. Suppose that each configuration ¢; in the database has probability
pi, then Huffman’s algorithm assigns to configuration ¢; a codeword of length approximately
—logy(p;). If we have m, being m large, in the database, then the length of the string encoding
the database is approximately

—m Y pilog, (pi) (30)

where we are summing over all possible configurations.

Evidently, we do not have these p; probabilities since the Bayesian network is a guess (or
model) of such probabilities. The Bayesian network, as a model, assigns a probability ¢; to
each configuration. Of course, in general ¢; is not equal p; although it is the aim for ¢; to be
close to p;. The closer ¢; to p; the more accurate is the Bayesian network.

We will use the probabilities ¢g; given by the Bayesian network to compute the Huffman
code of dataset D. Hence, each configuration c; is assigned a codeword of length approximately
—log,(g;) and the length of the string encoding the database is approximately

—m»_ pilogy(q:) (31)
i
Now we can use the Gibbs’ theorem in order to compare equations (30) and (31):

21



Theorem 1 Let p; and q;, where ¢ = 1,...,t, be non-negative real numbers that sum to 1.

Then,
t ¢

—m Y pilogy(pi) < —m > pilogy(:)
i i

with equally holding iff Vi,p; = q;. In the summation we take 0log,(0) to be 0.

From this theorem, it comes out that the encoding using the estimated probabilities g; is
longer than the encoding using the true probabilities p;. It also says that the true probabilities
achieve the minimal encoding length.

The MDL principle says that we must choose the network that minimizes the encoding
length of the dataset, and we have seen that it depends on the accuracy of the network.
We can use equation (31) in order to evaluate the encoding length of the dataset given the
network. However, this measure has two problems. First, we do not know the values of p;,
and second, equation (31) requires a summation over all the configurations, and the number
of configurations is exponential in the number of variables.

The first problem is easily overcome by the law of large numbers: the configuration ¢; with
probability p; is expected to appear m - p; times in a database of m cases. Hence, we can use
¢;’s frequency in to the database as an estimator of p;.

In order to overcome the second problem, we can use Gibbs’ theorem to relate the encoding
length of the data to the Kullback-Leibler divergence Dy, (P, Q) (equation 8). We already
know that 0 < Dk, and that is zero if and only if both probability distributions (P and Q)
are identical. From equation (31), the Kullback-Leibler divergence Dy (P, Q) (equation 8)
and Gibbs’ theorem we have the following theorem:

Theorem 2 The encoding length of the data is a monotonically increasing function of the
Kullback-Leibler divergence between the distribution defined by the model and the true distri-
bution.

This theorem shows that instead of using the data encoding length (equation 31) we can
use the Kullback-Leibler divergence to evaluate candidate networks. Although the Kullback-
Leibler divergence also involves a summation over an exponential number of configurations, a
computational feasible approach for evaluating this measure can be developed by extending
the work of Chow and Liu [7] as we will see in the next section.

For further readings on the Minimum Description Length principle see [27, 28].

4.3.1 The Lam and Bacchus algorithm

Lam and Bacchus [19] extended the Chow and Liu [7] work to a more general result. Chow
and Liu proposed a measure (see equation 9) to measure the difference between the dataset
distribution P and the tree dependence distribution P, which models the dataset. Lam and
Bacchus extended the measure to the general case of a network structure, i.e. directed acyclic
graph (DAG), with dependence distribution Pg.

Chow and Liu demonstrated that minimizing D, (P, P;) was equivalent to maximize the
mutual information (equation 7) 377" I(X;; X;(;)) where Xj;) represents the unique parent of
the node X;. In the same way, Lam and Bacchus demonstrated that minimizing D, (P, Ps)
is equivalent to maximize the mutual information Y ;= I(X;;Pa;) where Pa; is the set of
parents of the node X;. In conclusion, given the probabilities computed from the dataset, we

22



can calculate the quality of various candidate networks using local computation at each node.
Thus, if we can find a network with maximum total mutual information, the probability
distribution of this structure will be the one closest to the underlying distribution of the
dataset. And, by theorem 2, it will yield the shortest encoding of the data.

Nevertheless, if we used this measure as a quality measure, we would obtain the multiply
connected network corresponding to the underlying probability of the data set. This structure
would be a complete graph with a large encoding, and worse still, it would not convey any
information since it could represent any distribution.

The MDL principle, anyway, allows to perform a trade-off between complexity of the
structure and its accuracy. The totally connected network would require to store an exponen-
tial number of probability parameters. Hence, there will probably be a less complex network
with a shorter encoding that is still able to produce a reasonably short encoding of the data.
When evaluating the total description length, this less complex network is preferred.

Now, we proceed to describe the heuristical search proposed by Lam and Bacchus [19].
Given a dataset D on X = {X7,..., X,,} variables, we want to construct a Bayesian network
with n nodes and a reasonable high score for MDL. We know that a directed acyclic graph
with n nodes can have from 0 to n(n — 1)/2 arcs between nodes. The process maintains
n(n—1)/2+ 1 separate search sets S; for candidate networks with ¢ arcs between nodes. Each
element of the set S; has two components, namely, a candidate network Bg with ¢ arcs and
a pair of nodes (X;, X;) between which a new arc could be added to the candidate network
without creating a cycle. Also, the elements of each set S; are separated into distinct lists,
the OPENg, and the CLOSEDyg, list. The algorithm performs a best-first search within
each set S; using the OPENg, and CLOSEDg, lists. See algorithm 4.

The algorithm calls the procedrue PD-procedure(S,(X;, X;)) that adds an arc between
the nodes X; and X creating a new network S’. It chooses the direction of the new arc that
most increases the network’s accuracy (i.e. mutual information). In the process it might also
reverse the direction of the other arcs in Bg,q. See procedure 5.

5 Learning Bayesian Networks: the incremental approach

In this section we consider the main contributions about incremental or on-line learning
algorithms for Bayesian networks. The aim of all these algorithms is to modify or evolve
an already known structure when new data is available. However, in the learning Bayesian
networks field, there is neither a wide accepted definition of what is considered to be an
incremental algorithm, nor of which is the aim of such algorithms. Friedman and Goldszmidt
are the only authors, as far as we know, to give a precise definition of on-line or incremental
algorithms in the Bayesian network learning field [12]:

Definition: A Bayesian network learning procedure is incremental if at each
iteration [, it receives a new data instance u; and then produces the next hypothesis
Siy1. This estimate is then used by to perform the required task (i.e. prediction,
diagnosis, classification, etc.) on the next instance m; 1, which in turn is used to
update the network and so on. The procedure might generate a new model after
some number of k instances are collected.

If we compare this definition to that given by Langley (see Section 2.3), we can see that it
is the same from the viewpoint of the behavior of the process. Both definitions require the

23



Algorithm 4 Lam and Bachus

Require: a database D on the variables {Xy,..., X, }
Ensure: Bg,.; be a DAG with low Minimum Descrltptlon Length given the database D

1:
2
3:
4

T

10:
11:

12:
13:
14:

: Calculate the mutual information I(X;; X;) between every pair of distinct nodes
: PAIRS = list of pairs of nodes. Ordered from the highest to the lowest mutual information.
Initialize all S; search sets with i =1...n(n — 1) as empty sets.
: Initialize Sy containing the single element with the candidate network with no arcs and
the first pair of nodes from the PAIR list. Let this element be in the OPENg, list.
repeat

for each set S; do

Remove the element with greatest heuristic value, > I(X;;Pa;), from the
OPENg, list and copy it onto the CLOSEDyg, list. Let the element’s network
be Bggq and the element’s pair of nodes be (X;, X;).

Bsnew = PD'procedure(BSolda(XiaXj))

If Bgnew is fully connected, place a copy of it into a set, FINAL, of final candidates.
Build a new search element consisting of Bgpeyw and the first pair of nodes from
PAIRS that appears after the old pair (X;, X;) and between which an arc could be
added without generating a cycle in Bgpew. Insert this element into the OPENg,
Build a new search element consisting of Bg;q and the first pair of nodes from PAIRS
that appears after the old pair (X;, X;) and between which an arc could be added
without generating a cycle in Bgyey. Insert this element into the OPEN g, list.

end for
until a limited amount of computational resources is been used in each S;
Let Bgres be the structure from the FINAL set with the highest MDL score.

Procedure 5 PD-procedure

Require: a network S and a pair of nodes (X;, X;)
Ensure: S’ be a network with an arc between X; and X; and posibly some other arcs reversed

[y

for all arc € {X; — X, X; «— X;} do
Create a new network by adding the arc
Determine the optimal directionality of the arcs attached directly to X; by examining
which directions maximize the mutual information.
if the direction of an existing arc is reversed then

perform the above directionality determination step on the other node afected

end if
end for
: §" = network of greatest mutual information from the two networks found

24



learning algorithm to process training instances as they are available and to have a domain
model ready for performance tasks at each iteration. However, Friedman and Goldszmidt’s
definition, does not state any restriction on the way the learning algorithm process data.
Thus, an algorithm that reprocess the whole data set at each iteration or that maintains lots
of alternative Bayesian networks in memory fits to this definition.

Anyway, Friedman and Goldszmidt’s definition introduce an interesting point. Namely,
first it allows some granularity for the incremental process, that is, the incremental process
does not have to yield a new domain model for each single data item. Instead, it is allowed
to wait until some number k£ of data instances are available, so we can say that the process is
incremental with some granularity.

Up to 1998, there are only three proposals of algorithms revising the network structure
of a Bayesian network. Namely, Buntine’s (1991) [4], Lam and Bacchus’ (1994) [20] and
Friedman and Goldszmidt’s (1997) [12]. The algorithm proposed by Wray Buntine yields
a set of alternative and reasonable networks given the dataset. The algorithm is able to
revise the set of Bayesian networks in the light of new data. Lam and Bacchus proposed
an algorithm able to revise parts (i.e. a subgraph) of the already learnt Bayesian network
when new data about a subset of variables is available. Finally, Friedman and Goldszmidt
proposed an algorithm that explores a frontier of possible alternative networks. When new
data is presented to the algorithm the frontier is changed and the best network is selected as
the result.

We present these three algorithms in a chronological order. It is difficult to compare
the results obtained by the three proposals for two reasons. Firstly, only Friedman and
Goldszmidt present some results in their article, and secondly, we think it cannot be said that
the aim of all of them is exactly the same.

5.1 Buntine’s proposal

Wray Buntine [4] proposed an incremental algorithm for learning Bayesian Networks. The
algorithm, given a dataset and a total ordering of the variables, comes up with different
alternative Bayesian networks that are reasonable in terms of the scoring functions. We call
reasonable those alternative Bayesian networks whose scorings are within a factor E of the
best found, where E is a parameter of the algorithm. Note that, in some way, the parameter
E also specifies the number of alternative networks the algorithm yields.

The capability of the algorithm to return a list of alternative Bayesian networks contrasts
with the algorithms we have seen so far in this report as they yield one single network.

Buntine proposes first a batch algorithm that uses the Bayesian approach for the scoring
functions. Afterwards, he proposes some guidelines for converting it into an incremental or
on-line algorithm. The batch algorithm can be seen like a generalization of K2 since when
the factor F is set to 1 the algorithm is actually that proposed by Cooper and Herskovits [8].
Furthermore, the incremental version of the algorithm can also be seen as another general-
ization.

Here, we follow Buntine [4] stating first the batch version of the algorithm and afterwards
the incremental one.

25



5.1.1 The batch version of the algorithm

The algorithm needs a total ordering of the variables as prior knowledge from the experts.
The variables coming first in the ordering are supposed to influence the others. We need also
a compact data structure in order to represent the alternative Bayesian networks.

For each variable X; we will keep a set of reasonable alternative parent sets II; accord-
ing to some criteria of reasonableness. For the variable X; alternative parent sets II; =
{Pa;1,...,Pa;,} will be a collection of subsets of {Y : ¥ < X;}. We also have to store
the network parameters 6;;, for each set of possible parent sets. The space of alternative
networks is then given by the Cartesian product across the sets of the parent sets for each
variable ®],1I;. Buntine calls this structure, both the set of parent sets and the network
parameters, a combined Bayesian network.

In order to access all alternative parent sets Pa; € II; efficiently they are stored in a lattice
structure where the subset and superset parent sets are linked together in a web, denoted
the parent lattice for X;. Since the full set of lattices is of size potentially exponential to
the number of variables n, only those parent sets with significant posterior probabilities are
stored and linked.

The parent lattice II; for the node X; is stated as follows. The root node is the empty
set and the leaves are the sets Pa; which have no supersets contained in II;. For example,
the lattice IT; = {{a}, {a,b},{a,c},{a,d}} has the root {a} and the leaves {a,b},{a,c} and
{a,d}. The number of leaves can be reduced by adding the parent sets {a,b,c},{a,c,d} and
{a,c,d, e}, resulting in a lattice with the leave {a,c,d,e}.

The algorithm has tree parameters G < F < E < 1 which, in some way, specify the
sort of search will be performed. When the parameters are close to 1, the search becomes
greedy since the number of alternative networks is reduced and, on the contrary, when the
parameters are close to 0, the search is a beam search. The closer to zero the parameters are,
the more beams the algorithm considers during the search process.

According to the parameters the algorithm classifies the parent sets as alive, dead or
asleep. Alive parent sets represent the set of reasonable alternatives having posteriors within
a factor of E of the best found. Dead parent sets exist in the lattice as dead-end markers
in the search space. They have been explored and forever determined to be unreasonable
alternatives and are not to be further explored. Asleep parent sets are similar but are only
considered unreasonable for now and may be made alive later on. Furthermore, nodes can be
either open or closed, depending on whether they require further expansion during search.

Buntine uses the Bayesian approach in order to calculate the scoring functions, although
he does not define the hyper-parameters of the Dirichlet distribution. In order to calculate the
posterior probabilities we can use the uniform Dirichlet distribution proposed by Cooper and
Herskovits and use their function (equation 27). Buntine’s proposa is stated as in algorithm
6, where the process-the-children(ch;) (procedure 7) updates the lists of nodes according to
the posterior of the parent sets Pa; € ch;

We want to remark, here, that when the parameters E, F and G are set to 1, this algorithm
reduces to the K2 algorithm. Note that in such situation only one network structure is kept
into the open-list and all the other lists are empty. Thus, we can think of this algorithm
like a generalization of the K2 algorithm. However, recall that Buntine’s algorithm yields a
combined Bayesian network rather than a single network.

26



Algorithm 6 Buntine’s batch
Require: a database D on the variables {X1,..., X, }, an order < among variables, and the
parameters G < F' < E < 1, and a database D
Ensure: a combined Bayesian network corresponding to reasonable alternatives according to
the parameters.
1: fori=1tondo
2. Best-posterior= P(Pa; = 0| D, <)
3. Open-list = {0} {Parent sets within a factor E of Best-posterior, those to be further

expanded. }
4. Alive-list= {0} {Parent sets within a factor F' of Best-posterior}
5. repeat
6: Take from the Open-list the parent set Pa; with the highest posterior P(Pa;|D, <)
7 if P(Pa;|D,<) < G - Best-posterior then
8: Mark this parent set as dead
9: else if P(Pa;|D, <) < F - Best-posterior then
10: ignore this parent set
11: else
12: generate all its children ch; and calculate their posterior
13: process-the-children(ch;)
14: end if
15 until Open-list={(}
16: end for

Procedure 7 Process-the-children
Require: the children sets of parents ch;

Ensure: lists of nodes updated
Pa; = the parent set rom ch; with the highest posterior P(Pa;|D, <)
if P(Pa;|D, <) > Best-posterior then
Best-posterior = P(Pa;|D, <)
modify the Alive-list to reflect the new maximum
end if
for all children Pa; € ch; do
if P(Pa;|D,<) < G - Best-posterior then
mark Pa; as dead
else if P(Pa;|D, <) > F - Best-posterior then
Alive-list=Alive-list U {Pa;}
else if P(Pa;|D,<) > E - Best-posterior then
Open-list=Open-list U {Pa; }
end if
end for

27



5.1.2 The incremental version of the algorithm

Buntine proposes the incremental algorithm as an extension of the one seen above. He con-
siders the situation where new data are available and have to be processed by the algorithm
in order to update the combined network.

Buntine describes two different situations depending on the time available in order to
update the combined network. Namely, one when the algorithm can spend very few time for
updating, and another when more time is available. In the first case, a rapid update of the
combined network is required and there is no time enough to update the parent structure.
Thus, the algorithm only updates the posterior probabilities of the parent lattices. In the
second case, given additional time, both structure and posteriors update are performed.

In order to update the posteriors of the combined network, we need to store posterior
probabilities and the counters N;; for each alternative set of parent sets in order to be able
to update them when new information is available. We also need an incremental expression
of g(X;,Pa;) (equation 27). Suppose that the dataset D is extended to database D’ with the
new example having X; = xf and Pa; = j, then we should increment N;j; and calculate the
new posteriors ¢'(X;, Pa;) as

g’(XZ-,Pai) = g(XZ-,Pai)% (32)
This follows from the recursive properties of the Gamma (factorial) function. Since the
number of reasonable parents is L = Y ", |Pa;|, the full update process will therefore take
O(L) operations. If we increase D by adding I new examples in a batch then we can repeat
this process I times.

When a batch of new examples and additional time is available, a process reproducing the
results of the algorithm can be run incrementally. In each step of the for iterative structure of
the main algorithm, that is, for each variable X; of the already discovered combined Bayesian
network the following must be done:

1. Update the posterior probabilities of all alive and open parent sets of the lattice.
2. Calculate the new Best-Posterior
3. Expand nodes from the Open-list and continue with the search

It may happen that some parent sets oscillate on and off Alive-list and Open-list because the
posteriors ordering of the parent set oscillate as the training examples are taking in account.
This effect can easily be prevented by making a differential on E and F' between placing a
node on and taking a node off.

Note that this incremental algorithm is again a generalization of the former.

5.2 Lam and Bacchus’ proposal

Lam and Bacchus [20] proposed an extension of their batch algorithm so that it could perform
revision of the Bayesian network structure incrementally as new data is available.

The new refined network structure they want to discover should be similar to the exis-
tent one since the task they want to carry out is refinement. The refinement is done with
the implicit assumption that the existent network is already a fairly accurate model of the
database.

28



They demonstrate that if we improve the description length DL of a subgraph changing
its topology, we improve the description length of the complete graph if we do not introduce
cycles.

Theorem 3 Let Bs, = (Ny, Ap) and By, = (Ny, A;)) be respectively two subgraphs of Bg =
(N,A) and By = (N, A’), where N is the set of nodes and A is the set of arcs, and where
N, CN, Ay C A and A, C A'. The following holds

DL(BY,) < DL(Bs,) = DL(B%) < DL(Bs)

Using this theorem they developed an algorithm that improves the Bayesian network by im-
proving parts of it. The algorithm first learns a new partial structure from the new data and
the existent network using an extension of the minimum description length (MDL) measure,
and then modifies locally the global old structure using the newly discovered partial struc-
ture. The new data is presented as a table of examples where only a subset of the variables
represented by the Bayesian network are available.

5.2.1 Learning the partial structure

Recover from Section 4.3 that the MDL principle states that the best model of a database
is the model that minimizes the sum of the length of encoding the model and the length of
encoding the database given the model.

For the refinement problem, the source data consists of two components, the new data
and the existent network structure. Thus, we must find a partial network Bg, that minimizes
the sum of the of the length of the encoding of

1. The partial network Bg,
2. The new data given the network Bg,
3. The existent network given the network Bg),

Note that the sum of the last two items corresponds to the description length of the source
data given the model. We are assuming that these two items are independent of each other
given Bgj,, and thus they can be evaluated separately.

In order to calculate the encoding length of the first two items we will use the equations
used in the section 4.3.1. For calculating the length of the encoding of the third item we need
to compute the description of the complete existent network Bg given the partial one Bgy,.
To recover Bg having Bg, we only need to describe the differences between Bg and Bg),

e a listing of reversed arcs, that is, those arcs in Bg, that are also in Bg but with opposite
direction

e the additional arcs of Bg, that is, those arcs in Bg that are not in Bg,
e the missing arcs of Bg, that is, those arcs in Bg;, but are missing in Bg

A simple way to encode an arc is to describe the source node and the destination node. If
we have n nodes we need logn bits to identify one. Therefore we need 2logn bits in order

29



to describe an arc. Let r, a and m be respectively the number of reversed, additional and
missing arcs in Bg with respect Bg,. The description length Bg given Bg, is then

(r+a+m)2logn (33)

This description length can be localized for each node. See that each arc can be uniquely
assigned to its destination node. For a node X; in Bg let r;, a; and m; be the number of
reversed, additional and missing arcs of it given Bg,. If Bg structure is defined over the set
X of nodes and the partial structure Bg, is defined over X, € X set of nodes, equation 33
can easily be reformulated as
Z (ri +a; +m;)2logn (34)
X;eX

If X, = X\X,, then the sum of previous equation can be expressed as

Z (ri +a; +m;)2logn + Z (ri +a; +m;)2logn (35)
XiEXp XiEXq

The second sum in the above equation specifies the description lengths of the nodes X, which
are not present in Bg,. Thus, the corresponding r;’s and m;’s are zero and the a;’s are not
affected by the Bg, structure. As we are using the measure in order to compare different
partial structures Bgj,, the second part of the sum of equation 35 is constant over them.
Therefore, we only need to compute the first part.

Finally, in order to learn the local structure we can use the batch algorithm proposed by
Lam and Bacchus (see Section 4.3.1), and as scoring function for each node of the partial
structure

DL; = |Pa;|logn + Z I(X;; X;5) + (ri +mi + a;)2logn (36)
X;€Pa;
where the first term corresponds to the encoding length of the partial structure, the second
corresponds to the encoding length of the new data given the partial structure and the last
corresponds to the encoding length of the old structure given the new. This equation is
banked on the results obtained by Lam and Bacchus [19] (see Section 4.3.1)

5.2.2 Modifying the global old structure

Suppose the existent network structure is Bg, and the learned partial structure is Bgy. The
objective of the refinement process is to obtain a refined structure of lower total description
length with the aid of the existent structure Bg and the partial structure Bg.

Say we have a node Xj, its parent set in Bg), is Pa;(Bs)p), and its description length in
Bg, is DL; (equation 35). In the existent network Bg, however, X; will in general have a
different set of parents Pa;(Bgs) and a different description length. If Pa;(Bs) ¢ X,, then
these two descriptions lengths are incomparable. In this case X; has a parent in Bg that does
not appear in the new data; hence the new data cannot tell us anything about the effect of
that parent on X;’s description length. We identify all of the nodes X; whose parents in Bg
are also in Bgj, and call these the set of marked nodes.

Suppose for a certain marked node X;, we decide to substitute the parents of X; in Bg
with the parents of X; in Bg,, a new structure Bg; is obtained. Usually the total description
length of Bg; can be calculated simply by adding the total description length of the old
structure Bg to the difference between the local description lengths of X; in Bg and Bg).

30



The new total description length of Bg; can be evaluated in this way if the substitution of
the parents of X; in Bg does not affect the local description lengths of any other node in Bg.
In fact, the only situation where this condition fails is when the parents of X; in Bg contain a
reversed arc (as compared to Bg). Under this circumstance, we need to consider the node X,
associated with this reversed arc. If X, is also a marked node, we need to re-evaluate its local
description length since it will be affected by the substitution of X;’s parents. Recursively,
we must detect any other marked nodes that are, in turn, affected by the change in X,’s
description length. It can be easily observed that these affected nodes must all be connected.
As a result, we can identify a marked subgraph unit that contains only marked nodes and
which can be considered together as an unit when the replacement is performed.

Actually, we can obtain the same subgraph unit if we had started off at any node in the
subgraph due to the symmetrical nature of the influence between the nodes in the subgraph.
For instance, returning to the previous example, if we considered X, first, we would have
detected that the local description length of X; would be affected by the substitution of X,’s
parents. The process would have continued and we would have obtained the same subgraph.

The following algorithm identifies a marked subgraph unit with respect to Bg. Initially,
Q@ is a set containing the initial node X; and it grows as the algorithm progresses. @ will
contain the required marked subgraph when the algorithm (algorithm 8) terminates. Initially,
M is a set containing some nodes that could be transferred to ). It shrinks as the algorithm
progresses and contains the remaining marked nodes that are not included in Q.

Procedure 8 Subgraph-unit

Require: Q, X;, M

Ensure: () = set of marked nodes
1: R = the set of reversed arcs from X;’s parent set in Bg,
2: for all X, € R do

32 M=M-{X,}

4: if X, is marked and X, ¢ () then
5 Q=QU{X -7}

6: subgraph — unit(Q, X;, M)

7. end if

8: end for

Now, we can identify all marked subgraph units in Bg, (see algorithm 9. Parent substitu-
tion is to be done for all the nodes in the subgraph if the subgraph is chosen for refinement.
A useful property of the subgraph is that the change in description length of each subgraph is
independent of all other subgraphs. The next algorithm identifies all marked subgraph units
in Bgp. Initially M contains all of the marked nodes and S = (). All subgraph units will be
contained in S when the algorithm terminates. @ is a local variable containing the nodes for
the current subgraph unit.

The refinement problem now is reduced to choosing appropriate subgraphs for which we
should perform parent substitution in order to achieve a refined structure of lowest total
description length. Although each subgraph substitution yields an independent reduction
in description length, these substitutions cannot be performed independently as cycles may
arise.

We use best-first search to find the set of subgraph units that yields the best reduction
in description length without generating any cycles. To assist the search task, we construct

31



Procedure 9 Partition-into-subgraph
Require: M, S
Ensure: S be a set of subgraph units
while M # () do
X; is a node from M
M = M —{X;}
Q = {Xi}
subgraph — unit(Q, X;, M)
5=5U{Q}

end while

a list S = {S1,S52,...,S5;} by ranking all subgraphs in ascending order of the benefit gained
if parent substitution was performed using that subgraph. The OPEN list contains search
elements which consists of two components (B, S) where BY is a refined network and S the
next subgraph unit to be substituted into Bg. The elements in the OPEN list are ordered
by the sum of the description length of B% and the benefit contributed by the subgraph unit
S. The initial OPEN list consists of the search elements (Bg,;, Sj;1) where BY, is obtained by
substituting S; into the existent structure Bg for 2 =1 to t — 1.

Procedure 10 Find-subgraphs

Require: OPEN list

Ensure: OPEN list contains refined networks

repeat
Extract the first element from the OPEN list.
Let it be (Bg,S;). Put Bg into the CLOSED list.
Construct a new refined structure B by incorporating S; into Bg.
Insert the element (Bg, S;+1) into the OPEN list.
if B is acyclic then
insert the element (BY, Sj;1) into the OPEN list

end if

until resource limits are exceeded

5.3 Friedman and Goldszmidt’s proposal

Friedman and Goldszmidt [12] proposed three different approaches in order to sequentially
(incrementally) learn Bayesian Networks. They claim that effective sequential update of
structure involves a tradeoff between the quality of the learned network and the amount of
information that is maintained about past observations. The three approaches they proposed
manage differently the tradeoff. Two of these approaches lie on the extreme of the spectrum,
while the third allows for a flexible manipulation of the tradeoff.

On one extreme we have the naive approach which stores all previously seen data, and
repeatedly invokes a batch learning procedure after each new example is recorded. This
approach can use all of the information provided so far, and thus is essentially optimal in
terms of the quality of the networks it can induce. This approach, however, requires vast
amount of memory to store the entire corpus of data.

32



On the other extreme we have the second approach, Maximum Aposteriori Probability
(MAP) which avoids the overhead of storing all of the previously seen data instances by
summarizing them using the model we have seen so far. This approach, similar to that of
Lam and Bacchus (see Section 5.2) in the sense that both use one single network structure
as a summary of past data, is space efficient. Unfortunately, by using the current model as
a summary of past data, we strongly bias the learning procedure towards this model. As a
result, after some number of iterations, this approach locks itself into a particular model and
stops adapting to new data.

The third approach, which they call incremental, provides a middle ground between the
extremes defined by the naive and MAP approaches. Moreover, it allows flexible choices in
the tradeoff between space and quality of the induced network. The incremental approach
interleaves steps in a search process, to find “good” models, with the incorporation of new
data. This approach focuses its resources on keeping track of just enough information to make
the next decision in the search process. The basic strategy is to maintain a set of network
candidates that they call the frontier of the search process. As each new data example arrives,
the procedure updates the information stored in memory, and invokes the search process to
check whether one of the networks in the frontier is deemed more suitable than the current
model.

We want to stress that this approach has some similarities with that of Buntine (see
Section 5.1) with the open, alive and asleep lists, in the sense that both maintain a set of
candidate networks and that both allow a tradeoff space and quality.

5.3.1 Sequential update of Bayesian networks

The naive approach to sequential update consists of storing all the observed data, and then
repeatedly invoking a batch learning process. It needs to store either all of the instances that
have been observed, or keep a count of number of times each distinct instantiation to all the
variables in the dataset was observed. This representation grows linearly with the number of
examples observed, and will become infeasible when the network is expected to perform for
long periods of time.

The MAP approach is motivated by Bayesian learning methodology. Recall that in
Bayesian analysis we start with a prior probability over possible hypotheses (models and
their quantifications), and compute the posterior given our observations. In principle, we can
then treat this posterior as our prior for the next iteration in the sequential process. Thus, we
maintain our belief state about the possible hypotheses after observing D;_;. Upon receiving
the [-th data example, we compute the posterior as our current belief state. This methodology
has the attractive property that in the presence of some reasonable assumptions, the belief
state at time [ is the same as the posterior of seeing D; from our initial prior belief state.

If we attempt to use priors in order to represent (and update) the posterior we need
to store a complete network. Unfortunately, this is equivalent to storing the counts for all
possible assignments to X.

Since we cannot realize the exact Bayesian network, we can resort to the following approx-
imation. At each step, we find (or approximate) the mazimum a-posteriori probability (MAP)
network candidate. That is, the candidate that is considered most probable given the data
so far. We then approximate the posterior in the next iteration by using the MAP network
as the prior network. In other words, this procedure uses the network S; as a summary of
the first [ observations. This procedure is space efficient since we only need to store the new

33



instances that have been observed since we last performed the update of the MAP.

Unfortunately, by using the MAP model as the prior for the next iteration of learning, we
are loosing information, and are strongly biasing the learning process toward the MAP model
itself. This phenomena becomes more pronounced as the equivalence sample size is assigned
to the prior grows.

In order to overcome the problems found in the former approaches Friedman and Gold-
szmidt propose a new algorithm they call incremental. Unlike the naive approach, it does
not keep all possible data examples, and unlike the MAP approach, it does not relay on a
single network to represent the prior information. The basic component of this algorithm is a
module that maintains a set ST of sufficient statistics records. These records allow the update
procedure to select amongst a set of possible networks for the update. Before explaining the
approach in detail we introduce some necessary notation. Let Suff(S) to denote the set of
sufficient statistics for S, that is , Suff(S) = {Nipa, : 1 < ¢ < n}. Similarly, given a set ST
of sufficient statistics records, let Nets(ST) to be the set of network structures that can be
evaluated using the records in ST, that is, Nets(ST) = {S : Suff(S) C ST}.

Suppose that we are deliberating on the choice between two structures S and S’. As we
know from the previous sections, in order to use the MDL and Bayesian based measures to
evaluate S and S’, we need to maintain both the set Suff(S) and Suff(S’). Now suppose that
S and S’ differ only by one arc from X; to X,,,. Then there is a large overlap between Suff(S)
and Suff(S’). Namely, Suff(S)U Suff(S’) = Suff(S) U {Nmpa,, }- Thus, we can easily keep
track of both these structures by maintaining a slightly larger set of statistics.

To see how this generalizes to larger sets that covers a considerable subset of the search
space recall that the greedy hill climbing search procedure works by comparing its current
candidate S to all its neighbors. These neighbors are the networks that are one change
away (i.e. arc addition, deletion or reversal) from S. Extending the argument above, we see
that we can evaluate the set of neighbors of S, by maintaining a bounded set of sufficient
statistics. Note that if ST consists of all the sufficient statistics for S and its neighbors,
Nets(ST) contains additional networks, including many networks that add several arcs in
distinct families in S. Also note that if X C Y, then Nx can be recovered from Nvy. Thus,
Nets(S) also contains many networks that are simpler than S.

Generalizing this discussion, this approach applies to any search procedure that can define
a search frontier. This frontier consists of all the networks it compares in the next iteration.
We use F' to denote this set of networks. The choice of F' determines which sufficient statistics
are maintained in memory. That is, we set ST to contain all the sufficient statistics needed
to evaluate the networks in F'. After a new instance is received (or, in general, after some
number of new instances are received), the procedure uses the sufficient statistics in ST to
evaluate and select the best scoring network in the frontier F'. Once this choice is made, it
invokes the search procedure to determine the next frontier, and updates ST accordingly. This
process may start recording new information and may also remove some sufficient statistics
from memory.

The main loop of the incremental procedure can be now described as in algorithm 11.
This procedure focuses its resources on keeping track of just enough information to make
the next decision in the search space. Every k steps, the procedure performs this decision.
After each such decision is made, the procedure reallocates its resources in preparation for
the next iteration. This reallocation may involve removing some sufficient statistics from ST,
and adding new ones.

When we instantiate this procedure with the greedy hill climbing procedure, the frontier

34



Procedure 11 Incremental
Require: initial network S and an initial set frontier F' for S

Ensure: (S,0) an aproximately MAP network
1. ST = Suff(S) UUgrer Suff(S')
2: loop
3:  Read data y
Update each record in ST using v,
if n mod k = 0 then
S = argmaxgrcyers(sy Quality (S'|ST)
Update the frontier F' {using a search procedure}
Set ST to Suff(S)UUgcp Suff(S)
end if
10:  Compute optimal parameters 6 for S from ST
11:  Output(S,0)
12: end loop

consists of all the neighbors of S;. A beam search, on the other hand, can maintain j candi-
dates, and set the frontier to be all the neighbors of all 7 candidates. Other search procedures
might explore only some of the neighbors of S; and thus would have smaller search frontiers.

5.3.2 Sequential scoring functions

Friedman and Goldszmidt are the only ones to stress a problem of using the MDL and Bayesian
measures in order to compare two models in the sequential learning context. Namely, these
two measures assume that we are evaluating all candidates with respect the same dataset.

The underlying problem is a general model selection problem, where we have to compare
two models M; and My such that model M; is evaluated with respect to the training set Dy,
while model Ms is evaluated with respect to the training set Do. Of course, for this problem
to be meaningful, we assume that D; and Dy are both sampled from the same underlying
distribution. This assumption is clearly true in our case.

The MDL and the Bayesian scores are inappropriate for this problem in their current
form. The MDL score measures the number of bits required to encode the training data if
we assume that the underlying distribution has the form specified by the model. However, if
D5 is much smaller than Dy, then the description of Dy would usually be shorter than that
of D; regardless of how good the model Ms is. The same problem occurs with the Bayesian
score. This score evaluates the probability of the dataset if we assume that the underlying
distribution has the form specified by the model. Again, if D5 is much smaller than Dy, then
the probability associated with it will usually be larger, since th probability of a dataset is a
product of the probability of each instance given the previous ones. Since each such term is
usually smaller than 1, the probability decreases for longer sequences.

Friedman and Goldszmidt claim that we need a score that assigns higher confidence to
families for which we have more data. The reader is referred to [12] for the solution proposed
for the MDL score.

35



5.4 Comments to the incremental proposals

In this section we comment on different incremental learning algorithms so far discussed in the
field of Bayesian network learning. We compare the three revised incremental algorithms with
Langley’s and Friedman and Goldszmidt’s definition. We also want to make some references
to the problems of the search strategies reported in Section 2.3.2.

We first want to note that the three incremental algorithms follow the definition of incre-
mentality given by Friedman and Goldszmidt in the sense that all of them are able to modify
the network structure when new data is available. Even though we think that Buntine’s and
Friedman and Goldszmidt’s proposals are quite similar one each other while Lam and Bac-
chus’ one uses another approximation to incrementality. Both Buntine’s and Friedman and
Goldszmidt’s incremental learning algorithms use the new data items to update the sufficient
statistics and thereof to update the posterior probabilities. With these updated probabilities,
the algorithms perform additional search over the space of alternative Bayesian networks.
As we have seen, the Lam and Bacchus’ algorithm use the new data in another way. The
algorithm learns a new graph, possibly a subgraph of the old one, and afterwards uses it to
update the old one.

Returning to the Friedman and Goldszmidt’s proposal, even they do not explicitly make
any reference to Langley’s definition, they explore from their own proposal the different pos-
sible incremental approaches with respect to the restrictions introduced by Langley. Namely,
their naive approach which reprocess all data, their MAP approach which keeps one single
structure in memory, and finally their incremental approach which processes a reduced set
of new data instances in each iteration and keeps in memory a set of significant Bayesian
networks. We note that the MAP approach performs a hill climbing search and thus is mem-
ory and time efficient. Since it looses information in each iteration of learning, it biases the
learning process toward the already learned model.

This problem can be viewed as the ordering problem we introduced in section 2.3.2 where
the hill climbing search sticks to a local maxima. Probably, if the MAP algorithm has pro-
cessed the data in another order, it would have come up with another Bayesian network
structure. In order to overcome this problem Friedman and Goldszmidt propose what they
call the incremental approach. It keeps in memory more than one Bayesian structure (a fron-
tier) loosing in this way less information and being able to carry out a beam search. Hence,
the learning process has more chances to reach a higher maximum.

Buntine also proposes a beam search which keeps several domain models in memory,
namely in open, alive and sleep lists. This different domain models give the algorithm the
capability of recovering from badly decisions made under a skewed vision of the domain (the
database seen so far). However, Buntine provides his algorithm with three parameters in
order to control the amount of memory spent in keeping these domain models and time spent
performing the search. We want to stress that by means of these parameters the algorithm
can be converted into a hill climbing strategy. Still further, we claim that both Buntine’s
and Friedman and Goldszmidt’s beam search proposals may be seen as a generalization of
a hill climbing proposal, since hill climbing is a one beam search. We miss in Friedman
and Goldszmidt’s proposal a parameter in order to state the number of alternative Bayesian
networks maintained into the frontier; note that the frontier of their proposal may be seen as
the open list of the Buntine’s one.

Buntine says that his incremental algorithm rather than processing single new data in-
stances, waits to have a batch of them. Friedman and Goldszmidt give an explicit parameter

36



in order to state the amount of data required in order to proceed to update the network
structure. The reason for using granularity is that the evidence acquired with a single new
data item may not be enough in order to change ones beliefs.

Going back to the Lam and Bacchus’ proposal we would like to note that it is quite different
from the other two. They speak, in their article, of refinement rather than of incremental
learning, even though, they do not give any precise definition of refinement. However, the fact
that the algorithm learns a new graph with the new data instances obligates the algorithm
to wait until a great amount of new data is available. Thus, we would not say that Lam and
Bacchus’ algorithm is incremental in the sense proposed by Langley since, unlike the other
incremental algorithms, this one cannot decide to carry out refinement with one or few data
instances.

It also seems to us rather arbitrary the way their algorithm modifies the network structure
once it has obtained the partial network in the light of the new data. It only reverses an arc
when it does not introduce any cycle into the whole network structure, even if the new data
clearly states there is a reversed arc. Since reversing such an arc would mean also to change
the part of the network structure we do no have any further data, they decided not to reverse
the arc.

We also want to comment the problem introduced by Friedman and Goldszmidt. They
claim that in the incremental or sequential learning context we compare models evaluated
with respect different datasets. It is not clear to us since, in each learning step, the sufficient
statistics are updated using the new data items and, only afterwards, the already learnt model
is compared to its neighbors. Therefore, they all may be evaluated with respect the updated
statistics and thus with respect the same dataset.

As a conclusion we can say that both Buntine’s and Friedman and Goldszmidt’s proposals
follow Langley’s definition even they relax its constraints. On the contrary Lam and Bacchus’
proposal does not follow the spirit of Langley’s definition. We belief that stating a definition
of theory refinement, it would give some clues in order to develop further Lam and Bacchus’
proposal.

6 Our Proposal

In this section we try to establish what could be our contribution to the Bayesian network
learning field. We think that it has been done many interesting work. Even though, many
of the people working in this area come from the statistical community and hence, they have
mostly developed the numerical fashion of the field. We believe it is also worth developing
the field from a Machine Learning viewpoint.

We propose, BANDOLER: BAyesian Network anD On-line LEaRning, a system for learn-
ing Bayesian networks from data and prior knowledge. We put the accent, in this system, to
the prior knowledge and incremental learning. Even BANDOLER is an unsupervised learning
system it may be fed with partial knowledge, obtained from a domain expert, together with
a data set. The prior knowledge will be given in a declarative way. This sort of knowledge
cannot be used by BANDOLER so it must be transformed into a procedural one. In our
system the procedural knowledge is assumed to be a bias for the searching process.

We would like the domain expert to be able to give prior knowledge during the whole
learning process. Thus, BANDOLER should be an incremental or on-line learning system. In
this way, BANDOLER will be able to stop learning at any stage of the process, interactuate

37



with the expert and then resume the learning process.

We can see in Figure 3 that the system has two main modules. First, a module to
transform declarative into procedural knowledge, and second a module which represents the
searching algorithm. We can also identify in Figure 3 different components of the searching
module. Namely, a data filter, a set of alternative models, as set of knowledge transmutation
operators, a scoring function, and finally a searching strategy. We also see in the picture that
each of the components may have a bias, created from the declarative prior knowledge, that
is clearly separated and identifiably.

[U | Declarative :
Sser =
J Knowledge

Declarative to Procedural

! Knowledge Transformation Module
Streams _ _
% : Bias Learning State
A of data |
| Data Alternative Operator
| Filter Models Set
: Bias Bias Bias é)
S : S
~ ! . . =.
! Scorin Searchin 3
Learnt | Eunction Strategyg Q
Hese ' U Ul g
I o
, o
! c
I Bias Bias ®

Figure 3: BANDOLER: a system for Bayesian network learning

We belief there is a great amount of research to be done in order to transform the prior
knowledge into some kind of procedural knowledge that a learning system may be able to
use. We think that the procedural knowledge can be expressed as bias. In this way the prior
knowledge helps the learning algorithm to choose the Bayesian network with highest quality
score. We also belief it is worth studying the different kinds of prior knowledge, as well as
the different kinds of bias a learning algorithm may be fed with.

Background or prior knowledge

In our approach to learning Bayesian networks we assume that we work in an unsupervised
environment, that is, algorithms are neither provided with the structure of a network nor
with specially selected and relevant data. Even though, there may be domain experts who

38



can provide the learning process with knowledge. The prior knowledge given by an expert
will usually be declarative. The expert may feed the system with:

e A set of selected data instances: the expert may have an idea of which are the most
significant data instances from the data set. If the searching algorithm is incremental,
this significant data may be first given to the algorithm in order to obtain an initial
Bayesian network.

e A total or partial order among variables: this is a way to state the causal prece-
dence between variables.

e A partial Bayesian network structure: the expert may know the causal structure
of a subset of variables.

e Causation among pairs of variables: the expert may give statements such X cause
Y, or X does not cause Y.

We also should study what prior knowledge is worth using. For example, it is not useful
that an expert states that X causes Y when it can clearly be stated from data. From this
point, it seems to us that it could be interesting an interactive algorithm, that is, an algorithm
able to demand information from the expert when it lacks into the database.

It may happen that an expert states that X causes Y when from the dataset the algorithm
discovers that X does not cause Y. Here we have two contradictory sources of information.
We may think of two situation, on the one hand, since we are on a unsupervised context
where data is read from the domain, it may occur that data is not a good domain sample.
Hence, we trust experts, and we would filter those data items that contradict experts.

On the other hand, it may happen that experts have incorrect ideas about the domain
and hence give wrong prior knowledge to the algorithm. We should provide some ways (or
mechanisms) in order that experts detect this wrong knowledge and hence change their minds
and knowledge provided to the algorithm.

Bias

In Section 2 we have identified different points where to apply biases. As we have said
prior knowledge may be a source of bias. We will study the bias at different points of the
algorithm and at different stages of the learning process:

e Data filters: It may be worth doing a study of the dataset before doing the learning
process. The results of this study could be used in two ways. First, we may discover that
is not worth using the whole dataset (some irrelevant data instances or some irrelevant
variables may be thrown away) and second we may obtain some biases to be applied
during the searching process. For example, from attribute relevance we may obtain
some clue about the causality or the order they could be learnt by an K2-like algorithm.

e Representation of the Searching space: if some sort of Bayesian networks are
known to be useless beforehand, we could choose a representation of the searching
space unable to represent such networks. In this way, the search process will not waste
time considering them.

39



e Set of operators for knowledge transmutation: we believe it is worth choosing
carefully these operators. They are the basis for exploring the searching space. If the
algorithm cannot reach a domain model applying the operators, it would result like not
being able to represent such part of the space. Transmutation operators also define the
step size of a searching process, which is a critical point for hill climbing algorithms.

e Evaluation function: evaluation functions may be a strong bias since they are used
to measure the quality of the Bayesian networks.

Evaluation functions for Bayesian learning algorithms have the following general form

[3]:
“log P(By) x —N x H(Bs, D) — K x f(n)

where P(Bjs) is the a priori probability of the network structure. H (B, D) is an ex-
pression of the joint cross entropy of the structure and the data, K is a constant factor
and f(n) is a penalty term that adopts several forms.

Now it seems clear that when one expresses some prior knowledge each of the terms
of this expression for the evaluation functions may be affected. We must note that
in the literature usually only the first term, —log P(By), is modified when some prior
knowledge is given [16, 5].

Clearly P(B;) is affected. If a prior is defined there is an influence of the distribution
P(Bs). However, this influence is not restricted to these term. In effect, the formulation
of H(Bs, D) is in fact an expression of how to estimate the local probability distributions
factorized by the structure Bg. So, given that prior information has been given (for
example, order, links list, etc.) then it is clear that not all possible local distribution
should be estimated or given the same estimation treatment.

This transmission of influence form one term to the other has further implications. We
are going to study how different types of changes in the a priori information do in fact
change such evaluation functions.

e Search strategy: the search strategy may consist on choosing a hill climbing rather
than a beam search or vice versa, or on choosing the number of beams to be used.
However, we belief that choosing the transmutation operator to be used in each step of
the searching process may reduce the time required to reach a good Bayesian network.

e Stages of the learning process: we belief that biases may change at different mo-
ments of the learning process. Probably a bias applied at the beginning of the learning
process when the algorithm has still revised few data items is not appropriate at a
moment when great amount of data has been revised and the process has much more
evidence about the learnt Bayesian network structure.

Incremental algorithms

We have largely argued, see Section 2.3, why is worth developing incremental algorithms. In
addition to those arguments we belief that incremental algorithms are useful two reasons.
First, for developing interactive systems where the domain expert is able to provide such
system with new background knowledge, and second, for changing biases depending on the
current stage of the learning process.

40



In this way, the system may stop the learning process, revise the already learnt Bayesian
network structure, accept new prior knowledge or change some biases (in the light of the
learnt structure), and then resume the learning process. We also want to note that the
learning process may be stopped either by the domain expert (i.e. she revises the already
learnt Bayesian network structure and finds out some clue to help the learning process) or by
the system itself (i.e. it finds some contradiction with respect the prior knowledge).

We also have revised the proposals in the Bayesian network field. We will study the
following points in the context of incremental or on-line learning

A definition of what is understood by incremental learning of Bayesian networks.

A definition of what is understood by Bayesian network refinement. Also it should be
done a comparison with respect incrementality.

A deeper exploration of hill climbing and beam search strategies. For example, it is
needed to study how many beams should be maintained and in which situations. How
should be the beams? Close one to each other, or on the contrary, they should cover
different parts of the searching space?

Develop those algorithms that learn incrementally the variables of a Bayesian network
as information about them is acquired. For example, study further the K2 algorithm
from this viewpoint.

Study the conditions for triggering an interactuation with domain experts. For example:

— The system finds a contradiction between the dataset and the prior knowledge.

— The system has no evidence enough to choose a Bayesian network structure from
a set of candidates.

Study the use of the already learnt Bayesian network structure as a bias for the following
learning steps.

Study conditions, depending on the learning stage, in order to modify biases.

References

1]

2]

3]

J. R. Anderson and M. Matessa. Explorations of an incremental, bayesian algorithm for
categoriz ation. Machine Learning, (9):275-308, 1992.

J. Béjar. Adquisicion automdtica de conocimiento en dominios poco estructurados. PhD
thesis, Facultat d’Informatica de Barcelona, UPC, 1995.

R.R. Bouckaert. Bayesian belief networks: from inference to construction. PhD thesis,
Faculteit Wiskunde en Informatica, Utrecht University, 1995.

W. Buntine. Theory refinement on Bayesian networks. In P. Smets B.D. D’Ambrosio
and P.P. Bonisone, editors, Proceedings of the Seventh Conference on Uncertainty in
Artificial Intelligence, pages 52—60, 1991.

R. Castelo and A. Siebes. Priors on network structures. Biasing the search for Bayesian
networks. In First International Wokshop on Causal Networks, CANEW-98, 1998.

41



[6]
[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

E. Charniak. Bayesian networks without tears. AI Magazine, 12(4):50-63, 1991.

C.K. Chow and C.N. Liu. Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Teory, 14:462-467, 1968.

G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic
networks form data. Machine Learning, 9:309-347, 1992.

D. Geiger D. Heckerman and D. M. Chickering. Learning Bayesian networks: The com-
bination of knowledge and statistical data. Machine Learning, (20):197-243, 1995.

L. Xu D.H. Fisher and N. Zard. Ordering effects in clustering. In Ninth International
Conference on Machine Learning, pages 163-168, 1992.

D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine
Learning, (2):139-172, 1987.

N. Friedman and M. Goldszmidt. Sequential update of Bayesian network structure.
In Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence97,
1997.

J. H. Gennari, P. Langley, and D. Fisher. Models of incremental concept formation.
Artificial Intelligence, (40):11-61, 1989.

D. F. Gordon and M. Desjardins. Evaluation and selection of biases in machine learning.
Machine Learning, 20:5-22, 1995.

D. Heckerman. A tutorial on learning Bayesian networks. Technical Report MSR-TR-
95-6, Microsoft Research, Advanced Technology Division, 1995.

D. Heckerman and D. Geiger. Likelihoods and parameter priors for Bayesian networks.
Technical Report MSR-TR-95-54, Microsoft Research, Advanced Technology Division,
1995.

E.H. Herskovitz and G. Cooper. Kutaté: an entropy-driven system for the construction
of probabilistic expert systems form data. In Proceedings of the sixth conference on
Uncertainty in Artificial Intelligence, 1990.

F. V. Jensen. An introduction to Bayesian Networks. UCL Press, 1998.

W. Lam and F. Bacchus. Learning Bayesian belief networks. an approach based on the
MDL principle. Computational Intelligence, 10(4):269-293, 1994.

W. Lam and F. Bacchus. Using new data to refine Bayesian networks. In R. Lopez
de Mantaras and D. Poole, editors, Proceedings of the Tenth Conference on Uncertainty
in Artificial Intelligence, pages 383-390, 1994.

P. Langley. Order effects in incremental learning. In P. Reimann and H. Spada, edi-
tors, Learning in humans and machines: Towards an Interdisciplinary Learning Science.
Pergamon, 1995.

M. Lebowitz. Deferred commitment in unimem: waiting to learn. In Proceedings of the
Fifth International Conference on Mac hine Learning, pages 80-86, 1988.

42



23]

[24]

[25]

[26]
[27]

[28]

[29]
[30]

31]

32]

[33]

R. S. Michalski and A. Ram. Learning as goal-driven inference. In Ashwin Ram and
David B Leake, editors, Goal-driven inference, pages 455-478. The MIT press, 1995.

T. M. Mitchell. The need for biases in learning generalizations. In J. W. Shavlik and
T. G. Dietterich, editors, Readings in Machine Learning, pages 184-190. 1990. Thechical
Report CBM-TR117, Rutgers University.

T. M. Mitchell. Machine Learning. Computer Science Series. McGraw-Hill, 1997.
R.E. Neapolitan. Probabilistic Reasoning in Ezpert Systems. Wiley-Interscience, 1990.

J.J. Oliver and D. Hand. Introduction to minimum encoding inference. Technical report,
Dep. of Statistics, Open University, 1994.

J.J. Oliver and D. Hand. MML and bayesianism: similarities and differences. Technical
report, Dep. of Computer Science, Monash University, 1994.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

T. Rebane and J. Pearl. The recovery of causal poly-trees from statistical data. In
T.S. Levitt L.N. Kanal and J.F. Lemmer, editors, Proceedings of Uncertainy in Atificial
Intelligence, volume 3, North-Holland, Amsterdam, 1989.

J. Roure and L. Talavera. Robust incremental clustering with bad instance orderings: a
new strategy. In Helder Coelho, editor, Progress in Artificial Intelligence—IBERAMIA
98, Sixth Ibero-American Conference on Al, pages 136-147. Springer, 1998.

R. Sangtiesa and U. Cortés. Learning causal networks from data: a survey and a new
algorithm to learn possibilistic causal networks from data. AI Communications, 19(4):31-
61, 1997.

L. Talavera and J. Roure. A buffering strategy to avoid ordering effects in clustering. In
Claire Nédellec and Céline Rouveirol, editors, Proceedings of the European Conference
on Machine Learning, pages 316-321. Springer Verlag, 1998.

43



Notation

X,Y,Z, ... Variables or their corresponding nodes in a Bayesian
network
X,Y,Z,... Sets of variables or corresponding sets of nodes

X =z Variable X is in state x
X =x The set of variables X is in configuration x
D A set of cases
D; The first [ — 1 cases in D
P(z|y) The probability that X =x given Y =y
S = (Bg,Bp) A Bayesian network with structure Bg (DAG) and Bp
the conditional probability assignments associated with the structure
Pa; The variable or node corresponding to the parents
of node X; in a Bayesian network structure
pi  pi = |Pa;| the number of parents of node X;
pa; A configuration of the variables Pa;
r; The number of states of discrete variable X;
¢; The number of configurations of Pa;
S; A set of the networks with 7 arcs between variables
S. A complete network structure
Sh The hypotheses corresponding to network structure S
0;jx  The multinomial parameter corresponding to the
probability P(X; = z¥|Pa; = pal)
Oij = (ijo, .-, Oijr;)
0; :(Oﬂ,...,oiqi)
Os =(01,...,0,)
« An equivalent sample size
a;jr,  The Dirichlet hyperparameter corresponding to 0ijk
Qi = Dk gk _
N;jr The number of cases in data set D where X; = mf and Pa; = pa’
Nij =>4 Nijk

44



