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Abstract

This work deals with convergence theorems and bounds on the cost of several layout

measures for lattice graphs� random lattice graphs and sparse random geometric graphs�

For full square lattices� we give optimal layouts for the problems still open� Our conver�

gence theorems can be viewed as an analogue of the Beardwood� Halton and Hammersley

theorem for the Euclidian TSP on random points in the d�dimensional cube� As the

considered layout measures are non�subadditive� we use percolation theory to obtain our

results on random lattices and random geometric graphs� In particular� we deal with the

subcritical regimes on these class of graphs�

� Introduction

Layout problems on graphs aim to �nd a linear ordering of the nodes of an input graph such

that a certain function is minimized� For the problems we consider below� �nding an optimal

layout is NP�hard in general� and therefore it is natural to develop and analyze techniques

to obtain tight bounds on restricted instances� Graphs encoding circuits or grids are typical

instances of linear arrangement problems� We consider these instances as sparse graphs that

have clustering and geometric properties� For these classes of graphs� not much is known�

In this paper� we are concerned with lattice graphs� random instances of lattice graphs and

random geometric graphs� For most of the layout problems it is an open problem to �nd

exact or approximated polynomial time algorithms for lattice graphs di�erent than the full

square lattice of side n and with n� points ��� 	� 
��

A graph is said to be a lattice graph if it is a node�induced subgraph of the in�nite

lattice� that is� its vertex set is a subset of Z� and two vertices are connected whenever they

are at distance one� Percolation theory provides a framework to study lattice graphs in a
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probabilistic setting� We consider site percolation� where nodes from the in�nite lattice are

selected with some probability p selected nodes are called �open��� Let C� be the set of all

open nodes connected by a path of open nodes to the origin� A basic question in percolation

theory is whether or not C� can be in�nite� Let �p� denote the probability that jC�j � ��

and set pc � inffp � �p� � �g� the critical value of p� It is well�known that pc � ���� �� ����

In this paper� we consider only subcritical limiting regimes p � �� pc� in which all components

are almost surely �nite� Results for supercritical regimes are derived in ��� ���� In order to deal

with bounded graphs� we introduce the class of random lattice graphs with parameters m and

p denoted by Lm�p that corresponds to the lattice graphs whose set of vertices are obtained

through the random selection of each element from f�� ����m��g� � chosen independently with

probability p�

A random geometric graph GXn� rn�� with rn� some chosen sequence of positive num�

bers� is de�ned by a set Xn of n uniform and independently distributed points on ��� ��d and

edges formed by joining any two di�erent points at distance less or equal than rn� For an

in�nite�volume analogue� let P� denote a homogeneous Poisson process on R
d of intensity

�� and set P��� � P� � f�g� For n large� after appropriate scaling and centering at a ran�

domly chosen point of Xn� the graph GXn� rn� looks locally like GP���� ��� We consider

a continuum site percolation process based on the Poisson process� let e��� be the proba�

bility that the added point at the origin lies in an in�nite component of GP���� ��� Then

de�ne the critical percolation �c as the in�mum of f� � � � e��� � �g� It is well known ���

that �c � ����� In this paper we shall deal with random geometric graphs satisfying the

condition limn�� nrdn � �� for the subcritical regime � � �c�

Our layout problems are formally de�ned as follows� A layout � on a graph G � V�E�

is a one�to�one function � � V � f�� ���� ng with n � jV j� Given a graph G� a layout � on G

and a number i � n� let us de�ne the sets�

Li� ��G� � fu � V G� � �u� � ig and Ri� ��G� � fu � V G� � �u� � ig�

the measures�

	i� ��G� � jfuv � EG� � u � Li� ��G� � v � Ri� ��G�gj�

i� ��G� � jfu � Li� ��G� � 	v � Ri� ��G� � uv � EG�gj�

�uv� ��G� � j�u� � �v�j where uv � EG��

and the problems�


 Minimum Linear Arrangement MinLA�� Given a graph G � V�E�� �nd

minlaG� � min�
P

uv�E �uv� ��G� � min�
Pn

i�� 	i� ��G��

�




 Minimum Cut Width MinCut�� Given a graph G � V�E�� �nd

mincutG� � min�maxni�� 	i� ��G��


 Vertex Separation VertSep�� Given a graph G � V�E�� �nd

minvsG� � min�maxni�� 
i� ��G��


 Minimum Sum Cut MinSumCut�� Given a graph G � V�E�� �nd

minscG� � min�
Pn

i�� 
i� ��G��


 Bisection Bisection�� Given a graph G � V�E�� �nd

minbisG� � min� 	bn��c� ��G��


 Vertex Bisection MinVertBis�� Given a graph G � V�E�� �nd

minvbG� � min� 
bn��c� ��G��

The de�ned problems have important applications in several di�erent areas� see for

example ���� With regard to their complexity� MinCut and VertSep remain NP�complete

even when restricted to lattice graphs and geometric graphs ���� For the remaining layout

problems the complexity on lattice graphs and geometric graphs is open�

In this paper� we �rst present optimal layouts for minvs� minvb� and minsc on full

square lattices� Previously� the only known optimal layouts for these graphs were for mincut�

minbis and minla �
� �� 	�� Results for the case of d�dimensional c�ary arrays a generalization

of square lattices� on the Bisection� MinCut and MinLA problems are presented in �����

On the other hand� ���� presents a dynamic programming algorithm to solve Bisection

on lattice graphs without holes� Then� we consider general lattice graphs� and we present

upper bounds for several layout problems on any lattice graph� Afterwards� we move to a

randomized setting where we deal with random lattice and random geometric graphs� The

main result for these graphs can be viewed as an analogue of the celebrated Beardwood�

Halton and Hammersley theorem on the cost for the traveling salesman problem TSP� on

random points distributed in ��� ��d�

BHH Theorem ���� LetX � fXig be a sequence of independent and uniformly

distributed points in ��� ��d� Let mintspn� denote the length of the optimal

solution of the TSP among the �rst n points of X� Then� there exists a constant

�d� such that mintspn��n�d����d converges to �d� almost surely as n���

A key property to prove BHH�like results is geometric subadditivity see Chapter � of

������ This property does not hold for our layout problems� therefore we take a completely

di�erent approach using percolation theory� Except for Bisection and MinVertBis� one

property that all these problems share is monotonicity� that is� the optimal value on a sub�

graph is always less than or equal to the optimal value in the whole graph�
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Figure �� Values of the vertex cut in the diagonal ordering �D�

� Bounds for lattice graphs

We begin this section by characterizing the optimal layouts for some of the problems de�ned

in the previous section on square lattice graphs� Then we give some deterministic upper

bounds on the costs of the de�ned problems on �nite subsets of the integer lattice Z��

Each subset L of vertices in Z� is identi�ed with a lattice graph� namely the maximal

subgraph of the ��dimensional integer lattice with vertex set L� Let Ln be the full n � n

square lattice graph� The next results concern the optimality of the diagonal ordering �D on

Ln� In this ordering� x � x� y� precedes x� � x�� y�� whenever x� y � x�� y�� and whenever

x� y � x� � y� and x � x��

Let � � k � n� and x � x� y� such that �Dx� � k� De�ne r � Z
� as follows� If

x�y � n� then r � x�y��� then we have rr����� � k � rr����� and 
k� �D � Ln� � r�

If x� y � n with x � n� then r � �n� x� y� � �� and when x � n then r � �n� x� y��

In this two last cases we have rr � ���� � n� � k � rr � ���� and 
k� �D � Ln� � r � �� In

particular� for all k� 
k� �D � Ln� � n� See Figure ��

Proposition � �Vertex isoperimetric inequality�� For any layout � on Ln and any k �
f�� � � � � n�g� we have 
k� �� Ln� � 
k� �D � Ln��

Proof� Given � and k� let A be the set Lk� �� Ln�� and let  inA be the number of boundary

elements of A� i�e� elements of A having neighbours in LnnA� Thus  inA � 
k� �� Ln��

�



Let A� be the set in Ln obtained by �pushing each vertical section of A down as far as

possible towards the x�axis�� more precisely� setting SiA� � fj � i� j� � Ag for i � f�� � � � � ng�
let

A� � �i�f������ng	Si�A� ��� fig � f�� � � � � jSiA�jg�
Notice that jA�j � jAj� and it is not hard to check that  inA

� �  inA�

Let A�� be the set in Ln� obtained by �pushing each horizontal section of A� sideways

as far as possible towards the y�axis�� in an analogous manner to the construction of A� from

A� Then jA��j � jA�j � jAj� and  inA
�� �  inA

� �  inA� Moreover� A�� is a down�set� that is�

it has the property that for any x � A��� all vertices of Ln lying directly below or directly to

the left of x are in A��� Hence� without loss of generality� from now on we assume that A is

a down�set�

First suppose �� n� �� A and n� �� �� A� Choose the positive integer r so that rr �
���� � k � rr������ Then there must be a point x � x� y� � A with x�y � r��� Choose

such a point x� having neighbours in Ln n A both to its right and above it� Then there is a

path of y or more boundary points of A from the bottom of the square to x� and another

path of x or more boundary points of A from the left of the square to x� and these paths do

not intersect each other except at x� Therefore


k� �� Ln� �  inA � y � x� � � r�

If r � n then we have 
k� �D � Ln� � r � 
k� �� Ln�� while if r � n then we have


k� �D � Ln� � n � 
k� �� Ln�� Thus we get the inequality claimed�

Next suppose �� n� � A and n� �� � A� Choose the positive integer r so that rr �
���� � n� � k � rr � ����� Then there must be a point x � x� y� � Ln n A with n � ��
x��n���y� � r��� that is� x�y � �n���r� Choose such a point x� having neighbours

in A both to its left and above it� Then there is a path of at least n� y�� boundary points

of A from the top of the square to the point just to the left of x� and another path of at least

n� x�� boundary points of A from the right of the square to just below x� and these paths

do not intersect� Therefore


k� �� Ln� �  inA � �n� x� y � � � r � ��

If r � n then 
k� �D � Ln� � r � � � 
k� �� Ln�� while if r � n then 
k� �D � Ln� � n �

k� �� Ln�� Thus in this case we have the inequality claimed�

Finally� consider the case when only one of the the corners n� �� and �� n� is in A� In

these cases we have  inA � n � 
k� �D � Ln��

The previous Proposition is a special case of Corollary � in ���� who in fact prove the

d�dimensional version for arbitrary d� We believe our proof for d � � is of interest by itself�

�



Theorem �� For any n� �D is optimal for the VertSep� MinSumCut and MinVertBis

problems on Ln�� Moreover� minvsLn� � minvbLn� � n and n��minscLn� � ��� as

n���

Proof� The previous isoperimetric inequality yields the optimality of �D for the costs of

minvs� minsc and minvb on Ln� Also we get that minvsLn� � minvbLn� � n� To

compute the sum of the cuts for �D� consider for each point in the lattice the value of the

vertex cut produced by the diagonal ordering see Figure ��� then arranging the sum by

points with the same vertex cut� we get

minscLn� �
nX
i��

nX
j��

j �
nX
i��

ii� �� �

�n���X
i��

i � �
�n

� � �
�n

� � 

�n�

Lemma �� For any lattice graph L with n vertices� and any m � f�� �� � � � � ng� there is a

layout � on L such that 	m���L� � ����
p
n� ��

Proof� We are looking for a subset S of L consisting of m vertices� such that there are at

most ����
p
n� � edges between S and LnS�

Let � � � be a constant� to be chosen later� For x � Z let Sx � fy � Z � x� y� � Lgand
let V � fx � Z � jSxj � �

p
ng� For i � Z� let Hi denote the half�space ��� i� � R� Set

i� � minfi � Z � jL �Hij � mg�

Consider the case i� �� V � Then de�ne S to be a set of the form

S � L � Hi��� � fi�g � ��� j���

with j chosen so that S has precisely m elements�

With this de�nition of S for i� �� V � the number of horizontal edges between S and

LnS is at most jSi� j� and hence is at most �
p
n� There is at most one vertical edge between

S and LnS� so the number of edges from S to LnS is at most �
p
n� � when i� �� V �

Now consider the other case i� � V � Let I � �i�� i�� be the largest integer interval which

includes i� and is contained in V � Then i� � � �� V � and i� � � �� V � Also� as jV j � ���pn�
i� � i� � � � ���pn� We have

jL �Hi���j � m � jL �Hi� j�

For j � Z let Tj � �i�� i��� ��� j�� Choose j� so that

jL � Hi��� � Tj����j � m � jL � Hi��� � Tj��j�

�



and let S be L � Hi��� � Tj��� � �i�� i�� � fj�g��� with i� � �i�� i�� chosen so that S has

precisely m elements�

We estimate the number of edges between S and LnS for the case i� � V � Since

i� � � �� V � and i� � � �� V � the number of horizontal edges between S and LnS is at most

��
p
n��� Also� since i��i��� � ���pn� the number of vertical edges between S and LnS is

at most ���pn� Combining these estimates we �nd that there are at most �������
p
n��

edges between S and LnS� whether or not i� � V �

The minimum value of �� � ��� achieved at � � ������ is �
p
�� Setting � � ����� in

the above de�nition� we have the partition required�

Using Lemma �� taking m � bn��c and the fact that minvbL� � minbisL�� we get

the following result�

Theorem �� For any lattice graph L with n vertices minbisL� � ����
p
n�� andminvbL� �

����
p
n� ��

For the MinCut problem the bound changes in the constant�

Theorem 	� For any lattice graph L with n vertices� mincutL� � ��
p
n�

Proof� First suppose we have n � �m for an integer m� The proof is based on recursive

bisection� with the cut size guaranteed by Lemma �� Let fm� denote the maximum mincut

cost of all lattice graphs with �m vertices� then fm� satis�es the following recurrence�

fm� �
�
� if m � ��

�����m�� � � � fm� �� otherwise�

Then� solving the recurrence� we get

fm� �
mX
j��

�����j�� � �� � ����� � ���m�� � �� �m�

We can drop the assumption that n � �m� by taking m so that n � �m � �n� and adding

extra points until one has a set of size �m� By monotonicity this process does not reduce the

mincut cost� so

mincutL� � �������� � ��
p
n� log�n� � ��� ����� � ��

� �����

p
n� log�n�� 	�

But notice that for any x � � we have log�x�� 	��
p
x � ����
� therefore the above bound

for mincutL� is at most ��
p
n for all n�






As a consequence of the previous theorem� and the fact that for any graphG� minlaG� �
nmincutG�� minscG� � nminvsG�� and minvsG� � mincutG�� we can extend the pre�

vious result to the remaining problems�

Corollary �� For any lattice graph L with n vertices� minvsL� � ��
p
n� minlaL� �

��n
p
n and minscL� � ��n

p
n�

In the case of the full square lattice graphs with side n� the above upper bounds are

within a constant of their optimal costs�

� Convergence results for random lattice graphs

Let us describe some basic concepts of site percolation for the lattice Lm with vertex set

Vm � ���m� �Z��� Given p � �� ��� site percolation with parameter p on Lm is obtained by

taking a random set of open vertices of Vm with each vertex being open with probability p

independently of the others� Let Lm�p be the subgraph of Lm obtained by taking all edges

between open vertices� We say that Lm�p is a random lattice graph� Denote Prp and Ep the

probability and expectation with respect to the described process of site percolation with

parameter p� By a cluster we mean the set of vertices in any connected component of Lm�p�

Let eC� denote the cluster in Lm�p that includes �� �� possibly the empty set� and let eCx

denote the cluster in Lm�p that includes the point x�

A similar site percolation process can be generated analogously on the in�nite lattice

with vertex set Z� and edges between nearest neighbors� In the same way we can extend Prp

and Ep to this in�nite process� Let us denote by C� the cluster including the origin for site

percolation on Z�� It may be the case that C� is empty� Notice that we can view the random

lattice graph as generated by a site percolation process on Z
� and taking the open vertices

in Vm�

In this section we consider random lattice graphs generated by subcritical limiting

regimes p � pc�� in which all clusters in the in�nite process are almost surely �nite� We be�

gin by giving bounds for the MinCut and VertSep problems on the subcritical percolation

process on the lattice Lm�

Theorem 
� Assume � � p � pc� there exists constants � � c� � c� such that

lim
m��

Pr

�
c� � minvsLm�p�p

logm
� mincutLm�p�p

logm
� c�

�
� ��

Proof� Recall that for any graph G� minvsG� � mincutG�� The mincut of a disconnected

graph is the maximum of the mincuts of its connected components� Hence� for any positive

constant c��

Pr
h
mincutLm�p� � c�

p
logm

i
� Pr

h
�x�Vm

n
mincut eCx� � c�

p
logm

oi
	



By the site percolation version of Equation ��
 in ���� there exists � � � such thatPr �jC�j � n� �
e��n� Therefore by Theorem �

Pr
h
mincutLm�p� � c�

p
logm

i
�Pr

h
�x�Vmfj eCxj � c�����

� logmg
i

�m� exp��c������ logm��

Choosing c� � ��
p

��� we get Pr
�
mincutLm�p� � c�

p
logm

�� ��

To get a lower bound for minvsLm�p�� let 
 � � and let T�� � � � � Tj�m� be disjoint

lattice subsquares of Lm� each of side b
 logm����c� where jm� � bm�b
 logm����cc�� Set
� � log��p� so that p � e�� � Let Aj be the event that all sites in Tj are open� Then

Pr �Aj � � exp��b
 logm����c�� �m��	�

Hence� Pr
h
�j�m�
i�� A

c
i

i
� ��m��	�j�m� � exp�m��	jm��� which tends to zero provided 


is chosen so that �
 � �� As minvsLm� � m by Theorem �� we get

�j�m�
i�� Aj � fminvsLm�p� � 
 logm����g�

Taking c� �
p

 we obtain the lower bound�

Notice that the above theorem only gives an order of magnitude result for the minimal

cost and we do not have a convergence result� The order of magnitude is �
p
logm�� which

contrasts with the supercritical case p � pc� for which minvsLm�p� and mincutLm�p� are

�m� �����

In the next lemma we prove that for subcritical site percolation with parameter p� the

expected ratio of the minlaC�� and jC�j is �nite� We also give a similar result for the

MinSumCut problem� To cover the case C� � �� we use the convention ��� � �� throughout

the remainder of the paper�

Lemma �� For any p � �� pc��

Ep

�
minlaC��

jC�j
�
� ���� and Ep

�
minscC��

jC�j
�
� �����

Proof� Let R� � minfn � C� � ��n� n��g� then by considering the lexicographic ordering

of vertices one sees that minscLm� � m� and minlaLm� � m�� which together with

monotonicity gives us that minscC�� � �R� � ��� and minlaC�� � �R� � ���� The

statement of the lemma follows from the fact that Prp�R� � n� decays exponentially in n

again� see chapter � of �����

We use this lemma to state one of our main results� namely that the value of minla on

random lattices� divided bym�� converges in probability to a constant� Recall see for example

�



����� that if fXng is a sequence of random variables and let X be a random variable� Xn con�

verges in probability to X Xn
Pr�� X� if� for every � � � we have limn��Pr �jXn �Xj � �� �

��

Theorem �� Assume � � p � pc� then as m��
minlaLm�p�

m�

Pr�� Ep

�
minlaC��

jC�j
�
� and

minscLm�p�

m�

Pr�� Ep

�
minscC��

jC�j
�
�

Proof� Recall eCx is the cluster including x for Lm�p� Consider Lm�p as being embedded in a

site percolation process on the in�nite lattice Z�� with clusters in this latter process denoted

Cx� Then�

minlaLm�p�

m�
� m��

X
x�Vm

minla eCx�

j eCxj

� m��
X
x�Vm

minlaCx�

jCxj �m��
X
x�Vm

�
minla eCx�

j eCxj
� minlaCx�

jCxj

�
� ��

Using Theorem VII���� from ��� and the Kolmogorov zero�one law�

m��
X
x�Vm

minlaCx�

jCxj
Pr�� Ep

�
minlaC��

jC�j
�
�

Writing Vm for the set of x � Vm with lattice neighbors in Z�nVm� we get

m��
X
x�Vm

					minla eCx�

j eCxj
� minlaCx�

jCxj

					 � �m��
X

x�Vm�Cx �� eCx

minlaCx�

j eCxj

� �m��
X

y�
Vm

minlaCy��

By the proof of Lemma �� Ep�minlaCy�� is �nite and does not depend on y� Hence the mean

of the above expression tends to zero� The result for minla then follows from ��� and the

proof for minsc is just the same�

� Convergence results for random geometric graphs

Geometric graphs are de�ned as follows� Let d � � be an integer and let k�k be a norm on Rd �

Given a set X � R
d � and given r � �� let GX � r� denote the graph with vertex set X and such

that x� y � X form an edge if and only if kx�yk � r and x � y� LetX�� X�� � � � be independent

and uniformly distributed on ��� ��d� and let Xn be the point process fX�� X�� � � � �Xng� The
continuum percolation probability e��� is the probability that the added point at the origin

lies in an in�nite component of GP���� ��� Set �c � inff� � � � e��� � �g� We deal with

random geometric graphs satisfying the condition limn�� nrdn � �� for � in the subcritical

��



regime� Under the probability measure Pr� with corresponding expectation E�� let C� be

the component of GP���� �� which includes the origin�

First we deal with the behaviour of the Bisection problem� Let ��c � inff� � � �e��� � ���g� the subcritical regime for Bisection is given by � � ��c�

Theorem �� Suppose limn�� nrdn � � � �� ��c�� Then as n���

minbisGXn� rn��
Pr�� � and minvbGXn� rn��

Pr�� �

Proof� We need to show that with high probability� there is a subset W of Xn� of cardinality

bn� c� with no edges between W and XnnW � Recall that by hypothesis e��� � ����

For k � N� set �k � Pr��jC�j � k�� and note �k � �� Let Nnk� denote the number of

points of GXn� rn� lying in clusters of size k�

Let pkx� denote the probability that when adding a point x to a set of n�� uniformly

distributed points� the new point will be in a cluster of size k� Then�

E�Nnk�� � n

Z
����d

pkx�dx�

For x not on the boundary of ��� ��d� we have that pkx� � �k� so by the dominated conver�

gence theorem� n��E�Nnk�� � �k� To look at the variance� notice that since Nnk�Nnk��
�� is twice the number of pairs of points both in clusters of size k� if we denote by pk�kx� y�

the probability that when inserting points at x and y into a set of n� � uniform points they

will both be in a cluster of size k� then

E�Nnk�Nnk�� ��� � nn� ��

Z
����d

Z
����d

pk�kx� y�dxdy�

For points x and y not on the boundary with x � y� we have that pk�kx� y� �
�k�

�� hence using again the dominated convergence theorem E�Nnk��n�
�� � ��k� So

Var �Nnk��n� � �� and by Chebyshev�s inequality we can conclude

n��Nnk�
Pr�� �k� ��

As � �P
k �k � e��� � ���� we can choose k� such that

P
k�k�

�k � ���� This inequality

together with �� implies that with probability tending to � as n tends to in�nity�X
k�k�

Nnk� �
jn
�

k
�

and Nnk� are non�zero for k � �� �� � � � � k��

We generate a subset W of Xn as follows� First take the union of all clusters of size

greater than k�� Then add clusters of size k� until there are none left� Then add clusters of

��



size k� � � until there are none left� Continue in this way� At some point� having just added

a set of size i� we will have a set of size bn� c �m with � � m � i� If m � �� stop� If m � �

then add a cluster of size m and stop� This gives a set W � Xn� of size bn� c� with no edges

connecting W to XnnW � as desired�

Analogous results to those in the previous Theorem also hold for a percolation process

in the lattice with p � p�c� de�ned in the same way as ��c� Next we shall prove that in the

subcritical case� the expected values of minla and minsc on the induced graph on C� are

�nite�

Proposition �� Let � � �c� Then

E��minlaC��� � ���� and E��minscC��� � �����

Proof� Recall that for any graph G with n nodes� minlaG� � n� and minscG� � n�� Hence

to prove the statement it is enough to show that E��jC�j�� � �� To show this� let Br� be

the ball of radius r centered at the origin and let

P���Br�� � jfx of P��� j x � Br�gj�

Then for any m � �� the event fjC�j � m���g is contained in the union of the events

fP���Bm����d�� � m���g and fdiamC�� � m����d�g� therefore using Boole�s inequality we

get

Pr�jC�j � m���� � Pr�P���Bm����d��� � m���� �Pr�diamC�� � m����d���

The �rst term in the right hand side is summable in m by standard estimates of the

Poisson distribution� The second term is summable in m by Lemma � in ����� HenceX
m	�

Pr�jC�j� � m� ��

and the statement follows�

Next we prove a technical lemma that will be needed later�

Lemma 	� The functions � �� E�

h
minsc�C��

jC�j

i
and � �� E�

h
minla�C��

jC�j

i
are continuous in �

on �� �c��

Proof� We give the proof for the minla case� the proof for the minsc is similar� De�ne

coupled versions of the Poisson process P�� � � �� in the following standard way� Let P be

a Poisson process on R
d � ����� of rate �� and let P� consist of the projections onto the

��



�rst d coordinates of the points of P � Rd � ��� ���� Using this coupling� write C��� for the

component including the origin of CP� � f�g� ���
Suppose �n� is a sequence with �n � � � �� �c�� With this coupling� with probability

one it is the case that for all large enough n the components C��n� and C��� are identical�

Hence by the dominated convergence theorem�

E�n�minlaC��n���jC��n�j� � E��minlaC�����jC���j��

We give asymptotics for the minla and minsc costs of the graphs GP��Bm� ��� where

Bm denotes the box ���m�d� with m � N�

Proposition 	� Suppose � � �c� and let Gm � GP� �Bm� ��� Then as m���

minlaGm�

md

Pr�� �E�

�
minlaC��

jC�j
�

and
minscGm�

md

Pr�� �E�

�
minscC��

jC�j
�
�

Proof� We sketch a proof for minla� For each point x of P��Bm� let Cx denote the component

of Gm�pP��Bm� �� that includes the point x� and let eCx denote the component of Gm�pP�� ��
that includes the point x� By a similar argument to the proof of Theorem �� it su�ces to

prove that

E�


�m�d
X

x�P�
Bm

					minla eCx�

j eCxj
� minlaCx�

jCxj

					
�� �� ��

For l � �� let lBm be the set of points z � Bm with kz � yk� � l for some y �� Bm� The

quantity inside the sum in �� is at most minla eCx� � Cx � eCx�� where for any statment S�

S� stands for � if S is true� � otherwise� Hence the random variable inside the expectation

in �� is at most��m�d
X

x�P�

lBm

minla eCx�

�A�

��m�d
X

x�Bmn
lBm

minla eCx� � diam eCx� � l�

�A �

The expectation of the �rst term tends to zero� while the expectation of the second term equals

�E��minlaC��jC�j � l��� which can be made arbitrarily small by the choice of l� Then ��

follows�

Theorem � Suppose limn�� nrdn � � � �� �c�� Then� as n��

n��
minlaGXn� rn��

Pr�� E�

�
minlaC��

jC�j
�
�

and

n��
minscGXn� rn��

Pr�� E�

�
minscC��

jC�j
�
�

Moreover� both of the above limits are �nite and strictly positive�

��



Proof� Consider the graph GXn� rn� with nrdn � � � �� �c�� We couple Xn to two Poisson

processes with a slightly higher or lower density of points� as follows� Take �� � � � �� � �c

and set mn � dr��
n e� m�

n � br��
n c� Let Mn and M �

n be Poisson variables with mean ��m
d
n

and ��m
�
n�

d respectively� independent of fX�� � � � �Xng� Then� as n��

Pr�Mn � n� � �� and Pr�M �
n � n�� ��

Let us set mnXn � fmnXi � � � i � ng� Pn � fmnXi � � � i � Mng� and P �n �

fm�
nXi � � � i � M �

ng� Notice that Pn is a Poisson processes on Bmn
with intensity �� and

P �n is a Poisson processes on Bm�
n
with intensity ���

If Mn � n then GPn� �� is a subgraph of GmnXn�mnrn�� which is isomorphic to

GXn� rn�� Similarly� if M �
n � n� then Gm�

nXn�m
�
nrn� is a subgraph of GP �n� ��� By mono�

tonicity�

Pr
�
minlaGPn� ��� � minlaGXn� rn�� � minlaGP �n� ���

�� ��

By Proposition ��
minlaGPn� ���

md
n

Pr�� ��E��

�
minlaC��

jC�j
�
�

so that
minlaGPn� ���

n
Pr��

�
��
�

�
E��

�
minlaC��

jC�j
�
�

Similarly�
minlaGP �n� ���

n

Pr��
�
��
�

�
E��

�
minlaC��

jC�j
�
�

Taking �� � � and �� � � and using Lemma ��

minlaGXn� rn��

n

Pr�� E�

�
minlaC��

jC�j
�
�

The proof for the convergence of minsc is analogous�

� Conclusions

In this paper we have considered several layout problems for speci�c classes of sparse graphs�

lattice graphs� random lattice graphs and random geometric graphs� Table � summarizes the

results�

In the case of lattice graphs� our results are given for the ��dimensional lattice� it remains

open to extend them to any dimension� The main result for random lattices is the conver�

gence in probability to a constant of the values of minlaLm�p��m
� and minscLm�p��m

��

Our results on the subcritical regime together with the results obtained for the supercritical

regime ���� make explicit a phase transition at pc� An open problem is to �nd good methods

for evaluating numerically the constants in Theorem � as functions of the open vertex density

��



p� and the analogous constants in Theorem 
� Preliminary estimations for those constants

were given in ���� the used method was a raw simulation of the percolation process on the

lattice and computation of lower bounds and upper bounds with heuristics�

In the last part of the paper� we have presented convergence theorems for minla

and minsc on random geometric graphs in the subcritical regime� For the MinLA and

MinSumCut problems on random geometric graphs� there is a phase transition at � � �c�

Indeed� in ���� it is shown that if � � �c then minlaGXn� rn�� and minscGXn� rn�� are

�n����d�� Our results show that the behaviour for � � �c is entirely di�erent� For the

Bisection and the MinVertBis problems� the phase transition occurs not at �c but at �
�
c

de�ned by

��c � inff� � � � 	�� � ���g�

and the subcritical regime for minbis and minvb is given by � � ��c�

For the sake of clarity� we contented ourselves in this paper with demonstrating conver�

gence in probability� however� the convergence in our theorems actually holds in the stronger

sense of complete convergence which implies convergence almost surely see ������

��
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