
Interprocess data transfer in Atlas� a platform

for distributed applications

M� Fair�en and �A� Vinacua

Department of Software

Institute of Robotics and Industrial Informatics

U�P�C�

Diagonal ���� 	ena planta

E
	
�	 Barcelona� Spain

fmfairen�alvarg�turing�upc�es

Abstract

The Atlas platform strives to make several useful but technically

involved mechanisms available to the programmer building applications

over it with the least possible e�ort� These mechanisms include network

distribution of cooperating processes� a powerful macro language� a jour�

naling system and fault tolerance in the presence of network failures or

node crashes� In this paper we discuss the techniques used in Atlas to

implement data transfer over a network between di�erent machines with

the least hassle to the programmer�

Keywords� Network data transfer� distributed applications� XDR

� Introduction

Atlas is a software development platform designed and implemented in our
Department with a twofold objective�

� To transparently o�er a collection of services to applications developed
over it and

� To facilitate the integration and reuse of di�erent components developed
at the Department�

Among the services provided under the �rst of these is included the possibil�
ity of breaking up the application into modules that can be distributed between
nodes of a LAN� This gives rise to many di�erent problems that need to be
addressed��	
 and the emphasis in Atlas�s design is to relief the programmer

�



from most of them� We have made great e�orts to make the use of the platform
as e�ortless and transparent as possible�

In Atlas each module is an independent process running on any of the
nodes �that provide it

 and therefore the transfer of data between di�erent
architectures needs to be addressed�

Further
 the data needs to be �at least very often� accessible to Atlas

itself
 which includes a programming language to de�ne user�machine dialogues
or otherwise interconnect the di�erent modules�

The problem of actually transfering the data robustly has long since been
solved� Indeed we just rely on XDR��	 for that purpose� What we discuss here
are the mechanisms adopted to attain these data sharing with the maximum of
transparency for the user
 who needs not be aware of XDR
 and indeed almost
needs not be aware of our interchange method�

This paper is structured as follows� section � describes brie�y the design of
Atlas
 to set the framework for the ensuing discussion� Section � introduces
our data structures �called Variables
 used to wrap user data in each process�
These o�er access methods used by the interpreter of the command language

and also encapsulate methods to encode and decode XDR streams transparently�
Section � discusses further the extent to which all this mechanism is invisible
to the programmer of an Atlas application
 and section � gives some closing
conclusions�

� The Atlas architecture

The Atlas architecture is represented in �gure �
 where the ovals denote pro�
cesses and the arrows represent communications between them� It is a central�
ized architecture where the process distr acts as the master process and is the
center of each Atlas application� This architecture allows an intelligent distri�
bution to be managed
 i�e� the distr process decides the processes distribution
dynamically depending on availability
 load and aptitude of each host in the net�
work to run each application process� The communications between processes
have been implemented with sockets and using the ACE wrappers library ��	 to
build the communications drivers�

Figure � shows a typical Atlas application� The processes depicted with a
thick line represent the main components of Atlas� All the others are regarded
equally by the system
 and they don�t need to know about each other�

Of these three main processes
 the most crucial one is the master process
distr� This is the process that the user starts up to invoke the application� It
acts as a communications center for the duration of the execution
 and provides
some essential services to all other modules� It is also responsible of the jour�

naling mechanism
 the fault�tolerance of the system and the central mechanism
to assign an input datum
 provided by an input system
 to the corresponding
request
 normally issued by another process�

�



B-Rep

Volume

Command
Subsystem

Input
Subsystem

Solver
Constraints

distr

server@host

Octree
Machine

Figure �� A sample execution of an Atlas application�

The process server is a daemon that runs on all hosts con�gured to run
Atlas applications in the network� A user can select a speci�c list of hosts
via variables in his environment
 or else Atlas attempts to use all resources
con�gured by the administrator �depending on their load
� Each time a new
process needs to be loaded and connected to the rest of the application
 distr
connects to the server on the chosen target machine and requests that such
a process be started for him� server then forks a copy of itself
 makes the
appropriate veri�cations
 loads the adequate environment and execs the desired
process� Figure � only shows one such server for legibility
 although one such
server will be running on every node available to Atlas�

The third of the Atlas main processes is the command subsystem which
guides the application behavior by interpreting programs and instructions writ�
ten in a language �ATL
 designed for Atlas and described in ��	� ATL is a
powerful control language which allows the developer to describe his applica�
tion and aspects of its user interface and also allows the �nal user to introduce
his own macros� ATL is a modular language where a module is a �le written in
this language which can be�

� a description of the interface of the corresponding Atlas process
 includ�
ing also the de�nition of commands adequate to that process


� a de�nition of some commands useful for the application
 but without
being directly related with any Atlas process de�nition� e�g� commands
de�ning the interaction among several processes�

�



Atlas uses a remote procedure calling paradigm
 where calls are controlled
by the command subsystem who executes commands that can invoque extern
routines �calls to another process being executed in the application
�

An extern routine call usually will have input parameters
 and it can also
receive input�output parameters and return results� In all of these cases
 except
when the routine has neither parameters nor result
 it is necessary to pass data
from one process to another
 therefore data must travel through the network and
must be readable by di�erent architectures with the same meaning� To solve
this problem Atlas communications use the standard XDR representation to
exchange data over the network� The parameter passing convention used in
Atlas is a �copy�in copy�out� convention
 as opposed to applications based on
CORBA �see ��	

 for example� In this way
 objects are managed by the user
applications directly
 and data is shared only between applications that agree
on their type� We have found this scheme to better support the applications we
intend to develop
 and to favor the portability of modules from one application
to another
 as they are more loosely coupled� Although type agreement is
required
 the modules become totally encapsulated and independent� The only
mechanism where a �sort�of�pass�by�reference� paradigm is used is the global
identi�ers mechanism �de�ned in ��	
 where the global identi�ers acts as a kind
of reference to the concrete datum�

� Wrapper structure for data and types

In order to make the ATL language more �exible and allow the user to manage
structured type variables in his module commands
 ATL language accepts the
de�nition of a restricted set of types� This set of types includes the ATL basic
types �integer
 real
 boolean and string
 and any construction over them using
any order of records or arrays� i�e� a correct type can be� ��
 a basic type

��
 a record with a �nite number of �elds each one of a correct type
 or ��
 an
array with a �nite number of components of a correct type� Figure � shows an
example with some correct type de�nitions in ATL language�

As is usual in imperative languages with this constructs
 the ATL compiler
can operate upon components of these variables as if they themselves were
variables �of appropriate types

 making it possible to use them as in the example
shown in �gure ��

The wrapper structure designed in Atlas for data and types is based on the
management needed for these kind of data� This management can be divided
in two important requirements� ��
 making the command subsystem able to
access component values of these sort of variables and ��
 encapsulating these
data robustly allowing it to travel from one process to another�

The Atlas variables are represented internally by a tree structure guided by
a compact type de�nition� This compact de�nition comes from the ATL type
de�nition and is initialized by the ATL compiler
 who is aware of the complete

�



�deftype point STRUCT
x �� real�

y �� real�
z �� real�

ENDSTRUCT
�deftype face VECTOR ��� OF STRUCT

p� �� point�

p	 �� point�
ident �� integer�

ENDSTRUCT
�deftype pyramid STRUCT

name �� string�
base �� face�
sides �� VECTOR ��� OF face�

ENDSTRUCT

Figure �� Example of some correct type de�nitions in ATL�

point p�
p	
p��

���
pyramid pyram�
pyram	�
face base�
base � build
face�p�
p	
p���

build
pyramid�base
GETDATA��Input fourth point��
�name��
pyram���
build
pyramid�pyram��sides���


build
point�base�	��p	�x����
base�	��p	�y���
base�	��p	�z�

�name	�
pyram	��

���

Figure �� What can be done with variables in ATL�

type composition� As an example the compact type de�nition for the pyramid
type in �gure � would be the following string�

�S�name string�

base V���S�p� S�x real�y real�z real��

p	 S�x real�y real�z real��

ident integer��

sides V���V���S�p� S�x real�y real�z real��

p	 S�x real�y real�z real��

ident integer���

The main interface of C�� class for types is shown in �gure �� This class
contains the name of the type �used by the ATL compiler
 and its compact
de�nition describing all components of the type� The methods shown in the
�gure are those needed to manage the access to type components
 and some
of them are only used for record types because their elements are accessed by
name ��eld names
�

The C�� class representing a variable is shown in �gure �� This class
encloses a very powerful management of variables

� allows Atlas to be undisturbed by the variable type �Atlas sees them
as Variables and does not care about their internal type



�



class Type �
String tipus
deftipus�

public�
���

int Components ��� �� Returns the number of components�

int Accedir �char �cami�� �� Returns the component index from
�� its name �only for structures��

char Codi ��� �� Returns a code showing the node
�� type� It is useful when we need

�� to make explicit castings�
Type TipComp �int index�� �� Returns the component type from

�� its index�
String NomCamp �int index�� �� Returns the component name from

�� its index �only for structures��

���
��

Figure �� Interface for class Type�

class Variable �
String nom�
Type tipus�
node �arbre�

XDR reprxdr�
char �mem�
int posdada
xdrlong�

public�
Variable �� ��

Variable �String t
 String n��
Variable �Type t
 String n��
Variable �const Variable � v��
Variable �char �m
 int lng��

void crea
arbre ���
int arbre
to
xdr �FILE �f�� �� translation to XDR
 diretly

�� to the chanel
int xdr
to
arbre ��� �� translation from XDR

���

��

Figure �� Interface for Variable class�

� contains both the variable tree representation and the standard XDR rep�
resentation of the variable �where one is computed from the other only
when necessary



� o�ers methods to translate automatically from one to the other repre�
sentation� These translations are possible because the variable is always
aware of its own type de�nition�

The tree representation included in the Variable class is a pointer to the
root node of the tree� Figure � shows the interface for the abstract class for a
node of the variable tree� This class contains a Type which is the type of the
node and a number of references to control how many copies of this node are
in use� The most important methods in this class are� accedir which access a
component of the variable from the corresponding index �only useful for records
and arrays

 and fromto xdr
 a pure virtual method that translates from XDR

�



representation to the tree representation and vice�versa �compulsory for any
derived class
�

class node �
protected�

Type tip�
int referencies�

public�

node �� ��
node �Type tipus� � tip�tipus� � referencies � �� �
virtual node �accedir �int index� ��
virtual node � operator � �const node � n� � ��

virtual int fromto
xdr �XDR �xdrs� � �� �� translation from�to XDR
���

��

Figure �� Interface for the abstract class node�

The node derived classes can be divided in two sets� one for the intermediate
nodes in the tree and the other for the leaf nodes� The intermediate nodes are
represented by the nodestruct and nodevector classes deriving from node and
containing the number of elements they involve ��elds in records or elements in
arrays
 and an array of node pointers containing their elements� Both interme�
diate nodes rede�ne the method accedir with their own code
 and de�ne the
method fromto xdr as a recursive call to the same method in each one of their
elements� The leaf nodes are represented by the classes nodeenter
 nodereal

nodeboolea and nodestring
 also deriving from node and containing respec�
tively an integer
 a real
 a boolean and a string value� These leaf nodes de�ne
the method fromto xdr by doing the corresponding translation for their basic
type �using the standard XDR routines for basic types
�

The use of the compact type de�nition facilitates the construction of the
variable tree ��gure � shows the node tree representation for a pyramid type
variable

 because it can be done recursively having only basic types in the
leaves and building the intermediate nodes as records or arrays of other nodes
or leaves�

Although the set of types usable in ATL language is restricted to records
and arrays
 the presented design for the Atlas variable representations makes
the possibility of extensions easy� It would be quite easy to extend the accepted
types in ATL to lists or hash tables
 for example
 by including the description
of these types in the language and extending the node types �classes deriving
from node
 with nodelist and nodehash� Because of the modularity in the
Variable mechanism design the only e�ort needed to do would be inside these
two new node derived classes in order to achieve the methods implementation
for the translation to XDR and the access to their components�

Besides the possibility of types extensions
 Atlas also o�ers more �exibility
to the mechanism by accepting the passing of Variables of an unknown type�
These variables are not accessible for the command subsystem since it doesn�t
know what their types are and therefore it cannot access their values� but it
allows these variables to pass through its execution only to go from an extern

�



nodestring

string

nodevector

nodestruct

nodevector

nodevector

nodestruct

nodestruct

nodestructnodestruct integer

realreal real real real real nodestructnodestruct integer

realreal real real real real

Figure �� Node tree representation for a pyramid type variable�

function to another one
 i�e� a Variable of an unknown type can be used in
ATL to recover the result of an extern function and pass it to another one as a
parameter
 for example�

These unknown type Variables make the Atlas variables mechanism to�
tally �exible because the developer can use any type for his data
 but on the
other hand the developer must implement the XDR translation for these types
by himself since Atlas is not aware of the composition of these types�

� Achieving transparency for the developer

Not only does Atlas o�er the automatic translation between XDR represen�
tation and Atlas Variable representation
 but it also isolates the developer
from these Atlas Variables representation�

In order to achieve the desired transparency for the developer
 Atlas pro�
vides code stubs to automatically transfer the user�s data intoAtlas Variables

and backwards
 through bridge types used to isolate the user from the details
of the Atlas Variables �which an advanced user can use directly if he wishes
to
�

These code stubs are automatically constructed by Atlas from the interface
declaration of the process �like the example in �gure �

 which contains the
type de�nitions used for variables to be exported and the prototype de�nitions
of the process extern routines
 which describe the parameters and result types
for them� All these de�nitions give Atlas enough information to generate
code stubs to prepare the arguments for user functions or collect results and
encode them for being transported over the network
 and dispatch calls to user
functions�

�



USE se�
���

EXPORT �deftype simplex pyramid
EXPORT �deftype scene VECTOR ����� OF simplex
EXPORT �deftype property integer

EXPORT scene totalsc�

���
PROT

EXTERN FUNCTION segmentation �scene sc
 property p� RETURNS scene�
EXTERN PROCEDURE display
scene �scene sc��

���
ENDPROT

���
EXPORT PROCEDURE SegmentSimplex �� IS

display
scene �segmentation�totalsc
GETDATA��Input the property value�����

se��Output ��Segmentation completed�
�m���
ENDPROCEDURE

Figure �� Portion of the interface de�nition in Atlas for the volume modeling
process ��volum�
�

The bridge types are used to build intermediate objects with the data struc�
ture of the user�s objects �as per their Atlas declarations
 but without the
methods of the user�s objects �which remain unknown to Atlas
� Each bridge

type �also automatically generated by Atlas
 has also methods to translate
Atlas Variables into it and an operator to build a Variable from it
 making
then both translations transparent to the developer� The only burden on the
developer is then to provide his classes with conversion methods to and from
these bridge type objects
 which is normally trivial �unless the developer choses
to have a very di�erent structure for theAtlas data that the one used internally
by his program
�

As an example
 we can see in �gures � through �� portions of the automati�
cally generated code stubs to link with the user code for the example in �gure ��
Notice the use of atl scene in �gure �� as a bridge type to isolate the user�s class
�scene
 from its Atlas external representation�

� Conclusions

In this paper the Atlas Variables mechanism and its representation has been
reported� A small overview of Atlas platform has also been presented�

The most important issues in Atlas for exchanging data between processes
are robustness and transparency�

By using the standard XDR representation to pass data through the net�
work
 Atlas ensure these data mean the same for each process that uses them�
therefore this exchanging of data between processes becomes robust and reli�
able because it doesn�t depend on the workstation architecture where the process
runs�

�



���

namespace volum �
typedef atl
pyramid atl
simplex�
�

namespace volum �

struct atl
scene�
atl
simplex cont������

operator Variable�� �
Type t��volum��scene�
�V�����S�name string
base V���S�p� S�x real
y real
z real�


p	 S�x real
y real
z real�


ident integer�

sides V���V���S�p� S�x real
y real
z real�


p	 S�x real
y real
z real�

ident integer�����

Variable v�t
���� v�crea
arbre���

for �int i����i������i����
� �����v�Arbre�����accedir�i��� � ����Variable�cont�i����Arbre���� �

return �v��
�

atl
scene�� ��
atl
scene�Variable �v� �

if �v�Arbre����NULL� atl
exit����� �� Invalid variable
for �int i����i������i���� �

Variable v	��S�name string
base V���S�p� S�x real
y real
z real�


p	 S�x real
y real
z real�
 ident integer�

sides V���V���S�p� S�x real
y real
z real�


p	 S�x real
y real
z real�
 ident integer���
����
v	�crea
arbre���
��v	�Arbre���������v�Arbre�����accedir�i����

atl
simplex tpaux�v	�� cont�i���tpaux�
�

�
��

�

���

Figure �� Portion of the automatically generated atl volum�H �le�

Transparency is the biggest aim for Atlas in every mechanism it o�ers� In
the Variables design a total transparency is achieved for a wide set of data
types and the developer doesn�t need to take care of the internal representation
used by Atlas for his data going through the network�

Not only can the Variables mechanism be used with the wide set of data
types ATL understands
 but it is also �exible to be used with unknown types
�types out of this set

 yet in this case �exibility is against transparency�

Finally
 Atlas itself also achieves some transparency with this representa�
tion since the Atlas kernel �process distr

 which is the processes communi�
cation center
 doesn�t need to know about data passing through it� It doesn�t
know their value or their type
 it only receives and sends Variables�

� Acknowledgments

Atlas development has been greatly facilitated by the use of the ACE�Wrappers
�see ��	
 library to build the communications drivers
 and also by the PCCTS

��



�ifndef 

ATL
volumhh


�define 

ATL
volumhh



�ifndef NOHEADER
�include �volum�h�
�endif
�include �atl
volum�H�

scene segmentation�scene
property��
void display
scene�scene��

�endif

Figure ��� The automatically generated atl volum�hh �le�

���
void aux
segmentation�String codi
DLList�Variable �� �parametres� �

Pix p�parametres�first���

atl
scene ptp����parametres�p����
scene par��ptp���
parametres�next�p��
property ptp����nodeenter ��parametres�p���Arbre�����Getvalor����
parametres�next�p��

��� scene res�segmentation�par�
ptp���
atl
scene restp�
restp�res�conversio
a
tipus
pont���
Variable �vr�new Variable�restp��
ReturnValue �rv�new ReturnValue�codi
vr��

distrib�envia�rv��
�

���
void main�int argc
char ��argv� �

���
ini
process���
driv�Dispatch���
close�CANAL
COMUNIC
DISTR��

exit����
�

Figure ��� Portion of the automatically generated atl volum�C �le� The arrow
has been added pointing to the point where user code is actually invoked�

�see ��	
 compiler construction tool�

This research has been supported partially by grants TIC�������� and TIC�
��������C����� of the CICYT

��



References

��	 Gregory R� Andrews� Paradigms for Process Interaction in Distributed Pro�
grams� ACM Computing Surveys
 ����

 March �����

��	 R� Srinivasan� Rfc ����� Xdr� External data representation standard
 Au�
gust �����

��	 Douglas C� Schmidt� The ADAPTIVE communication environment� Object�
oriented network programming components for developing client�server ap�
plications� In ��th Sun Users Group Conference
 �����

��	 Marta Fair�en and �Alvar Vinacua� ATLAS� Sistema de Comandes� Manual
t�ecnic �in Catalan
� Report LSI�������T
 �����

��	 Jon Siegel� CORBA Fundamentals and Programming� Jon Siegel� OMG

�����

��	 Marta Fair�en and �Alvar Vinacua� Interacci�on Gr�a�ca en ATLAS �in Span�
ish
� ����� To appear in Proceedings of CEIG����

��	 Terrence J� Parr� Language Translation Using PCCTS and C�� �A Refer�
ence Guide

 June ����� Address� http���www�parr�research�com� parrt�

��


