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Abstract. We extend the fringe analysis (used to study the expected
behavior of balanced search trees under sequential insertions) to deal
with synchronous parallel insertions on 2-3 trees. Given an insertion of
k keys in a tree with n nodes, the fringe evolves following the transition

matrix:
— k Ek: (=1 [k < Ay _6J>
Tk = <1+n+1>I+J=0 (n4 1) <]> —a; 85 )7

where the coefficients a; and 3; take care of the precise form of the algo-
rithm but does not depend on k or n. The derivation of this matrix uses
the binomial transform recently developed by P. Poblete, J. Munro and
Th. Papadakis. Due to the complexity of the preceding exact analysis,
we develop also two approximations. A first one based on a simplified
parallel model, and a second one based on the sequential model. These
two approximated analysis prove that the parallel insertions case does
not differ significantly from the sequential case, namely on the terms

O(1/n?).

Keywords: Fringe analysis, Parallel algorithms, 2-3 trees, Binomial trans-
form.

1 Introduction

One of the basic problems of managing information is the dictionary problem,
where a set of keys has to be dynamically maintained. One solution to this
problem are balanced search trees. One example are 2-3 trees where all leaves
appear at the same depth and every node has either one key and two sons,
or two keys and three sons. The exact analysis of the sequential case is still
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open, but good lower and upper bounds for several complexity measures have
been obtained [Yao78,EZGT82,BYP95] using a technique called fringe analysis
[BY95]. This analysis studies the bottom subtrees or fringe of trees and has been
applied to most search trees. We use this technique to analyze k synchronous
parallel insertions in 2-3 trees for k& > 0.

The rest of the paper is organized as follows. In section 2 we introduce the
MacroSplit based synchronous parallel insertion algorithm, which is at the base of
our fringe approach. In section 3, some qualitative explanations about existing
insertions algorithms are given. Section 4 develops the fringe analysis giving
an exact result for the transition matrix (theorem 2). The complexity of the
results has forced us to address two approximations in section 5. In the first we
add some assumptions to the parallel algorithm, and in the second we consider
consecutive sequential insertions. Section 6 we include final remarks and future
works. Finally, in the appendix we give a complete proof, using the binomial
transform [PMP95], of the theorem 2.

2 MacroSplit based parallel insertion algorithm

We introduce a parallel insertion algorithm based on the idea of MacroSplit. On
this algorithm an array of ordered keys a[l . . ] is inserted into a 2-3 tree having
n leaves. The MacroSplit insertions algorithm has two main successive phases.

Percolation Phase. In a top-down strategy, the set of keys to be inserted is
split into several packets and these packets are routed down. Finally, these
packets are attached to the leaves [PVW83 GMM96,GMIT].

Reconstruction Phase. In a bottom-up phase the packets attached to the
leaves are really inserted and the tree is reconstructed. This reconstruction
is based in just one unique wave moving bottom up. First, the packets are
incorporated at the bottom internal nodes of the tree. In successive steps the
wave moves up, decreasing the depth one unit at each time. The evolution
of this unique wave needs the usage of rules so called MacroSplit rules (see
Figure 1). To define them we have several possibilities. For instance, we can
take rules giving a maximum number of internal nodes holding two keys.
Another possibility consists on generate a maximum number of nodes with
one key.

The MacroSplit algorithm can be seen as a “height level” description of the
well known parallel insertion algorithm given by W. Paul, U. Vishkin and H. Wa-
gener in [PVW83], whose reconstruction phase has been refined (in order to avoid
concurrent readings). This refinement take place splitting a MacroSplit step into
several more basic steps chained together in a pipeline.

3 Qualitative behavior of insertion algorithms

In the further sections we will develop the fringe analysis of the MacroSplit
insertion algorithm. Based on this analysis we can try a qualitative explanation



Fig.1. We have several choices for a MacroSplits Rule. In case (z) the rule creates a
maximum number of double nodes. In (iz) the rule creates the minimum number. Other
intermediate strategies are also allowed.

of parallel insertion algorithms. As usual fringe analysis deals only with the
distribution of the bottom insertion nodes. We will prove that in the parallel case
a fraction of nodes having two leaves can be well approximated by a constant (like
in the sequential case). Tt seems reasonable to assume that higher order fringe
analysis for parallel algorithms will give close results (in the sequential case, this
has been experimentally tested by R. Baeza-Yates and P. Poblete in [BYP95]).

MacroSplit algorithms. Let us assume that the 2-3 tree has n nodes and &
1s the number of keys to be inserted. Assume k independent of n. From
the preceding remarks the expected number of levels affected by a wave
is logarithmic on k. This happens because at every level it seems that a
constant fraction ¢ < 1/3 of keys will not produce further actions. The same
seems to happen when k = o(n).

Pipelines based algorithm. Each wave of the pipeline parallel algorithm has
an expected logarithmic life time on k because the time spent at each level
is constant. Then we can take advantage of this fact in the following two
senses:

1. Assume that we have p processors and k keys with p < k. Then the
first wave starts with p processors managing p keys. When the second
wave starts, the first one only has a part ep of active processors because
1 —cp ones have inserted its key and are now free. Then the second wave
starts with 1 — ¢p processors and so on. Therefore, the expected number
of processors needed to insert the k keys can be reduced to O(k/logk).

2. Assume now that we have p > k processors and that each wave starts
with & processors. The second wave only needs ck new processors because
the remainder 1 — ck are those left free by the first wave, and so on.
Therefore, a stationary process of pipelined waves, where each of them
inserts & keys, can be supported with & = O(p) processes.

Much more research has to be done in order to prove mathematically the
preceding assertions. To justify them let us start with a precise fringe analysis.



4 Fringe analysis for parallel insertions

The fringe of a tree is composed by the subtrees on the last level. A node with
one key is designated z node, and a node with two keys is an y node. Note that
bottom nodes separate leaves into 1 — type leaves if their parents are x nodes;
otherwise, 2 — type leaves. When a new element falls in a node of type z, is
transformed in a node of type y. Otherwise, a node of type y is split into two
new x nodes.

Let X; and Y; be the random variables associated to the number of 1 — type
leaves and 2 — type leaves respectively at the step ¢. We assume X; + Y, =
n + 1 being n the number of keys of the tree. The expected number of leaves
(conditioned to the random insertion of one key) at the step ¢ can be modeled

by [EZGT82]: ( " N
E(Xe1 | 1) B(X: |1
(E(YL | 1)) =T (E(n | 1))

where T}, 1 is the transition matrix

1 1 . 10 -3 4
Tn’1_<1+n——|—1) I+n—|—1H being I_<01) and H_<3_4).

The probability that a random chosen leaf belongs to the ¢ — type is:

P Expected number of leaves of ¢ — type
Z' fu—

Number of leaves of the tree

Then the insertion process implies the stationary values of the probability for

Py =4/7 and P, = 3/7. More details can be found in [BY95].

We consider now that &k keys are in a random parallel manner inserted into a
tree of size n with X; (respectively ¥3) leaves of 1 —type (2—type). The expected
values of the random variable X;y; and Y;4; after the insertions depends on the
expected values of X; and Y; only. This means that the current value depends on
the history of the process only through the most recent value. Therefore we deal
with a Markov chain and the evolution can be analyzed through a recurrence of
the conditional expectations given by

(g(ét: || ]f))) =Tpx @(éf || If))) '

where T, . is as before the transition matrix.

The transition matrix is computed by considering a uniform distribution of
keys and the transformation of the bottom nodes. Let us explain this last point.
Assume that k keys have been inserted, then, at most, k& keys can reach a node.
If the node stores more than two keys, it must be split. Table 1 shows some splits
of x and y nodes; for instance, the first row shows the # node transformation into
an y and the y node transformation into x# nodes under the one key insertion,
and the fourth row shows how x and y nodes with new four keys can be split



k| x node y node

1 y zx

2 zx Ty

3 Ty XX Or Yy
4| xzx or yy Y

5 Y TTXT Or TYY
6lzxrr Or LYY TITY O Yyyy

Table 1. Transformation of  and y bottom node once k keys reach them

n (12345 6 7 8 9 10 31 41 51
k=1101.4.6.5714=4/7
k=211 1 5 .5625 5609 .5689 .5702 .5706
k=3|1 4 .466 .5394 5656 .5687 .5697

Table 2. Probability of 1 — type leaves once k keys have been inserted repeatedly

(in some cases there are different possibilities). Note that y node transformation
when k keys reach it is the same as the x node transformation when &k + 1 keys
reach it.

The columns of Table 2 show the experimental evolution of the probalility
values of 1 —type leaves (the initial tree had one « node). Note that these values
rapidly converge to 4/7, therefore this value seem to be an upper limit in the
parallel case. The same table shows that the parallel insertion determines a leaves
distribution different than those determined by sequential insertions.

We develop next the parallel insertion of two keys. We follow the same tech-
nique applied before to sequential insertions [EZGT82].

4.1 Parallel insertion of two keys

Assume that we have a tree with n keys and X;,Y; leaves of each type with
Xy + Y, =n—+ 1. We insert randomly in parallel two additional keys. Then, the
expected number of leaves is given by

(E(Xt+1 |2)) 7 (E(Xt |2))

B 12)) = 2 B 12))

These two keys fall through the tree until they reach bottom nodes. As at most
two keys can reach the same bottom node, we have no election in the split, i.e.
the transformation of bottom nodes is unique (second row of table 1). Both keys
can be either at the same bottom node or at different bottom nodes, and in each
case bottom nodes can be of type # or y. Let P(z,x) be the probability that
both keys reach the same x node, P(xy,x3) the probability to reach different »

nodes and so on for the remainder probabilities P(x,y) and P(y1, y2). We denote
the generic case as P(-,-), being (.,.) the generic pair of nodes accessed.



() P(,)) B(Xet1| X, 4,2,(.,.) BE(Yin | X, Y0, 2,(4,0)
(z,0) | 25w Xe 42 Y,

(w1, 22) | 745 T4 Xi—4 Yi+6

(z,9) |2:55 mis Xe+2 Y,

(v:9) | g X 42 Y,

(y1,92) | it Tt X:+8 Y, —6

Table 3. Parallel insertion of two keys

The expected number of 1 — type leaves is:

E(Xt+1|XtaYta 2) = ZP(a ) E(Xt+1|XtaYta 2a ('a ))
('7')

being E(X¢41]|Xt, Y2, 2, (., .)) the expected number of 1 — type leaves when two
keys reach node (-, -) conditioned to initial expected number of leaves X; and Y;.
For instance, if both keys reach different x nodes then it holds

Xy X¢—2
n+ln+1"
The expectations of 1—type leavesis F(Xy1|X:, V2, 2, (21, 22)) = X —4. Table 3
contains the other values. Moreover F(X;y1 | 2) = E(E(Xe41 | Xe, Y2, 2))

P(l‘l, l‘z) =

Lemma 1. The transition matriz T, o ts

2 2 -1 —12 18 . -3 4
14— 1 H b H=
( +n+1) o +(n—|—1)2<12 —18) eing (3 —4)
Proof. We compute the conditional expectation only for X;11 (the Yi41 term
has a similar development). Then E(X¢41|X:, Y2, 2) is:

ZP(~, ) B(Xeq1 | X, Y, 2, (- ,0))
()

:ﬁ (QXt(Xt +2) 4+ Xo (X — 2)(Xy — 4) 4+ 2X, Vi (X; + 2)

F3Y,(X +2) + V(Y — 3)(X, + 8))
1 2 2
=X+ gy (12;@ —AX? +4X,Y; + 8V — 181@))

4 12 8 18
=(1-— X, — Y,
( n+1+(n+1)2) t+<n+1 (n+1)2) t

This concludes the proof. []




4.2 Computation of the transition matrix of the k keys insertion

Assume that we insert k > 1 additional keys on a tree with X; leaves of 1 —type
and Yy of 2 — type. We select one key and denote it k. This key can reach a
bottom node  or y; the first case is denoted x case and the second one v case.
Then the expectations of 1 — type leaves after the insertion are given by

E(Xep1|Xe, Y, k) = P(x) E(Xo41|Xe, Yo, k=1, )+ P(y) BE(Xe41]Xe, Ye, k—1,7)

where F(X¢y1]Xe, Yz, k — 1, x) is the expected number of 1 — type leaves once k
keys have been inserted and one of them, &, has reach an z node. Similarly for
E(Xi41]Xe,Ye, k= 1,7). Clearly

Y,
n+1

P) == and P(y)=

If key k reaches an x bottom node, then the probability that ¢ keys of the
remainder k — 1 ones reach the same node 1s

, 2 E—1 2\ 2\t
b<l’k_1’n+1)_< ; )(n—l—l) (1_71—1—1) '

Then the expected values can be defined recursively as:

E(Xt+1|XtaYtak - 1aX) =

k—1

2
Zb(i,k—l, 1)(E(Xt+1|Xt—Q,Yt,k_l_i)+xx,i+1)
=0

n+
E(Xt+1|XtaYtak - 1a7) =

k—1
. 3 .
ZZ_; bi k=1, ) (E(Xt+1|Xt,Yt 3 k—1—14)+ Xyﬂl).

The term A ;41 is the number of 1 — type leaves after the insertion of ¢ 41
keys into an x node. In the same way, the term X, ;41 is the number of 1 —type
leaves after the insertion of ¢+ 1 keys into an y node (For 2 —type leaves we have
Ys,it1 and Yy i41). For instance, the second row of table 1 shows that X, , =4
and Ay 2 = 2.

Theorem 2. The expected number of 1 — type and 2 — type leaves after the
random insertion of k keys into a tree with Xyy1 leaves of 1 —type and Yiy1 of

2 — type are qiven by
(E(Xt+1 |k’)) T, (E(Xt |k’)) .
BV | k) = T\ B 1)



with Ty, . 15 the transition matriz

me () e () ()

where

i , J j
S RIT() EYRIPIRP S SR P
i=0 i=0

The proof is given in the appendix.

From this transition matrix and using the fact that the probabilities can be

defined as

B _ E(Xey1 | k) E(Yig1 | k)
t+1,k — n—l—l—l—k’n—l—l—l—k’ )

it 1s possible to have a recurrence in one variable, obtaining that for constant &
and asymptotically in the number of keys n, P,y1 = [4/7,3/7] 4+ O(k/n). The
above seems to be true for any & of o(n).

5 Approximated Analysis

Motivated by the complexity of the exact analysis of the generic case of & in-
sertions, we present two approximated analysis. The first one approaches the
distribution with a binomial. The second approximation considers &k sequential
insertions. The two approximations give good results for n >> k.

Binomial approximation. Let X;,Y; be the current number of leaves. Assume
that r keys reach an x bottom node and k — r keys and y bottom node with
probability (f)p’“qk_’“ being p = n)-(l—tl and ¢ = nﬁ_’l. Then, the new state 1s
determined by

Gir)=Go)+ O [ () rwn ()]

Note that F(p) = E(n)j_’l) = pi(n) and E(q) = pa(n).

Lemma 3. [t holds E(X¢y1) = E(X:) — 6kp1(n) + 4k and for n > 6, E(X;) =
%(n +1).
r=0

Proof. E(Xi41) = E(E(Xeq1 | Xe, V7)) = B (Zk (@n — 6r + 4k)<l;>pqu_r) a

The transition matrix in the binomial approximation is:

: k k . -3 4
bin __ _
Tn,k—<1+—n+1) I+n—|—1H being H_<3_4)




Lemma 4. It holds

12k
Var(Xoq1) = (1 - n—+1) Var(X,) +

62k(k —1) 2
S Var(X;) + 6%kp(n)pa(n),

and for n > 6 the asymptotic expression of Var(Xy) is

2 . 4 . 401, 132 _
%(g)z(”Jr 1)(1+ %(iJr D + 126~ 11 (f;+ 1)2 + 612(%11 .110(?(5:+ 5)63) +O(n_4))'

This lemma can be proved by usual techniques. Using this approximation, the
variance of the parallel insertions has the same first order term of the sequential

one [BP85].

Sequential approximation. Like the transition matrix can be written as

1 1 -3 4 n+2 1
Tor1=(1+—— ) I+ — = I q,
! <+n—|—1) +n—|—1<3—4) n—|—1<+n—|—2 )
the transition matrix to insert sequentially k& keys (one after another), defined
by the composition Tieq(n, k) = Thpr—11---Th 1, is equal to

n+k+1 1 1 1
Tyeq(n, k) = (1 g)(r1+—m)  (1+—m).
a(m k) = —— (+n+k+1 )( T TR ) ( T2 )

Lemma 5. The transition matriz Tseq(n, k) is (with e 1 = k):

Ck .2 Ck .3

(” n+1) A L e e L ey e e ey

H4- .

This expression allow us to guess the form of the transition matrix for the
parallel case
1
Thk = Tseqn, k) +1-0 (ﬁ) .
Therefore, parallelizing the insertions only changes second order terms with re-
spect to the sequential case.

6 Final Remarks and Future Work

Our results show that the parallel insertion of a constant number of keys does not
differ significantly from the sequential case. This result is intuitive, although we
have seen that was not easy to prove. We have analyzed a parallel and sequential
approximations, and the two cases differs from the exact analysis in the second
order term, being equal the first terms.

Our analysis can be also applied to AVL trees and other balanced search trees
with minor changes (that is, the analysis of the fringe). Further work implies
the use of our results to do a better performance study of distributed parallel
algorithms, as shown in section 3.
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A Proof of the theorem

Before to address the proof of the main theorem we introduce some lemmas and
functions. First, an easy lemma

Lemma 6. For any wnteger r > 0 it holds

k-1 .
r k—1—1 k-1
blik—1, —— ) ([1+ ——— ) =1 .
ZZ_; (Z’ ’v+w)<+n—|—1—|—r) +n—|—1

Second, we recall from [PMP95] the binomial transform B. Let (F;)n,>0 be a
sequence of real numbers, then the binomial transform of F; is

BLF; = Zk:(—l)i@)ﬂ.

i=0

For properties of B refer the reader to [PMP95]. We introduce a prticular double
binomaal transform. Let p be a real number and j a positive integer, we define
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Lemma 7. It holds

k
(1) Zb (6, k,p) Foe = BB [¢, p, Fi]

(i) BBk [, p1, BB [j, p2, Fil] = BBy [(, p1p2, Fi]
k

(i1i) Y b (0 k,p1) BBr_y[j, pa, Fi] = BBk [£, (1 = p1)ps, Fi]
£=0

(iv) BBp[j+1,p, F] = BBr[j,p, F5] — BBri1 [j, p, Fi
(v) BBk [j,p, Fiz1] = BBk [j, p, ]__BBk [+ 1,p F]

Proof. (i) We apply the property of the binomial transform lezo bl k,p)Fy =
By (p*Bi F;). (i1) We apply the property of the binomial transform which simpli-
fies the composition of two binomial transforms to the identity. (¢7¢) The addition
is equal to

k
> b6k, 1= p1) BB [j, pa, Fi] = BBy [, 1 — p1, BB[j, pa, Fi]
£=0

by (i), by (#i) we obtain the desired result. (iv) and (v) By applying the property
of binomial transform B F; 11 = BeF; — Bey1 By ]

We address now the proof of the main theorem. Note that the coefficients a
and @ can be viewed as a; = —2‘7_1[)’]')/@2' and 3; = —3‘7_16ij72'. Then the
first row of the transition matrix becomes

(o miz) = (1 + 7 [(ﬁl)j By ] ol [("i“)j BjX”D
= (1 5k — $BB 4, 52 Vs ]| 588 [1, 535, X0])
Proof. We prove the theorem by induction on k. For k = 1 we have

B(Xop| X0, i, 1) = (T2 707 (i?)

11 2 1 3
=(1 = BBy | ——— Vei| ) X+ 2BBy [, —— Xy| Vi
( T 2P [3 n—I—l’y’]) e+ 3b5 [3 nt 1 y] !

As the values of the double transform are 6/(n+ 1) and 12/(n+ 1) respectively,
the theorem holds.

11



We assume that the theorem holds for values smaller than &, then the recurrence

becomes
2 1+k—1—i
—1-1 n+1-—2

1
yx,i] } (X:—2)+ gBBk—l—i [j,

(Xt-l-l |Xta Yta

. 2 3
—5551@—1—2' [J, Q,Xy,i] Y: + /Yx,z'+1)

n+1—-2’ n+1-—

k—1 .
Y, ) 3 k—1—1 2
k—1,— 1+ — BB il ————— Vil v X
+”+1i:o (Z’ ’n+1) <{ * v1-3 20K [j +1—3y’]} '

3
3aXy,i] (Yt - 3) + Xy,i+1)

1
~“BBj_1_; |j, ———
+3 k-1 [J 1

Note that X'; ;41 = ¢4+ 3 — Vs i41. By applying lemma 6 on the first term,
lemma 7 (v) on double binomial terms and lemma 7 (7) on Xy ;41 and Ve iq1
terms, we obtain

X k—1 1 [ 2 |
! ({1+——_66k 1) —— Ve }(Xt—Q)

n+1 +1 2 n+1
1 3 T 20k—1) o2
+3BBk 1[J,n+1, i Y+ ] + 3 — BB 1[] n+1y,+1])
Y: k—1 1 [ 2 i
1 — —BBj_ — V.l ¢ X
—|—n+1<{ +n+1 5 kl_J,n_i_l,y,_} ¢

1 3 3
- 1|, ——, Xy | (Y — 1 |j,——, Xy
+3BBk 1[J,n+1, y,](t 3) + BBk 1[] e y,+1])
We separate the terms of X; and Y;
k—1 2

1 _Z X

{—I— 1 BBk 1[1, +1y ]} ¢
X 2 2

1 zi| — - .a—a i
+1{ + BB, - 1[1, +1,y7] BB, 1[1 n+1y,+1]}

+§BBk—1 [J, n—_i_laXy,z] Y: + r {—BBk—l [J, n—_i_laXy,z] + BBj_1 [J, n—_HaXy,Z-I—l]}

Finally, by applying lemma 7 (v) we obtain

k 2 1 3
14— — = wil | Xe4 = i —— Xyl Vi
<+ - QBBk[j, H,y,D t+366k[3n+1 y] A
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