
Shortcuts� Abstract �Pointers�

J� Marco

jmarco�lsi�upc�es

X� Franch

franch�lsi�upc�es

Dept� Llenguatges i Sistemes Inform�atics �LSI�

Universitat Polit�ecnica de Catalunya �UPC�

Campus Nord

Jordi Girona Salgado� �	


���

 BARCELONA

Abstract

In this work we present the speci�cation and the implementation of a new abstract data type

�ADT� called STORE � This new ADT allows the storage of a given collection of elements o�ering

an abstract mechanism that supplies a direct access to them� alternative to the method de�ned

by the standard operations of usual ADTs� The interest of the new mechanism stems from the

e�ciency of pointers� while avoiding the loss of modularity that usually occurs when pointers are

used� The implementation of the operations o�ered by the new ADT is done by derivation from

the equational speci�cation� The representation chosen for the implementation of the new ADT

makes the e�ciency previously mentioned possible� even when the representation strategy requires

the movement of the elements�

�



Contents

� Introduction �

� The ADT STORE �

��� Operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Constructor Operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Observer Operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Modi�er Operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Equational speci�cation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Equations between Constructor Operations � � � � � � � � � � � � � � � � � � � � �

����� Equations of the Observer Operations � � � � � � � � � � � � � � � � � � � � � � � �

����� Equations of Modi�er Operations � � � � � � � � � � � � � � � � � � � � � � � � � � �	

� Implementation in Main Memory ��

��� The Type Representation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Deriving code for the operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


����� Derivation of put � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


��� Chosing implementations for the components of the representation � � � � � � � � � � � ��

� An Example� The Tennis Ladder ��

��� Aho� Hopcroft 
 Ullman�s Solutions to the Problem � � � � � � � � � � � � � � � � � � � ��

��� The solution with the ADT STORE � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Codi�cations �	

� Conclusions �


�



� Introduction

The present work deals with the methodology of modular program development by means of abstract

data types �ADT�� The modular methodology o�ers many important properties such as understanding�

abstraction� reusability� etc�� but� often� it implies a loss of e�ciency due to the impossibility of

accessing implementation of ADTs from other modules�

Often� while designing a data structure� we face the problem of reducing the space cost �i�e��

minimising redundant data� or the temporal cost �i�e�� accessing more faster to data�� To overcome

these problems we may need an implementation which permits the access to the data by means

of pointers �see� e�g� ��� pag� ��
��� Recall that the notion of pointer corresponds to the memory

address of a given object �with some high�level facilities� which vary among the di�erent programming

languages�� Unfortunately� the use of pointers causes in general a complete loss of modularity because�

� It is necessary to know the underlying data structure used in the implementation and therefore�

information hiding is not accomplished�

� Correctness proofs and software maintenance and reusability are� in general� more complicated�

Also� programs are more di�cult to understand�

� An implementation using pointers needs to guarantee that data will not change their position in

the structure� otherwise we would not access the desired information �unless all client modules

keep track of changes and this may be impossible��

� When the implementation is done by means of pointers not only the ADT operations can be

used but also we can access directly to its representation and manipulate it� Therefore� it is

possible to manipulate ADTs without respecting the policy de�ned by their equations�

With the aim of avoiding these drawbacks� we propose the design of a new ADT� which not only

permits to store data and to access them by means of a key� but also allows for direct access to data

without knowing how they are stored� We should mention that the addition of this mechanism will

be done by de�ning its formal semantics� Certainly� the idea to study this new ADT comes from the

necessity of a compromise between modularity and e�ciency�

The goal of the present work is to present the design of this new ADT which o�ers� in the one hand�

functions of data storage and access by key to data structures� independently of their organization

�



and of the key type and� on the other hand� the possibility of a direct access to data by means of

an address we call the shortcut � Essentially� we obtain an abstract mechanism inside the ADT which

corresponds to the pointers in both concept and e�ciency�

The rest of the paper is organized as follows� In section �� we present the algebraic speci�cation

of the new ADT showing the sorts and the operations o�ered as well as the equations that de�ne

the behaviour of each of them� In section �� we choose �rst the representation of the new data type�

then we show the complete derivation of one of the operations and �nally we indicate the cost of

each operation� depending on the detailed implementation of the representation used� In section �� we

consider a classic example that requires the use of pointers for e�ciency reasons� and where we can see

that the use of the new ADT assures the same e�ciency without losing modularity at all� In section

�� we include several conclusions regarding the codi�cation of the new ADT in ADA� Modula�� and

C��� Finally� in section �� we summarise the advantages of the new ADT and we present some open

questions for further research� This paper is based on ����� where all the remaining discussions can be

found� regarding the derivation of all the operations and details of the three implementations�

� The ADT STORE

Since we want to obtain an ADT which permits to store any kind of information� we have designed an

ADT that is �generic� ��parameterized��� The new ADT� called STORE � has the data to be stored

as a parameter � decomposed into key and information� The parameter key is used to access the data�

There are no operations required on information� the sort key must have comparison operations��

The ADT STORE o�ers two sorts�

� store� where the data is stored�

� shortcut� which supplies the direct access to the stored data�

�From now on� we use the operation symbol cmp to refer to the equality operation�

�



��� Operations

����� Constructor Operations

create� �� store

creates an empty store�

put� store� key� information �� h store� shortcut i

returns a pair formed by the resulting store after adding the pair of key and information�

and the shortcut which gives direct access to this pair�

Alternatively� we could decompose put into two operations� one for each component of the result�

However� we have preferred the above mentioned structure for the sake of clearness of algebraic

speci�cation presented in Subsection ����

����� Observer Operations

getInfKey� store� key �� information

returns the information associated to the key� Precondition� the key is in the store�

getInfSho� store� shortcut �� information

returns the information associated to the shortcut� Precondition� the shortcut has data

associated inside the store�

getKey� store� shortcut �� key

returns the key associated to the shortcut� Precondition� the shortcut has data associated

inside the store�

isIn�� store� key �� bool

returns a boolean value indicating whether the key is in the store�

getShortcut� store� key �� shortcut

returns the shortcut associated to the key� Precondition� the key is in the store�

isEmpty�� store �� bool

returns a boolean value indicating whether the store is empty�

�



����� Modi�er Operations

remove� store� shortcut �� store

returns the resulting store after removing the data associated to the shortcut� Precondi�

tion� the shortcut has data associated inside the store�

modify� store� shortcut� information �� store

returns the resulting store after substituting the information associated to the shortcut�

by the new information� Precondition� the shortcut has data associated inside the store�

��� Equational speci�cation

Following the general method of algebraic speci�cation with initial semantics� we give �rst the equa�

tions between constructor operations ��� �� ���

����� Equations between Constructor Operations

It seems that we could assume that the stores behave as sets� in that the ordering in which the data

are stored is not important� Actually this happens in �table� like ADT�s ���� In order to assure this

property we should have to guarantee that� for a given key � we obtain always the same shortcut �

regardless of the moment in which the key and its information are stored� This would imply that

di�erent keys could not have the same shortcut � otherwise� storing an information and a key implies a

risk of modifying the information of another key �of the same shortcut� which was stored previously�

Therefore� there should be a unique shortcut corresponding to a key � and this� in turn� requires the

number of keys and the keys themselves to be known before hand� Alternatively� we can do it by an

injective function from the set of keys to the set of shortcuts� The last requirement is very restrictive�

if we want the store to be independent from the key �

We overcome this restriction� by letting the shortcut to depend also on the store� and in this way

di�erent keys can have the same shortcut � if they are stored in di�erent stores� Therefore� the order

in which data are stored is important� and thus stores will not behave as sets�

Now� let us consider the relations between the two consecutive put operations� when we store

some information with a key which was previously in the store� Since we can have only a unique

information associated to each key � the result will be that of replacing the information associated to

the key by the new information� The question that arises here is� which is the shortcut obtained�

�



Since there was a shortcut associated to the key � i�e�� the shortcut obtained when stored the previous

information� and since we want a unique shortcut corresponding to the key � then it is precisely the

former shortcut the one we will obtain�

Let us see the equations which express these relations� Let us start by those related to stores� we

will use the operation isIn� which tell us whether the key is in the store� This operation is used only

when the store is not empty� because otherwise the store would not have this relation�

In the case when the key is therein� we consider the following two cases�

�� The key is the last one added to the store�

�� The key exists but it is not the last one�

In the �rst case� the equation is simple� it just expresses the fact that the obtained store will be

the same as if the last time we had stored the new information�
h
isIn��put�st�k��i���store�k�� � cmp�k��k��

i
�

put�put�st�k��i���store�k��i���store � put�st�k��i���store

In the second case� the equation expresses the swap between the two last keys obtaining this�

h
isIn��put�st�k��i���store�k�� � � cmp�k��k��

i
�

put�put�st�k��i���store�k��i���store � put�put�st�k��i���store�k��i���store

Notice that in this case there is no a substitution of the information associated to the key� but

applying this equation successively� we will arrive to the �rst case since the key is therein� Therefore�

we can apply the �rst equation and in this way to substitute the information associated to the key�

Let us see now the equations for shortcuts� As before� we distinguish two cases�

�� The key is the last one added to the store�

�� The key exists� but it is not the last one�

In the �rst case� we only have to express that the obtained shortcut will be the one obtained

previously�

h
isIn��put�st�k��i���store�k�� � cmp�k��k��

i
�

put�put�st�k��i���store�k��i���shortcut � put�st�k��i���shortcut

�



In the second case we have to just express that the obtained shortcut will be the same as the one

that we would have obtained� if the new key and the new information had been stored in the previous

store�
h
isIn��put�st�k��i���store�k�� � � cmp�k��k��

i
�

put�put�st�k��i���store�k��i���shortcut � put�st�k��i���shortcut

This does not specify yet completely the behaviour of shortcuts� because we have not considered

the case in which the key is not therein� in fact� in this case� put may return any value as shortcut

but the access to the shortcut should supply the appropriate results� The equations of the operation

getInfSho will describe this behaviour� as given next�

����� Equations of the Observer Operations

Let us study now the behaviour of the observer operations�

� The equations of getInfSho�

� The �rst one will be an error equation� indicating that the operation is not de�ned for an

empty store� Recall that this operation is partial�

getInfSho�create�sc� � error

� We also include an equation to express� the behaviour when the shortcut whose information

we want to consult is the same as the one returned in the last operation of store� The

information that we will obtain will be the one of this last operation� In order to compare

the shortcuts we will use a private operation� denoted cmp�

h
cmp�sc�put�st�k�i��shortcut�

i
� getInfSho�put�st�k�i��store�sc� � i

� The next equation indicates that� if the shortcut is not the same as the one obtained in

the last operation of put � then the result of consulting the information associated to the

shortcut will be the same as consulting the previous store�
h
� cmp�sc�put�st�k�i��shortcut�

i
�

getInfSho�put�st�k�i��store�sc� � getInfSho�st�sc�

�



Notice that� if there was no information associated to the shortcut � by applying successively

this equation� we would obtain st�create� and therefore from the �rst equation this is an

error�

� Equations of getKey � similar to those of getInfSho�

getKey�create�sc� � errorh
cmp�sc�put�st�k�i��shortcut�

i
� getKey�put�st�k�i��store�sc� � kh

� cmp�sc�put�st�k�i��shortcut�
i
� getKey�put�st�k�i��store�sc� � getKey�st�sc�

� The Equations of getInfKey �

� The �rst equation states that� if the key to be consulted is the last one stored then we will

obtain the last the information stored�

h
cmp�k��k��

i
� getInfKey�put�st�k��i��store�k�� � i

� If the condition of the �rst equation does not hold then we have a second equation� and

the corresponding result will be that of applying getInfKey on the previous store�

h
� cmp�k��k��

i
� getInfKey�put�st�k��i��store�k���getInfKey�st�k��

� Since the operation in question is a partial one �because it is not de�ned when the key

is not in the store� we must also add a last equation which indicates that consulting the

information associated to a key in an empty store will be an error�

getInfKey�create�k� � error

� Equations of isIn� �

� The �rst equation is intuitively clear� If we apply isIn� to a key and to an empty store�

then the result will be false�

isIn��create�k� � false

� In the same way� the second equation comes naturally� If the key to which we apply the

operation isIn� is the last one added to the store� then the result will be true� if the key

is not the last one added� then the result will be that of applying isIn� to the previous

store�






isIn��put�st�k��i���store�k�� � cmp�k��k�� � isIn��st�k��

� The corresponding equations of getShortcut �

� Applying getShortcut to a key and an empty store will give error�

getShortcut�create�k� � error

� If the key to which we apply getShortcut is the last one added to the store� then we will

obtain the shortcut of the last application of put �

h
cmp�k��k��

i
� getShortcut�put�st�k��i���store�k�� � put�st�k��i���shortcut

� If the key to which we apply getShortcut is not the last one added to the store� then we

will have the same shortcut as the one obtained from applying getShortcut to the previous

store�

h
� cmp�k��k��

i
� getShortcut�put�st�k��i���store�k�� � getShortcut�st�k��

When the key is not in the store� then eventually we would have st�create� and from the

�rst equation� it will be an error�

� Equations of isEmpty� �

� First� we express that applying isEmpty� to a store with nothing therein yields true�

isEmpty��create� � true

� Next� applying isEmpty� to a store with information in it yields false�

isEmpty��put�st�k�i��store� � false

����� Equations of Modi�er Operations

Let us study now the behaviour of the modi�er operations�

� The equations of remove�

� If we try to remove the data associated to a shortcut of an empty store we will raise an

error�

remove�create�sc� � error

�	



� If the store is not empty we distinguish two cases� when the data to be removed is the

one accessible by means of the shortcut obtained from the last application of put � and the

opposite one�

In the �rst case� since we cannot have error as a basic case� i�e�� we are not able to remove the

data associated to a shortcut in an empty store� then we consider separately the following

two subcases�

a� There is no information previously stored using the key of the last application� There�

fore� the result of remove will be the same store as the one before applying this oper�

ation�h
cmp�sc�put�st�k�i��shortcut� � � isIn��st�k�

i
� remove�put�st�k�i��store�sc� � st

b� Otherwise� the operation remove will be applied again�h
cmp�sc�put�st�k�i��shortcut� � isIn��st�k�

i
�

remove�put�st�k�i��store�sc� � remove�st�sc�

When the shortcut is not the last one obtained� then we will have the same result as that of

applying put to the last key � to the last information and to the store resulting of applying

remove to the previous store and to the shortcut �h
� cmp�sc�put�st�k�i��shortcut�

i
�

remove�put�st�k�i��store�sc� � put�remove�st�sc��k�i��store

Notice that if there are no data associated to the shortcut then we would have st�create

and� therefore� from the �rst equation it would be an error�

� Equations of modify �

� First� we express that trying to modify the information associated to a shortcut of an empty

store produces an error�

modify�create�sc�i� � error

� Next� if the shortcut whose information is to be modi�ed is the same as that obtained from

the last application of put � the result will be the same as if the last put had stored the new

information�h
cmp�sc�put�st�k�i���shortcut�

i
�

modify�put�st�k�i���store�sc�i�� � put�st�k�i���store

��



� Finally� consider the case that the shortcut whose information is to be modi�ed is di�erent

from the one obtained by the last application of put � Then� we will obtain the result of

applying put to the last key � to the last information and to the store which is given by

modifying the previous store� Notice that� again� if there were no information associated to

the shortcut � then the previous store would be empty and from the �rst equation� if would

be an error�h
� cmp�sc�put�st�k�i���shortcut�

i
�

modify�put�st�k�i���store�sc�i�� � put�modify�st�sc�i���k�i���store

We summarize the results in the following parameterized ADT�

universe STORE �KEY� INFORMATION� is

type store� shortcut

imports BOOL

ops

create� �� store

put� store� key� information �� h store�shortcut i

getInfKey� store� key �� information

getInfSho� store� shortcut �� information

getKey� store� shortcut �� key

isIn�� store� key �� bool

getShortcut� store� key �� shortcut

isEmpty�� store �� bool

remove� store� shortcut �� store

modify� store� shortcut� information �� store

private cmp� shortcut� shortcut �� bool

errors � k 	 key� � i 	 information� � sc 	 shortcut

getInfKey�create�k� � error

getInfSho�create�sc� � error

getKey�create�sc� � error

getShortcut�create�k� � error

remove�create�sc� � error

��



modify�create�sc�i� � error

eqns � st 	 store� � k�k��k� 	 key� � i�i��i� 	 information� � sc 	 shortcuth
isIn��put�st�k��i���store�k�� � cmp�k��k��

i
�put�put�st�k��i���store�k��i���store � put�st�k��i���storeh

isIn��put�st�k��i���store�k�� � � cmp�k��k��
i
�

put�put�st�k��i���store�k��i���store � put�put�st�k��i���store�k��i���storeh
isIn��put�st�k��i���store�k�� � cmp�k��k��

i
�

put�put�st�k��i���store�k��i���shortcut � put�st�k��i���shortcuth
isIn��put�st�k��i���store�k�� � � cmp�k��k��

i
�

put�put�st�k��i���store�k��i���shortcut � put�st�k��i���shortcuth
cmp�k��k��

i
� getInfKey�put�st�k��i��store�k�� � ih

� cmp�k��k��
i
� getInfKey�put�st�k��i��store�k���getInfKey�st�k��h

cmp�sc�put�st�k�i��shortcut�
i
� getInfSho�put�st�k�i��store�sc� � ih

� cmp�sc�put�st�k�i��shortcut�
i
� getInfSho�put�st�k�i��store�sc� � getInfSho�st�sc�h

cmp�sc�put�st�k�i��shortcut�
i
� getKey�put�st�k�i��store�sc� � kh

� cmp�sc�put�st�k�i��shortcut�
i
� getKey�put�st�k�i��store�sc� � getKey�st�sc�

isIn��create�k� � false

isIn��put�st�k��i���store�k�� � cmp�k��k�� � isIn��st�k��h
cmp�k��k��

i
� getShortcut�put�st�k��i���store�k�� � put�st�k��i���shortcuth

� cmp�k��k��
i
� getShortcut�put�st�k��i���store�k�� � getShortcut�st�k��

isEmpty��create� � true

isEmpty��put�st�k�i��store� � falseh
cmp�sc�put�st�k�i��shortcut� � isIn��st�k�

i
� remove�put�st�k�i��store�sc� � remove�st�sc�h

cmp�sc�put�st�k�i��shortcut� � � isIn��st�k�
i
� remove�put�st�k�i��store�sc� � sth

� cmp�sc�put�st�k�i��shortcut�
i
� remove�put�st�k�i��store�sc� � put�remove�st�sc��k�i��storeh

cmp�sc�put�st�k�i���shortcut�
i
� modify�put�st�k�i���store�sc�i�� � put�st�k�i���storeh

� cmp�sc�put�st�k�i���shortcut�
i
� modify�put�st�k�i���store�sc�i�� � put�modify�st�sc�i���k�i���store

end universe

universe INFORMATION characterise

type information

end universe

��



universe KEY characterise

type key

imports bool

ops

cmp� � � key� key �� bool

eqns � k� k�� k�� k� 	 key

cmp�k�k� � trueh
cmp�k��k��

i
� cmp�k��k�� � trueh

cmp�k��k�� � cmp�k��k��
i
� cmp�k��k�� � true

k � k � falseh
k� � k�

i
� k� � k� � falseh

k� � k� � k� � k�
i
� k� � k� � true

end universe

We determine the model of ADT STORE interpreting the equations by means of initial semantics�

Given the properties of put it can be derived that the model corresponding to the carrier sets of sort

store consists of the pairs of functions g � K � U 
 h � K
�

� A
�

that satisfy� K
�

� domain�g��

A
�

� A� K
�

� K where A� K and U are the carrier sets of the shortcuts � the keys and the information

respectively� The bijection assures that to any key there is one and only one shortcut associated

to it� while the condition on the domains assures that the shortcuts corresponds only to the keys

already de�ned� The operations of the model are obtained by interpreting the operations of the

ADT on the above functions� for example� create is interpreted as the functions g and h that satisfy

domain�g� � domain�h� � 
� The proof of the model is out of the scope of this paper� and it is

omitted�

� Implementation in Main Memory

In this section we choose a representation for the sorts of the new ADT and we show a derivation of

one of the operations as example starting from its pre�post speci�cation ���� Also� we present di�erent

possibilities to implement the new ADT with the chosen representation� and we give the cost of each

one of them�

��



��� The Type Representation

In order to have direct access to the data we may think of representing the store as an array having

as components pairs of a key and an information� and the type of shortcut to be the index of the

array �see Fig� ��� With this representation� accessing the store by means of the shortcut could be

done with constant cost while accessing by means of the key would have a linear cost �in terms of the

array size� due to the searching of the key in the array�

� � � � � � � � 
 �	 �� �� ��

k� k� k� k� k� k�

inf� inf� inf� inf� inf� inf�

Figure �� array

To avoid this cost we decided to add another data structure that� given a key allows us to know

which is the shortcut associated to it� that means� the position on the array where the data is found�

Thus� the type store would be a pair that consist of a table of pairs hkey� shortcuti and the previous

array �see Fig� ��� With this new structure the operations with the key will have a reasonable cost

depending on the implementation of the table used�

k� k� k� k� k� k�

� � � � � �

� � � � � � � � 
 �	 �� �� ��

k� k� k� k� k� k�

inf� inf� inf� inf� inf� inf�

j q� � q�

Figure �� array and table

��



Using this representation of the type store we still have an operation of high cost� namely the put

operation� When we store the data by means of a key which is already in the store� we have only to

obtain the shortcut associated to the key and then using it to access to the array� assigning the value

of the new data� In this case� the cost is that of consulting the table� However� when the key is not

in the store� we have to search for free position in the array� and this� in the worst case� has linear

cost� To avoid this cost we add another structure to �nd quickly a free position� This structure is a

queue where the free positions of the array are stored �see Fig� ��� With this modi�cation� the cost

of �nding a free position is constant �provided that the implementation of the queue is good enough�

it corresponds just to obtaining the �rst element of the queue�� The cost of putting a position as a

free one� while removing� could be made also constant if it just corresponds to the cost of putting an

element to the queue�

k� k� k� k� k� k�

� � � � � �

� � � � � � � � 
 �	 �� �� ��

k� k� k� k� k� k�

inf� inf� inf� inf� inf� inf�

j q� � q�

� � � � � � � � �

���I ���

Figure �� array� table and queue

��



The representation of the new sorts of data is�

� store is implemented by a record consisting of three �elds�

�� a� array of n components� where the valid indices are the natural numbers between � and

n� for a certain natural n� the components of the array are pairs consisting of two �elds�

inf �of type information� and key �of type key��

�� f � a queue of shortcuts i�e�� a queue containing the indices corresponding to the free posi�

tions of the array�

�� t� is a table of pairs hkey� shortcuti�

� The shortcut is implemented by a natural in the range 	 � � �n� The value 	 is used as an unde�ned

value� The rest of the values will correspond to the indices of the array�

To verify that the implementation of the new ADT is correct with respect to its speci�cation we

follow the method presented in ���� It consists of de�ning the abstraction function� which transforms a

value of the implementation to a value of its model� denoted by a term which belongs to its associated

equivalence class in the quotient�term algebra ���� Since this function is partially de�ned� we must

also de�ne the invariant of the representation which establishes the condition that the values of the

implementation must satisfy so to represent valid values of the ADT� Also� we need to indicate when

two di�erent values of the implementation correspond to the same value of ADT under implementation�

in other words� we have to specify the rede�nition of the equality�

Here is a short description of the array� queue and table operations� respectively� that we are going

to use� cons�a� p� returns the value in the position p of the array a� ass�a� p� v� assigns the value v in

the position p of the array a� putFirst�q� v� puts the value v in the front of the queue q� assign�t� k� v�

associates the value v to the key k in the table t� deassign�t� k� associates an unde�ned value to the

key k in the table t� and lookup�t� k� returns the value associated to the key k in the table t�

The Abstraction Function

convert�ha� f� ti� 	

������
�����

create if t	TABLE�create

put�convert�ha� putF irst�f� sc�� deassign�t� k�i�� k� cons�a� sc��inf��store if t	assign�t
�k�sc�

��



The Representation Invariant

The representation invariant must assure that every position of the array is free or occupied but not

both of them at the same time� Therefore� it indicates that any position of the array� i�e�� any natural

between � and n must be either in the queue of free positions �only once� or as a value associated to

a key in the table� In this last case� the key cannot be whatever� it must coincide with the value of

the �eld of the array in this position� Since a shortcut cannot be associated to more than a key � at a

certain moment� we must assure also that� given a position there is only one key in the table which it

is associated to�

But the shortcut depends on the store� therefore the representation invariant must indicate which

is the shortcut that will assign our representation when we store an information by means of a key

that is not found in the store� Since the only condition that must satisfy the shortcut � is not to be

associated to another key � any of the queue positions can be used� for instance its head�

We can now write down the invariant�

First we will de�ne a predicate that indicates whether a shortcut belongs only once to the queue�

�f 	 queue� �sc� sc�� sc� 	 shortcut

unique�create� sc� � false sc 	 create � false

unique�enqueue�f� sc�� sc� � ��sc 	 f� sc 	 enqueue�f� sc� � true

��ig�sc�� sc���� ��ig�sc�� sc����

unique�enqueue�f� sc��� sc�� � unique�f� sc�� sc� 	 enqueue�f� sc�� � sc� 	 f

Inv Rep�ha� f� ti� �

�j � � � j � n �

��
unique�f� j�� ��k � lookup�t� k� � j

�
�
�
��j 	 f� � ��k � lookup�t� k� � j

�	
�

�k � lookup�t� k� �� undefined � cons�a� lookup�t� k���key � k �

�k � �isIn��convert�ha� f� ti�� k� � put�convert�ha� f� ti�� k� i��shortcut � head�f�

The Equality Rede�nition

The equality rede�nition expresses that the values of the array in its free positions �those found in

the queue� are not relevant to the abstract value� This means that the same store is obtained if any

free position of the array were modi�ed� Also� it should express that two stores are equal when two

tables� constructed in di�erent ways� contain the same set of pairs� But this has been contemplated in

the equations of the type table� and therefore there is no need to include it in the equality rede�nition�

��



�j � � � j � n � �j 	 f� � convert�ha� f� ti� � convert�hass�a� j� val�� f� ti�

��� Deriving code for the operations

In this subsection� we present the derivation of the implementation a particular operation� put � as a

case study of the whole derivation process�� In order to simplify the demonstrations we work under

the hypothesis that n is big enough to assure that the queue is never empty� Later� at the �nal

implementation� we have considered this possible case of error�

����� Derivation of put

According to ��� the operation put must be implemented by a function satisfying the following pre�post

speci�cation�

function impl put�ha�array�f�queue�t�tablei� k�key�i�information�

returnhha��array�f��queue� t��tablei� sc�shorcuti

fPre� Inv Rep�ha�f�ti� g

P

fPost� Inv Rep�ha��f��t�i� � convert�ha��f��t�i��put�convert�ha�f�ti��k�i��store �

sc�put�convert�ha�f�ti��k�i��shortcutg

return hha��f��t�i�sci

The derivation of this function is crucial for the veri�cation process not only because of its di�culty

but also due to the fact that we have to prove� previously� a serie of lemmas necessary also for the

derivation of the rest of the functions�

The Lemmas regarding the tables

Lemma � �lookup�assign�t�k�sc��k���unde	ned� � � ig�k�k��

Lemma � �lookup�t�k��unde	ned� � deassign�t�k��t

Lemma � �lookup�t�k��unde	ned� � deassign�assign�t�k�sc��k��t

Lemma � �lookup�t�k� ��unde	ned� � t��TABLE�create

�See ���� for the complete derivation�

�




Lemma � �lookup�t�k� ��unde	ned� � t�assign�t��k�lookup�t�k��

Lemma � lookup�deassign�t�k��k��unde	ned

Lemma 
 �t�assign�t��k��sc��� � t�assign�t��k��sc�� � lookup�t��k���unde	ned

Lemma � isIn��convert�ha�f�ti��k���lookup�t�k���unde	ned�

The Lemmas regarding the queues

Lemma 	 putFirst�dequeue�q��head�q���q

Lemma �
 head�putFirst�q�v���v

Using these lemmas let us see the derivation of the function put �

The result of the operation will depend on whether the key to be stored is found in the store or

not� Therefore� we consider an alternative to the design of the function� Since� from Lemma �� the

result of isIn��convert�ha�f�ti��k� is equivalent to lookup�t�k���unde	ned we will put this last one as a

condition of the alternative�

function impl put�ha�array�f�queue�t�tablei� k�key�i�information�

returnh ha��array�f��queue�t��tablei� sc�shortcuti

fPre� Inv Rep�ha�f�ti� g

if lookup�t�k��unde�ned then

fA�� Inv Rep�ha�f�ti� � lookup�t�k��unde�ned g

P�

else

fA�� Inv Rep�ha�f�ti� � lookup�t�k���unde�nedg

P�

end if

fPost� Inv Rep�ha��f��t�i� � convert�ha��f��t�i��put�convert�ha�f�ti��k�i��store �

sc�put�convert�ha�f�ti��k�i��shortcutg

return hha��f��t�i�sci

�	



Let�s see what assertion we can deduce from A��

Inv Rep�ha�f�ti� � lookup�t�k�	unde
ned

� � Lemma � �

Inv Rep�ha�f�ti� � lookup�t�k�	unde
ned � � isIn��convert�ha�f�ti��k�

� � De
nition of Inv Rep �

Inv Rep�ha�f�ti� � lookup�t�k�	unde
ned � put�convert�ha�f�ti��k�i��shortcut	head�f�

� � Equality Rede
nition and head�f� � f �

Inv Rep�ha�f�ti� � lookup�t�k�	unde
ned � put�convert�ha�f�ti��k�i��shortcut	head�f� �

convert�ha�f�ti�	 convert�hass�a�head�f��hk�ii��f�ti�

� � The introduction of the operation put in both sides of the equality �

Inv Rep�ha�f�ti� � lookup�t�k�	unde
ned � put�convert�ha�f�ti��k�i��shortcut	head�f� �

put�convert�ha�f�ti��k�i��store	 put�convert�hass�a�head�f��hk�ii��f�ti��k�i��store

� � Lemma 
 �

Inv Rep�ha�f�ti� � lookup�t�k�	unde
ned � put�convert�ha�f�ti��k�i��shortcut	head�f� �

put�convert�ha�f�ti��k�i��store	 put�convert�hass�a�head�f��hk�ii��f�deassign�assign�t�k�head�f���k� i��k�i��store

� � Lemma � �

Inv Rep�ha�f�ti� � lookup�t�k�	unde
ned � put�convert�ha�f�ti��k�i��shortcut	head�f� �

put�convert�ha�f�ti��k�i��store	

put�convert�hass�a�head�f��hk�ii��putFirst�dequeue�f��head�f���deassign�assign�t�k�head�f���k�i��k�i��store

� � Eq� of array cons�ass�A�i�v��i�	v �

Inv Rep�ha�f�ti� � lookup�t�k�	unde
ned � put�convert�ha�f�ti��k�i��shortcut	head�f� �

put�convert�ha�f�ti��k�i��store	 put�convert�hass�a�head�f��hk�ii��putFirst�dequeue�f��head�f���

deassign�assign�t�k�head�f���k�i��k�cons�ass�a�head�f��hk�ii�� head�f���inf��store

� � Abstraction Function �

Inv Rep�ha�f�ti� � lookup�t�k�	unde
ned � put�convert�ha�f�ti��k�i��shortcut	head�f� �

put�convert�ha�f�ti��k�i��store	 convert�hass�a�head�f��hk�ii��dequeue�f�� assign�t�k�head�f��i�

� � �Inv Rep�ha�f�ti� � lookup�t�k�	unde
ned� � Inv Rep�hass�a�head�f��hk�ii��dequeue�f�� assign�t�k�head�f��i� �

Inv Rep�hass�a�head�f��hk�ii��dequeue�f�� assign�t�k�head�f�� i� � put�convert�ha�f�ti��k�i��shortcut	head�f� �

put�convert�ha�f�ti��k�i��store	 convert�hass�a�head�f��hk�ii��dequeue�f�� assign�t�k�head�f��i�

Therefore� from A� we can deduce this last assertion� denoted A��

Let�s see what assertion we can deduce from A��

Inv Rep�ha�f�ti� � lookup�t�k��	unde
ned

� � Lemma � �

Inv Rep�ha�f�ti� � t	assign�t��k�lookup�t�k�� �

��



� � Abstraction Function �

Inv Rep�ha�f�ti� �

convert�ha�f�ti�	 put�convert�ha�putFirst�f�lookup�t�k���deassign�t�k�i��k� cons�a�lookup�t�k���inf��store

� � Equality Rede
nition and �k�k � putFirst�f�k� �

Inv Rep�ha�f�ti� �

convert�ha�f�ti�	 put�convert�hass�a�lookup�t�k��hcons�a�lookup�t�k���key�ii��

putFirst�f�lookup�t�k���deassign�t�k�i��k�cons�a�lookup�t�k���inf��store

� � The introduction of the operation put in both sides of the equality �

Inv Rep�ha�f�ti� �

put�convert�ha�f�ti��k�i��store	 put�put�convert�hass�a�lookup�t�k��hcons�a� lookup�t�k���key�ii��

putFirst�f�lookup�t�k���deassign�t�k�i��k�cons�a�lookup�t�k���inf��store�k�i��store �

put�convert�ha�f�ti��k�i��shortcut	 put�put�convert�hass�a�lookup�t�k��hcons�a� lookup�t�k���key�ii��

putFirst�f�lookup�t�k���deassign�t�k�i��k�cons�a�lookup�t�k���inf��store�k�i��shortcut

� � Eq� of store put�put�st�k�i���store�k�i���store	 put�st�k�i���store� and

put�put�st�k�i���store�k�i���shortcut	put�st�k�i���shortcut �

Inv Rep�ha�f�ti� �

put�convert�ha�f�ti��k�i��store	 put�convert�hass�a�lookup�t�k��hcons�a� lookup�t�k���key�ii��

putFirst�f�lookup�t�k���deassign�t�k�i��k�i��store �

put�convert�ha�f�ti��k�i��shortcut	 put�convert�hass�a�lookup�t�k��hcons�a� lookup�t�k���key�ii��

putFirst�f�lookup�t�k���deassign�t�k�i��k�cons�a�lookup�t�k���inf ��shortcut

� � Eq� of array cons�ass�A�i�v��i�	v �

Inv Rep�ha�f�ti� �

put�convert�ha�f�ti��k�i��store	 put�convert�hass�a�lookup�t�k��hcons�a� lookup�t�k���key�ii��

putFirst�f�lookup�t�k���deassign�t�k�i��k�cons�ass�a�lookup�t�k�� hcons�a�lookup�t�k���key�ii��lookup�t�k���inf��store �

put�convert�ha�f�ti��k�i��shortcut	 put�convert�hass�a�lookup�t�k��hcons�a� lookup�t�k���key�ii��

putFirst�f�lookup�t�k���deassign�t�k�i��k�cons�a�lookup�t�k���inf��shortcut

� � Lemma � �

Inv Rep�ha�f�ti� �

put�convert�ha�f�ti��k�i��store	 put�convert�hass�a�lookup�t�k��hcons�a� lookup�t�k���key�ii��

putFirst�f�lookup�t�k���deassign�t�k�i��k�cons�ass�a�lookup�t�k�� hcons�a�lookup�t�k���key�ii��lookup�t�k���inf��store �

put�convert�ha�f�ti��k�i��shortcut	 put�convert�hass�a�lookup�t�k��hcons�a� lookup�t�k���key�ii��

putFirst�f�lookup�t�k���deassign�t�k�i��k�cons�a�lookup�t�k���inf��shortcut �

lookup�deassign�t�k��k�	unde
ned

� � Lemma � �

Inv Rep�ha�f�ti� �

put�convert�ha�f�ti��k�i��store	 put�convert�hass�a�lookup�t�k��hcons�a� lookup�t�k���key�ii��

putFirst�f�lookup�t�k���deassign�t�k�i��k�cons�ass�a�lookup�t�k�� hcons�a�lookup�t�k���key�ii��lookup�t�k���inf��store �

��



put�convert�ha�f�ti��k�i��shortcut	 put�convert�hass�a�lookup�t�k��hcons�a� lookup�t�k���key�ii��

putFirst�f�lookup�t�k���deassign�t�k�i��k�cons�a�lookup�t�k���inf��shortcut �

� isIn��convert�hass�a�lookup�t�k��hcons�a� lookup�t�k���key�ii�� putFirst�f�lookup�t�k���deassign�t�k�i��k�

� � �Inv Rep�ha�f�ti� � lookup�t�k��	unde
ned� �

Inv Rep�hass�a�lookup�t�k��hcons�a�lookup�t�k�� �key�ii�� putFirst�f�lookup�t�k���deassign�t�k�i� �

Inv Rep�ha�f�ti� � put�convert�ha�f�ti��k�i��shortcut	head�putFirst�f� lookup�t�k�� �

put�convert�ha�f�ti��k�i��store	 put�convert�hass�a�lookup�t�k��hcons�a� lookup�t�k���key�ii��

putFirst�f�lookup�t�k���deassign�t�k�i��k�cons�ass�a�lookup�t�k�� h cons�a�lookup�t�k���key�ii��lookup�t�k���inf��store

� � Abstraction Function and Lemma �� �

Inv Rep�ha�f�ti� � put�convert�ha�f�ti��k�i��store	 convert�hass�a�lookup�t�k��hcons�a�lookup�t�k���key� ii��f�ti��

put�convert�ha�f�ti��k�i��shortcut	lookup�t�k�

� � � Inv Rep�ha�f�ti� � lookup�t�k��	unde
ned� � Inv Rep�hass�a�lookup�t�k�� hcons�a�lookup�t�k���key�ii��f�ti� �

Inv Rep�hass�a�lookup�t�k��hcons�a�lookup�t�k���key�i i��f�ti� �

put�convert�ha�f�ti��k�i��store	 convert�hass�a�lookup�t�k��hcons�a�lookup�t�k���key� ii��f�ti� �

put�convert�ha�f�ti��k�i��shortcut	lookup�t�k�

Therefore� from A� we can deduce this last assertion� denoted A��

By introducing these new assertions we have�

function impl put�ha�array�f�queue�t�tablei� k�key�i�information�

returnh ha��array�f��queue�t��tablei� sc�shortcuti

fPre� Inv Rep�ha�f�ti� g

if lookup�t�k��unde�ned then

fA�� Inv Rep�ha�f�ti� � lookup�t�k��unde�nedg

fA�g

P�

else

fA�� Inv Rep�ha�f�ti� � lookup�t�k���unde�nedg

fA�g

P�

end if

fPost� Inv Rep�ha��f��t�i� � convert�ha��f��t�i��put�convert�ha�f�ti��k�i��store �

sc�put�convert�ha�f�ti��k�i��shortcutg

return hha��f��t�i�sci

��



Having these two new assertions it is easy to identify� by means of the assignment rule� which

expressions should be assigned to a�� f�� t�� and sc in each case� By doing these assignments we obtain

the following implementation of the put function�

function impl put�ha�array�f�queue�t�tablei� k�key�i�information�

returnh ha��array�f��queue�t��tablei� sc�shortcuti

fPre� Inv Rep�ha�f�ti� g

if lookup�t�k��unde�ned then

fA�� Inv Rep�ha�f�ti� � lookup�t�k��unde�nedg

fA�g

a��� ass�a�head�f��hk�ii�

f��� dequeue�f�

t��� assign�t�k�head�f��

sc�� head�f�

else

fA�� Inv Rep�ha�f�ti� � lookup�t�k���unde�nedg

fA�g

a��� ass�a�lookup�t�k��hcons�a�lookup�t�k���key�ii�

f��� f

t��� t

sc�� lookup�t�k�

end if

fPost� Inv Rep�ha��f��t�i� � convert�ha��f��t�i��put�convert�ha�f�ti��k�i��store �

sc�put�convert�ha�f�ti��k�i��shortcutg

return hha��f��t�i�sci

��



��� Chosing implementations for the components of the representation

Once we have derived the code of the operations� we study two particular implementations of the new

ADT�� In both of them we use the dynamic memory zone as an array and the queue of the system as

that of the free shortcuts� These two implementations di�er in the implementation of the table� In the

�rst one� we have used a hashing table with chaining� Using a hashing table requires the parameter

KEY to include also a hashing function� In the second implementation we have implemented the

table with an AVL� ����

We give next the cost of the operations of the ADT depending on the implementation used for

table �see Table ���

Table �� The cost of the functions

COST

FUNTIONS AVL HASHING

TABLE

create O��� O�r�

put O�logn� O���

getInfKey O�logn� O���

getInfSho O��� O���

getKey O��� O���

isIn� O�logn� O���

getShortcut O�logn� O���

isEmpty� O��� O���

remove O�logn� O���

modify O��� O���

As it can be seen� the cost of the operations getKey � getInfSho and modify is constant in both

implementations because the table is not accessed� in this case� The cost of the remaining operations

�See ���� for more details�
�An AVL is a binary search tree where the diference between the height of its subtrees is less or equal than � and the

subtrees are AVL in turn�

��



depends on the cost of the operations with the table� Thus� the operation create has a cost O��� if an

AVL is used� because the cost of creating an AVL is constant� on the other hand� if the hashing table

is used� the cost is O�r�� where r is the number of hashing values�

The operations put � getInfKey � isIn� � getShortcut and remove have cost O�logn�� if an AVL is

used� and this is due to the fact that the operations of consulting� assignment and removing in an AVL

have cost logarithmic in the height of the tree �
� ���� while for the hashing table these operation has

an average cost O��� ��	� �� therefore the operations put � getInfKey � isIn� � getShortcut and remove

will have a cost that is O��� in average� We notice that� if the number of the elements is far superior to

the number of hashing values or� if the hashing function is not good enough� the cost of this operations

may well be linear�

� An Example� The Tennis Ladder

In this section we present a simple example� taken from ���� of an application that requires the use of

pointers for e�ciency� We will show a modular solution� another with pointers and one using the new

ADT STORE we have designed� Then� we will compare the results�

Aho� Hopcroft and Ullman ��� presented this example to justify the use of pointers to achieve

e�ciency� We treat again this example in order to see the e�ect of using the new ADT�

Suppose we wish to maintain a �tennis ladder�� in which each player is on a unique �rung�� New

players are added to the bottom� that is� the highest�numbered rung� A player can challenge the player

on the rung above� and if the player below wins the match� they trade rungs� We can represent this

situation as an abstract data type� where the underlying model is a mapping from names �character

strings� to rungs �integers �� ������� The three operations we perform are

ADD�LAD�name� adds the named person at the highest�numbered rung�

CHALLENGE�LAD�name� is a function that returns the name of the person on rung i� � if the

named person is on rung i� i � ��

EXCHANGE�LAD�i� swaps the names of the players on rungs i and i� �� i � ��

��� Aho� Hopcroft � Ullman	s Solutions to the Problem

The �rst solution uses an array LADDER� where LADDER�i� is the name of the person on rung i� If

we also keep a count of the number of players� we can add a player to the �rst unoccupied rung can

��



in some small constant number of steps�

The operation EXCHANGE is also easy� as we simply swap two elements of the array� However�

CHALLENGE�LAD�name� requires that we examine the entire array in search of the name� which

takes O�n� time� if n is the number of players on the ladder�

On the other hand� as a second solution� we might consider a hash table to represent the map�

ping from names to rungs� Under the assumption that we can keep the number of buckets roughly

proportional to the number of players� ADD takes O��� time on the average� Challenging takes O���

time on average to look up the given name� but O�n� to �nd the name on the next lower�numbered

rung� since the entire hash table may have to be searched� Exchanging requires O�n� time to �nd the

players on rungs i and i� ��

Suppose� however� that we combine the two structures� The cells of the hash table will contain

pairs consisting of a name and a rung� while the array will have in LADDER�i� a pointer to the cell

for the player on rung i� In this way we can add a name by inserting into the hash table in O��� time

on the average� and also placing a pointer to the newly created cell into the array LADDER at the

position marked by the cursor nextrung �this is used to know the position the new player enters in��

To challenge� we look up the name in the hash table� taking O��� time on the average� get the rung

i for the given player� and follow the pointer in LADDER�i� �� to the cell of the hash table for the

player to be challenged� Consulting LADDER�i � �� takes constant time in the worst case� and the

lookup in the hash table takes O��� time on the average� so CHALLENGE is O��� in the average case�

EXCHANGE�LAD�i� takes O��� time to �nd the cells for the players on rungs i and i��� swap the

rung numbers in those cells� and swap the pointers to the two cells in LADDER� Thus EXCHANGE

requires constant time even in the worst case� Clearly� this solution is best in terms of e�ciency� but

it has the problems mentioned in the introduction�

� The implementation of the table must be known�

� The function of inserting to the table must be modi�ed� in order to obtain a pointer to the cell�

� We must assure that the functions of the table maintain the data in the same physical place�

These aspects do not �t well into the modular design� since they do not respect its main properties�

like abstraction and reusability�

��



��� The solution with the ADT STORE

We start from the same idea� We maintain two structures� a store that corresponds to the hash table

of the previous solution and the array LADDER� In the store� we will maintain the names of tennis

players together with its rung� and in the array we will have the shortcuts to access to the name of

tennis players�

Using this solution� we can add a name to the store by means of the put operation and then we

assign the shortcut returned by this operation to the corresponding position into the array LADDER�

Thus� ADD�LAD�name� takes O��� time to assign the shortcut to the corresponding position in the

array and O��� time on the average� the operation put � supposing the store is implemented with a

hash table or O�logn� time in the number n of tennis players� even in the worst case when the store

is implemented by an AVL�

Therefore� ADD�LAD�name� takes O��� time on the average or O�logn� worst�case depending on

the implementation used for the store�

For challenging we search the name in the store� obtaining its classi�cation i� then� using the

shortcut LADDER�i � ��� we access to the wanted player� Accessing to the data using the shortcut

LADDER�i� �� takes a constant time� in the worst case� and accessing the store by the name needs

again O��� time on the average or O�logn� time in the worst case� Consequently� that is the time for

CHALLENGE�LAD�i��

The operation EXCHANGE�LAD�i� needs time O��� to update the ladder of players i and i� �

in the store by using the shortcuts and interchanging the them in the LADDER�

To summarize� the e�ciency using the ADT STORE is the same as the best of those previously

proposed� but without the drawbacks arising in this case� If we use the ADT STORE implemented by

a hash table� the cost of all the operations is exactly the same as in the example using the pointers� If

we use the ADT STORE implemented by an AVL the cost of some operations grows up to O�logn�

instead of O��� on the average� but this has nothing to do with the use of shortcuts �it comes from

the AVL itself��

By using the STORE we do not need to know the implementation of the table� neither to modify the

insertion operation� nor to assume that the data occupies the same place in the structure� Concluding�

we obtain a solution that is completely modular without penalising the e�ciency �see Fig� ��� Last

but not least� at this point all the ADT�s used in the solution o�er a full equational speci�cation�

��



which allows one to either formally derive or� a posterior� formally verify� if necessary� the programs

implementing the LADDER operations ����

Hash Table Array ArrayStore

names and ladder Ladder Ladder

shortcuts

Figure �� Solutions to the ladder problem without shortcuts �left side of picture� and using shortcuts

�right side��

� Codi�cations

The ADT STORE has been codi�ed in the following three programming languages�� ADA ���� Modula�

� ���� and C�� ����� The details are found in ����� here we describe only some of the most relevants

aspects�

Modula�� is not able to codify a modular design� it does not o�er a mechanism for creating a

generic or parameterized ADT� In order to overcome the lack of this mechanism� we have constructed

a de�nition module where the parameters are de�ned� This solution has the inconvenience that it

does not permit more than one instance of the ADT� Another problem arises while encapsulating the

new data type� Since the encapsulating needs the data type be implemented by pointers another level

of indirection in the operations is produced�

ADA� in its whole� o�ers good mechanisms to program by using the modular methodology� In

�These three codi
cations are available at http���www�lsi�upc�es��jmarco�

�




particular� it gives a good mechanism for encapsulating and genericity� However� notice that since the

representation must be in the package de�nition it is visible to the user� although it is not accessible�

The fact that ADA uses garbage�collection technique enables us to have a greater control on the errors

of the operations with the shortcuts�

C�� o�ers many advantages coming from the fact of being a Object Oriented language� Since it is

possible to de�ne virtual classes� it allows us to do a unique implementation of the new ADT with an

additional parameter which indicates the implementation of the table to be chosen� The constructive

and destructive methods of the classes enable us to have our own garbage�collection on the shortcuts�

	 Conclusions

We have designed and implemented a new abstract data type �ADT�� that we call STORE � Our

motivation was to obtain an abstract mechanism which provides direct access to the data without

losing the modularity �in fact� it guarantees full modularity�� and also obtaining the same e�ciency

as with pointers� The ADT STORE o�ers such a mechanism� referred to as shortcut � which behaves

naturally as pointers� The di�erence between both of them is that� using shortcuts� the access to the

data is done without knowing how is stored the data in the structure� and therefore there is no loss

of modularity at all�

Also� we have done two implementations of the new ADT� based in a certain representation ob�

tained by usual methods of modular programming� It is interesting to notice that� given the complete

modularity of the new ADT� our implementations can be used interchangeably in the same contexts�

The future research will consist in �nding a method for an automatic de�nition of shortcuts within

the paradigm of Object Oriented Programming� More precisely� the idea is to de�ne a new class� i�e� a

shortcut � that is independent from the data structure used to store the data� This� in turn� would have

two aspects� the shortcut will depend only on the data and the inheritance mechanism will be used�

Other lines of interest for further research would be the study of more adequate formal institutions

for our speci�cation �e� g� behavioural or loose semantics� and �nding a more realistic model for the

dynamic memory in order to rule out the supposition that it behaves like an array�

�	



Acknowledgment

We want to thank J�L� B�alcazar� for his direction of the project from which originated the main idea

of this work� and also for his suggestions and for the amount of time he spent in reviewing carefully

this paper�

References

��� Aho� A�V�� Hopcroft� J�E� and Ullman� J�D� Data Structures and Algorithms� Addison�

Wesley� �
���

��� Barnes� J�G�P� Programming in ADA� Addison�Wesley� �
���

��� Dijkstra� W� Discipline of Programming� Prentice�Hall� �
���

��� Ehrig� H� and Mahr� B� Fundamentals of Algebraic Speci	cation 
� Springer�Verlag� �
���

��� Ehrig� H� and Mahr� B� Fundamentals of Algebraic Speci	cation �� Springer�Verlag� �

	�

��� Franch� X� Estructuras de datos� Especi	caci�on� Dise
no e Implementaci�on� Edicions UPC�

colecci�on Politext n� �	� �

��

��� Gonnet� G�H� and Baeza�Yates� R� Handbook of Algorithms and Data Structures� Addison�

Wesley� �nd� edition� �

��

��� Hoare� C�A�R� Proofs of Correctness of Data Representation� Acta Informatica� �
���

�
� Horowitz� E� and Sahni� S� Fundamentals of Data Structures in Pascal� Computer Science

Press� �th� edition� �

��

��	� Knuth� D�E� The Art of Computer Programming� Vol� �� Addison�Wesley� �
���

���� Marco� J� Dreceres� �pointers� abstractes� Projecte Final de Carrera� Facultat d�Inform atica de

Barcelona� �

�� Directed by J�L� Balc�azar �written in Catalan��

���� Robert� S� C�� Components and Algorithms� Prentice�Hall� �

��

���� Wirth� N� Algorithms and Data Structures� Prentice�Hall� �
���

��



���� Wirth� N� Programming in Modula��� Springer�Verlag� �rd� edition� �
���

��


