Shortcuts: Abstract “Pointers”

J. Marco X. Franch

jmarco@lsi.upc.es franch@lsi.upc.es

Dept. Llenguatges i Sistemes Informatics (LSI)
Universitat Politecnica de Catalunya (UPC)
Campus Nord
Jordi Girona Salgado, 1-3
08034 BARCELONA

Abstract

In this work we present the specification and the implementation of a new abstract data type
(ADT) called STORE. This new ADT allows the storage of a given collection of elements offering
an abstract mechanism that supplies a direct access to them, alternative to the method defined
by the standard operations of usual ADTs. The interest of the new mechanism stems from the
efficiency of pointers, while avoiding the loss of modularity that usually occurs when pointers are
used. The implementation of the operations offered by the new ADT is done by derivation from
the equational specification. The representation chosen for the implementation of the new ADT
malkes the efficiency previously mentioned possible, even when the representation strategy requires

the movement of the elements.

Contents

1 Introduction

2 The ADT STORFE

2.1 Operations
2.1.1 Constructor Operations . . .
2.1.2 Observer Operations
2.1.3 Modifier Operations

2.2 Equational specification

2.2.1 Equations between Constructor Operations

2.2.2 Equations of the Observer Operations

2.2.3 Equations of Modifier Operations L.

3 Implementation in Main Memory

3.1 The Type Representation
3.2 Deriving code for the operations . .

3.2.1 Derivation of put

3.3 Chosing implementations for the components of the representation

4 An Example: The Tennis Ladder

4.1 Aho, Hopcroft & Ullman’s Solutions to the Problem

4.2 The solution with the ADT STORFE

5 Codifications

6 Conclusions

[¢ oI = > N« N« N S S

10

14
15
19
19
25

26
26
28

29

30

1 Introduction

The present work deals with the methodology of modular program development by means of abstract
data types (ADT). The modular methodology offers many important properties such as understanding,
abstraction, reusability, etc., but, often, it implies a loss of efficiency due to the impossibility of
accessing implementation of ADTs from other modules.

Often, while designing a data structure, we face the problem of reducing the space cost (i.e.,
minimising redundant data) or the temporal cost (i.e., accessing more faster to data). To overcome
these problems we may need an implementation which permits the access to the data by means
of pointers (see, e.g, [1, pag. 149]). Recall that the notion of pointer corresponds to the memory
address of a given object (with some high-level facilities, which vary among the different programming

languages). Unfortunately, the use of pointers causes in general a complete loss of modularity because:

e [t is necessary to know the underlying data structure used in the implementation and therefore,

information hiding is not accomplished.

e Correctness proofs and software maintenance and reusability are, in general, more complicated.

Also, programs are more difficult to understand.

e An implementation using pointers needs to guarantee that data will not change their position in
the structure; otherwise we would not access the desired information (unless all client modules

keep track of changes and this may be impossible).

e When the implementation is done by means of pointers not only the ADT operations can be
used but also we can access directly to its representation and manipulate it. Therefore, it is

possible to manipulate ADTs without respecting the policy defined by their equations.

With the aim of avoiding these drawbacks, we propose the design of a new ADT, which not only
permits to store data and to access them by means of a key, but also allows for direct access to data
without knowing how they are stored. We should mention that the addition of this mechanism will
be done by defining its formal semantics. Certainly, the idea to study this new ADT comes from the
necessity of a compromise between modularity and efficiency.

The goal of the present work is to present the design of this new ADT which offers, in the one hand,

functions of data storage and access by key to data structures, independently of their organization

and of the key type and, on the other hand, the possibility of a direct access to data by means of
an address we call the shortcut. Essentially, we obtain an abstract mechanism inside the ADT which
corresponds to the pointers in both concept and efficiency.

The rest of the paper is organized as follows. In section 2, we present the algebraic specification
of the new ADT showing the sorts and the operations offered as well as the equations that define
the behaviour of each of them. In section 3, we choose first the representation of the new data type,
then we show the complete derivation of one of the operations and finally we indicate the cost of
each operation, depending on the detailed implementation of the representation used. In section 4, we
consider a classic example that requires the use of pointers for efficiency reasons, and where we can see
that the use of the new ADT assures the same efliciency without losing modularity at all. In section
5, we include several conclusions regarding the codification of the new ADT in ADA, Modula-2 and
C++. Finally, in section 6, we summarise the advantages of the new ADT and we present some open
questions for further research. This paper is based on [11], where all the remaining discussions can be

found, regarding the derivation of all the operations and details of the three implementations.

2 The ADT STORE

Since we want to obtain an ADT which permits to store any kind of information, we have designed an
ADT that is “generic” (“parameterized”). The new ADT, called STORFE, has the data to be stored
as a parameter , decomposed into key and information. The parameter key is used to access the data.

There are no operations required on information; the sort key must have comparison operations!.

The ADT STORFE offers two sorts:
e store: where the data is stored.

e shortcut: which supplies the direct access to the stored data.

'From now on, we use the operation symbol cmp to refer to the equality operation.

2.1 Operations
2.1.1 Constructor Operations
create: — store

creates an empty store.

put: store, key, information — (store, shortcut)

returns a pair formed by the resulting store after adding the pair of key and information,

and the shortcut which gives direct access to this pair.

Alternatively, we could decompose put into two operations, one for each component of the result.
However, we have preferred the above mentioned structure for the sake of clearness of algebraic
specification presented in Subsection 2.2.

2.1.2 Observer Operations
getinfKey: store, key — information
returns the information associated to the key. Precondition: the key is in the store.

getInfSho: store, shortcut — information

returns the information associated to the shortcut. Precondition: the shortcut has data

associated inside the store.

getKey: store, shortcut — key

returns the key associated to the shortcut. Precondition: the shortcut has data associated

inside the store.
isIn?: store, key — bool

returns a boolean value indicating whether the key is in the store.
getShortcut: store, key — shortcut

returns the shortcut associated to the key. Precondition: the key is in the store.
isEmpty?: store — bool

returns a boolean value indicating whether the store is empty.

2.1.3 Modifier Operations

remove: store, shortcut — store
returns the resulting store after removing the data associated to the shortcut. Precondi-

tion: the shortcut has data associated inside the store.

modify: store, shortcut, information — store
returns the resulting store after substituting the information associated to the shortcut,

by the new information. Precondition: the shortcut has data associated inside the store.

2.2 Equational specification

Following the general method of algebraic specification with initial semantics, we give first the equa-

tions between constructor operations [4, 5, 6].

2.2.1 Equations between Constructor Operations

It seems that we could assume that the stores behave as sets, in that the ordering in which the data
are stored is not important. Actually this happens in “table” like ADT’s [6]. In order to assure this
property we should have to guarantee that, for a given key, we obtain always the same shortcut,
regardless of the moment in which the key and its information are stored. This would imply that
different keys could not have the same shortcut; otherwise, storing an information and a key implies a
risk of modifying the information of another key (of the same shortcut) which was stored previously.
Therefore, there should be a unique shortcut corresponding to a key, and this, in turn, requires the
number of keys and the keys themselves to be known before hand. Alternatively, we can do it by an
injective function from the set of keys to the set of shortcuts. The last requirement is very restrictive,
if we want the store to be independent from the key.

We overcome this restriction, by letting the shortcut to depend also on the store, and in this way
different keys can have the same shortcut, if they are stored in different stores. Therefore, the order
in which data are stored is important, and thus stores will not behave as sets.

Now, let us consider the relations between the two consecutive put operations, when we store
some information with a key which was previously in the store. Since we can have only a unique
information associated to each key, the result will be that of replacing the information associated to

the key by the new information. The question that arises here is: which is the shortcut obtained?

Since there was a shortcut associated to the key (i.e., the shortcut obtained when stored the previous
information) and since we want a unique shortcut corresponding to the key, then it is precisely the
former shortcut the one we will obtain.

Let us see the equations which express these relations. Let us start by those related to stores; we
will use the operation isin? which tell us whether the key is in the store. This operation is used only
when the store is not empty, because otherwise the store would not have this relation.

In the case when the key is therein, we consider the following two cases:

1. The key is the last one added to the store.

2. The key exists but it is not the last one.

In the first case, the equation is simple; it just expresses the fact that the obtained store will be

the same as if the last time we had stored the new information.

{isln?(put(st,kl,il).store,kg) A Cmp(khkg)} =

put(put(st,ky,iy).store,ky,iz).store = put(st,ks,iz).store

In the second case, the equation expresses the swap between the two last keys obtaining this:

{isln?(put(st,kl,il).store,kg) A= Cmp(khkg)} =

put(put(st,ky,iy).storeky,iz).store = put(put(st,ky,iz).storeky,iy).store

Notice that in this case there is no a substitution of the information associated to the key, but
applying this equation successively, we will arrive to the first case since the key is therein. Therefore,

we can apply the first equation and in this way to substitute the information associated to the key.

Let us see now the equations for shortcuts. As before, we distinguish two cases:

1. The key is the last one added to the store.

2. The key exists, but it is not the last one.

In the first case, we only have to express that the obtained shortcut will be the one obtained
previously.

{isln?(put(st,kl,il).store,kg) A Cmp(khkg)} =

put(put(st,ky,iy).store,ky,iz).shortcut = put(st,ky,is).shortcut

In the second case we have to just express that the obtained shortcut will be the same as the one
that we would have obtained, if the new key and the new information had been stored in the previous

store.

{isln?(put(st,kl,il).store,kg) A= Cmp(khkg)} =

put(put(st,ky,iy).store,ky,iz).shortcut = put(st,kg,iz).shortcut

This does not specify yet completely the behaviour of shortcuts, because we have not considered
the case in which the key is not therein; in fact, in this case, put may return any value as shortcut
but the access to the shortcut should supply the appropriate results. The equations of the operation

getInfSho will describe this behaviour, as given next.

2.2.2 Equations of the Observer Operations

Let us study now the behaviour of the observer operations.
e The equations of getInfSho:

— The first one will be an error equation, indicating that the operation is not defined for an

empty store. Recall that this operation is partial.
getInfSho(create,sc) = error

— We also include an equation to express, the behaviour when the shortcut whose information
we want to consult is the same as the one returned in the last operation of store. The
information that we will obtain will be the one of this last operation. In order to compare

the shortcuts we will use a private operation, denoted cmp.
{Cmp(sc,put(st,k,i).shortcut)} = getInfSho(put(st,k,i).store,sc) = i

— The next equation indicates that, if the shortcut is not the same as the one obtained in
the last operation of put, then the result of consulting the information associated to the

shortcut will be the same as consulting the previous store.

{—' Cmp(sc,put(st,k,i).shortcut)} =
getInfSho(put(st,k,i).store,sc) = getInfSho(st,sc)

Notice that, if there was no information associated to the shortcut, by applying successively
this equation, we would obtain st=create, and therefore from the first equation this is an
error.

e Equations of getKey, similar to those of getinfSho:

getKey(create,sc) = error
{Cmp(sc,put(st,k,i).shortcut)} = getKey(put(st,k,i).store,;sc) = k
{—' Cmp(sc,put(st,k,i).shortcut)} = getKey(put(st,k,i).store,sc) = getKey(st,sc)

e The Equations of getInfKey:

— The first equation states that, if the key to be consulted is the last one stored then we will

obtain the last the information stored.
{Cmp(kl,kg)} = getInfKey(put(st,ky,i).store,ks) = i

— If the condition of the first equation does not hold then we have a second equation, and

the corresponding result will be that of applying getInfKey on the previous store.
{—' Cmp(kl,kg)} = getInfKey(put(st,ky,i).store,ky)=getInfKey (st kz)

— Since the operation in question is a partial one (because it is not defined when the key
is not in the store) we must also add a last equation which indicates that consulting the

information associated to a key in an empty store will be an error.
getInfKey(create,k) = error
e Equations of isIn?:

— The first equation is intuitively clear. If we apply isin? to a key and to an empty store,

then the result will be false.
isIn?(create, k) = false

— In the same way, the second equation comes naturally. If the key to which we apply the
operation isin? is the last one added to the store, then the result will be true; if the key
is not the last one added, then the result will be that of applying isIn? to the previous

store.

isIn?(put(st,kq,iq).store,ky) = emp(ky, ko) V isIn?(st ko)
e The corresponding equations of getShortcut:
— Applying getShortcut to a key and an empty store will give error.

getShortcut(create k) = error

— If the key to which we apply getShortcut is the last one added to the store, then we will

obtain the shortcut of the last application of put.
{Cmp(kl,kg)} = getShortcut(put(st,ky,iy).store,ky) = put(st,ky,i;).shortcut

— If the key to which we apply getShortcut is not the last one added to the store, then we
will have the same shortcut as the one obtained from applying getShortcut to the previous

store.
{—' Cmp(kl,kg)} = getShorteut(put(st,ky,iy).store,ky) = getShortcut(st,ky)

When the key is not in the store, then eventually we would have st=create, and from the

first equation, it will be an error.
e Equations of isEmpty?:
— First, we express that applying isEmpty? to a store with nothing therein yields true.
isEmpty?(create) = true
— Next, applying isFmpty? to a store with information in it yields false.

isEmpty?(put(st,k,i).store) = false

2.2.3 Equations of Modifier Operations
Let us study now the behaviour of the modifier operations.
e The equations of remove:

— If we try to remove the data associated to a shortcut of an empty store we will raise an

error.
remove(create,sc) = error

10

— If the store is not empty we distinguish two cases: when the data to be removed is the
one accessible by means of the shortcut obtained from the last application of put, and the
opposite one.

In the first case, since we cannot have error as a basic case, i.e., we are not able to remove the
data associated to a shortcut in an empty store, then we consider separately the following

two subcases:

a) There is no information previously stored using the key of the last application. There-
fore, the result of remove will be the same store as the one before applying this oper-
ation.

{Cmp(sc,put(st,k,i).shortcut) A - isln?(smk)} = remove(put(st,k,i).store,sc) = st
b) Otherwise, the operation remove will be applied again.

{Cmp(sc,put(st,k,i).shortcut) A isln?(smk)} =

remove(put(st,k,i).store,sc) = remove(st,sc)
When the shortcut is not the last one obtained, then we will have the same result as that of
applying put to the last key, to the last information and to the store resulting of applying
remove to the previous store and to the shortcut.

{—' Cmp(sc,put(st,k,i).shortcut)} =

remove(put(st,k,i).store,sc) = put(remove(st,sc),k,i).store

Notice that if there are no data associated to the shortcut then we would have si=create

and, therefore, from the first equation it would be an error.
e Equations of modify:

— First, we express that trying to modify the information associated to a shortcut of an empty

store produces an error.
modify(create,sc,i) = error

— Next, if the shortcut whose information is to be modified is the same as that obtained from
the last application of put, the result will be the same as if the last put had stored the new
information.

{Cmp(sc,put(st,k,il).shortcut)} =

modify(put(st,k,i;).store,sc,iz) = put(st,k,iz).store

11

— Finally, consider the case that the shortcut whose information is to be modified is different
from the one obtained by the last application of put. Then, we will obtain the result of
applying put to the last key, to the last information and to the store which is given by
modifying the previous store. Notice that, again, if there were no information associated to
the shortcut, then the previous store would be empty and from the first equation, if would
be an error.

{—' Cmp(sc,put(st,k,il).shortcut)} =

modify(put(st,k,i;).store,sc,iz) = put(modify(st,sc,iz),k,iz).store
We summarize the results in the following parameterized ADT:

universe STORE (KEY, INFORMATION) is
type store, shortcut
imports BOOL
ops
create: — store
put: store, key, information — (store,shortcut)
getInfKey: store, key — information
getInfSho: store, shortcut — information
getKey: store, shortcut — key
isIn?: store, key — bool
getShortcut: store, key — shortcut
isEmpty?: store — bool
remove: store, shortcut — store
modify: store, shortcut, information — store
private cmp: shortcut, shortcut — bool
errors ¥V k € key; Vi € information; ¥ sc € shortcut
getInfKey(create,k) = error
getInfSho(create,sc) = error
getKey(create,sc) = error
getShortcut(create, k) = error

remove(create,sc) = error

12

modify(create,sc,i) = error
eqns V st € store; V k,ky,ky € key; V i,iy,iz € information; V sc € shortcut
{1sln7(put(st ky,i1).store,ky) A Cmp(khkg)} =put(put(st,ky,is).store,ky,iz).store = put(st,ks,iz).store

?(put(st,ky,iy).storeky) A = Cmp(kl,kg)} =

put(put(st,ky,iy).store,kq,iz).store = put(put(st,kz,iz).storeky,iy).store

{1sln7(put(st ky,i1).storeky) A Cmp(khkg)} =
st,kq,i1).store, kg iz).shortcut = put(st,ky,i;).shortcut
?(put(st,kq,ip).store,kg) A - Cmp(kl,kg)}i

put(put(st,ky,iy).storekg,iz).shortcut = put(st,ks,iz).shortcut
{C (kq,k2) } = getInfKey(put(st,ky,i).storeky) =i
{—' cmp(ky,kg) } = getInfKey(put(st,ky,i).store,ky)=getInfKey (st kz)
{C (sc,put(st,k,i). shortcut)} = getInfSho(put(st,k,i).store,sc) = i
{—' cmp(sc,put(st,k,i). shortcut)} = getInfSho(put(st,k,i).store,sc) = getInfSho(st,sc)
{Cmp (sc,put(st,k,i). shortcut)} = getKey(put(st,k,i).store;sc) = k
{—' Cmp(sc,put(st,k,i).shortcut)} = getKey(put(st,k,i).store,sc) = getKey(st,sc)
isIn?(create, k) = false
isIn?(put(st,kq,iq).store,ke) = emp(ky, ko) V isIn?(st ko)
{Cmp(kl,kg)} = getShortcut(put(st,ky,iy).store,ky) = put(st,ky,i;).shortcut
{—' Cmp(kl,kg)} = getShorteut(put(st,ky,iy).store,ky) = getShortcut(st ko)
isEmpty?(create) = true
isEmpty?(put(st,k,i).store) = false
{Cmp(sc,put(st,k,i).shortcut) A isln?(smk)} = remove(put(st,k,i).store,sc) = remove(st,sc)
{Cmp(sc,put(st,k,i).shortcut) A - isln?(smk)} = remove(put(st,k,i).store,sc) = st
{—' Cmp(sc,put(st,k,i).shortcut)} = remove(put(st,k,i).store,sc) = put(remove(st,sc),k,i).store
{Cmp(sc,put(st,k,il).shortcut)} = modify(put(st,k,i).store,sc,iz) = put(st,k,iz).store
{—' Cmp(sc,put(st,k,il).shortcut)} = modify(put(st,k,i;).store,sc,iz) = put(modify(st,sc,iz),k,i1).store

end universe

universe INFORMATION characterise
type information

end universe

13

universe KEY characterise

type key

imports bool

ops
cmp, <_: key, key — bool

eqns V k, ki, ko, k3 € key
cmp(k,k) = true
{Cmp(kl,kg)} = cmp(ky,ky) = true
{Cmp(kl,kg) A Cmp(k27k3)} = cmp(ky,ks) = true
k < k = false
[ki < ko] = ko < ki = false
[k1<k2Ak2<k3} = ky < kg = true

end universe

We determine the model of ADT STORE interpreting the equations by means of initial semantics.
Given the properties of put it can be derived that the model corresponding to the carrier sets of sort
store consists of the pairs of functions g : K — U X h : K' & A that satisfy: K = domain(g),
A" C A, K' C K where A, K and U are the carrier sets of the shortcuts, the keys and the information
respectively. The bijection assures that to any key there is one and only one shortcut associated
to it, while the condition on the domains assures that the shortcuts corresponds only to the keys
already defined. The operations of the model are obtained by interpreting the operations of the
ADT on the above functions; for example, create is interpreted as the functions ¢ and h that satisfy
domain(g) = domain(h) = . The proof of the model is out of the scope of this paper, and it is

omitted.

3 Implementation in Main Memory

In this section we choose a representation for the sorts of the new ADT and we show a derivation of
one of the operations as example starting from its pre-post specification [3]. Also, we present different
possibilities to implement the new ADT with the chosen representation, and we give the cost of each

one of them.

14

3.1 The Type Representation

In order to have direct access to the data we may think of representing the store as an array having
as components pairs of a key and an information, and the type of shortcut to be the index of the
array (see Fig. 1). With this representation, accessing the store by means of the shortcut could be
done with constant cost while accessing by means of the key would have a linear cost (in terms of the

array size) due to the searching of the key in the array.

infs inf1 | infs infe inf4 infz

Figure 1: array

To avoid this cost we decided to add another data structure that, given a key allows us to know
which is the shortcut associated to it, that means, the position on the array where the data is found.
Thus, the type store would be a pair that consist of a table of pairs (key, shortcut) and the previous
array (see Fig. 2). With this new structure the operations with the key will have a reasonable cost

depending on the implementation of the table used.

kq ke ks ks ko ka

7

NN FAFER
12‘2%78\91014

ks kv | ks ke k4 ko

13

mf5 mfl mf3 mf6 mf4 ’Lnfg

Figure 2: array and table

15

Using this representation of the type store we still have an operation of high cost, namely the put
operation. When we store the data by means of a key which is already in the store, we have only to
obtain the shortcut associated to the key and then using it to access to the array, assigning the value
of the new data. In this case, the cost is that of consulting the table. However, when the key is not
in the store, we have to search for free position in the array, and this, in the worst case, has linear
cost. To avoid this cost we add another structure to find quickly a free position. This structure is a
queue where the free positions of the array are stored (see Fig. 3). With this modification, the cost
of finding a free position is constant (provided that the implementation of the queue is good enough,
it corresponds just to obtaining the first element of the queue). The cost of putting a position as a
free one, while removing, could be made also constant if it just corresponds to the cost of putting an

element to the queue.

kq ke ks ks ko ka

7

NENEFAFERN
12‘2%7%

ks kv | ks ke k4 ko

13

mf5 mfl mf3 mf6 mf4 ’Lnfg

v, v

-

_IN LN

Figure 3: array, table and queue

16

The representation of the new sorts of data is:

e store is implemented by a record consisting of three fields:

1. a: array of n components, where the valid indices are the natural numbers between 1 and
n, for a certain natural n; the components of the array are pairs consisting of two fields:

inf (of type information) and key (of type key).

2. f: a queue of shortcuts i.e., a queue containing the indices corresponding to the free posi-

tions of the array.

3. t: is a table of pairs (key, shortcut).

e The shortcut is implemented by a natural in the range 0...n. The value 0 is used as an undefined

value. The rest of the values will correspond to the indices of the array.

To verify that the implementation of the new ADT is correct with respect to its specification we
follow the method presented in [8]. It consists of defining the abstraction function, which transforms a
value of the implementation to a value of its model, denoted by a term which belongs to its associated
equivalence class in the quotient-term algebra [4]. Since this function is partially defined, we must
also define the invariant of the representation which establishes the condition that the values of the
implementation must satisfy so to represent valid values of the ADT. Also, we need to indicate when
two different values of the implementation correspond to the same value of ADT under implementation,
in other words, we have to specify the redefinition of the equality.

Here is a short description of the array, queue and table operations, respectively, that we are going
to use. cons(a, p) returns the value in the position p of the array a; ass(a, p,v) assigns the value v in
the position p of the array a; put First(q, v) puts the value v in the front of the queue ¢; assign(t, k, v)
associates the value v to the key & in the table ¢; deassign(t, k) associates an undefined value to the

key k in the table ¢; and lookup(t, k) returns the value associated to the key k in the table ¢.

The Abstraction Function
create 1 t=TABLE .create

convert({a, f, 1)) =

put(convert({a, put First(f, sc), deassign(t, k))), k, cons(a, sc).inf).store if t=assign(t’k,sc)

17

The Representation Invariant

The representation invariant must assure that every position of the array is free or occupied but not
both of them at the same time. Therefore, it indicates that any position of the array, i.e., any natural
between 1 and n must be either in the queue of free positions (only once) or as a value associated to
a key in the table. In this last case, the key cannot be whatever: it must coincide with the value of
the field of the array in this position. Since a shortcut cannot be associated to more than a key, at a
certain moment, we must assure also that, given a position there is only one key in the table which it
is associated to.

But the shortcut depends on the store, therefore the representation invariant must indicate which
is the shortcut that will assign our representation when we store an information by means of a key
that is not found in the store. Since the only condition that must satisfy the shortcut, is not to be
associated to another key, any of the queue positions can be used, for instance its head.

We can now write down the invariant.

First we will define a predicate that indicates whether a shortcut belongs only once to the queue.

Y[€ queue;Vsc, scy, sco € shortcut

unique(create, sc) = false sc € create = false

unique(enqueue(f, sc), sc) = =(sc € f) sc € enqueue(f, sc) = true

[—ig(scy, se2)] = [—ig(scy, sc2)] =
unique(enqueue(f, sc1), sca) = unique(f, sca) scy € enqueue(f,sc1) = scz € f

Inv_Rep({a, f,t)) =

Vi:1<j<n: ((unique(f,j) A =3k = lookup(t, k) =]) \Y% (_.(] € f)y ATk : lookup(t, k) =])) A
VEk : lookup(t, k) # unde fined : cons(a,lookup(t, k)).key = k A

Vk : misIn?(convert({a, f,t)), k) : put(convert({a, f,t)), k,t).shortcut = head(f)

The Equality Redefinition

The equality redefinition expresses that the values of the array in its free positions (those found in
the queue) are not relevant to the abstract value. This means that the same store is obtained if any
free position of the array were modified. Also, it should express that two stores are equal when two
tables, constructed in different ways, contain the same set of pairs. But this has been contemplated in

the equations of the type table, and therefore there is no need to include it in the equality redefinition.

18

Vi:1<j<nA(j€ f):convert({a, f,t)) = convert({ass(a, j,val), f,t))

3.2 Deriving code for the operations

In this subsection, we present the derivation of the implementation a particular operation, put, as a
case study of the whole derivation process?. In order to simplify the demonstrations we work under
the hypothesis that n is big enough to assure that the queue is never empty. Later, at the final

implementation, we have considered this possible case of error.

3.2.1 Derivation of put

According to [8] the operation put must be implemented by a function satisfying the following pre-post

specification:

function impl_put((a:array;f:queue;t:table); k:key;i:information)
return((a;:array;f;:queue; tq:table); sc:shorcut)
{Pre: Inv_Rep(({a,f,t)) }
P
{Post: Inv_Rep((as,f1,t1)) A convert({as,fy,t1))=put(convert((a,f,t)).k,i).store A
sc=put(convert((a,f,t)).k,i).shortcut}

return ((a;,f1,t1),s¢)

The derivation of this function is crucial for the verification process not only because of its difficulty
but also due to the fact that we have to prove, previously, a serie of lemmas necessary also for the
derivation of the rest of the functions.

The Lemmas regarding the tables

Lemma 1 [lookup(assign(t,k,sc)ki)=undefined] = = ig(k,ki)
Lemma 2 [lookup(t,k)=undefined] = deassign(t,k)=t

Lemma 3 [lookup(t,k)=undefined] = deassign(assign(t,k,sc)k)=t

Lemma 4 [lookup(t,k)#undefined] = t£TABLFE.create

2See [11] for the complete derivation.

19

Lemma 5 [lookup(t,k)#undefined] = t=assign(ty,k,lookup(t,k))

Lemma 6 lookup(deassign(t,k),k)=undefined

Lemma 7 [t=assign(t,ki,sc1)] = t=assign(tz,k1,sc1) A lookup(ty, ki)=undefined
Lemma 8 isIn?(convert({a,f,t)),k)=(lookup(tk)#undefined)

The Lemmas regarding the queues

Lemma 9 putFirst(dequeue(q) head(q))=q
Lemma 10 head(putFirst(q,v))=v

Using these lemmas let us see the derivation of the function put.

The result of the operation will depend on whether the key to be stored is found in the store or
not. Therefore, we consider an alternative to the design of the function. Since, from Lemma 8, the
result of isIn?(convert({a,f,t)),k) is equivalent to lookup(t,k)#undefined we will put this last one as a

condition of the alternative.

function impl_put((a:array;f:queue;t:table); k:key;i:information)
return((aj:array;fi:queue;ty:table); sc:shortcut)
{Pre: Inv_Rep(({a,f,t)) }
if lookup(t,k)=undefined then
{A;: Inv_Rep({a,f,t)) A lookup(t,k)=undefined }
Py
else
{Ag: Inv_Rep({a,f,t)) A lookup(t,k)#undefined}
Py
end if
{Post: Inv_Rep((as,f1,t1)) A convert({as,fy,t1))=put(convert((a,f,t)).k,i).store A
sc=put(convert((a,f,t)).k,i).shortcut}

return ((a;,f1,t1),s¢)

20

Let’s see what assertion we can deduce from A;.

Inv_Rep({a,f,t)) A lookup(t,k)=undefined
= (Lemma 8)
Inv_Rep({a,f,t)) A lookup(t,k)=undefined A = isIn?(convert({a,f,t})k)

= (Definition of Inv_Rep)
Inv_Rep({a,f,t)) A lookup(t,k)=undefined A put(convert({a,f,t})k,i).shortcut=head(f)
= (Equality Redefinition and head(f) € f)

Inv_Rep({a,f,t)) A lookup(t,k)=undefined A put(convert({a,f,t)) k,i).shortcut=head(f) A

convert((a,f,t))= convert({ass(a,head(f),({k,i}),f,t))

= (The introduction of the operation put in both sides of the equality)

Inv_Rep({a,f,t)) A lookup(t,k)=undefined A put(convert({a,f,t)) k,i).shortcut=head(f) A

put(convert({a,f,t))k,i).store= put(convert({ass(a,head(f),(k,i}),f,t))k,i).store

= (Lemma 3)

Inv_Rep({a,f,t)) A lookup(t,k)=undefined A put(convert({a,f,t)) k,i).shortcut=head(f) A

put(convert({a,f,t))k,i).store= put(convert({ass(a,head(f),(k,i)),f,deassign(assign(t,k,head(f)) k) }).k,i).store

= (Lemma 9)

Inv_Rep({a,f,t)) A lookup(t,k)=undefined A put(convert({a,f,t)) k,i).shortcut=head(f) A

put(convert({a,f,t}) k,i).store=
put(convert({ass(a,head(f),{k,i)),putFirst(dequeue(f),head(f)),deassign(assign(t.k,head(f)) k))) k,i).store

= (Eq. of array cons(ass(A,i,v),i)=v)

Inv_Rep({a,f,t)) A lookup(t,k)=undefined A put(convert({a,f,t)) k,i).shortcut=head(f) A

put(convert({a,f,t)) k,i).store= put(convert({ass(a,head(f),(k,i}),putFirst(dequeue(f),head(f)),

deassign(assign(t,khead(f)).k)}) k,cons(ass(a,head(f),(k,i)), head(f)).inf).store

= (Abstraction Function)

Inv_Rep({a,f,t)) A lookup(t,k)=undefined A put(convert({a,f,t)) k,i).shortcut=head(f) A

put(convert({a,f,t)),k,i).store= convert((ass(a,head(f),(k,i}),dequeue(f), assign(t.k,head(f))))

= ([Inv_Rep({a,f,t)) A lookup(t,k)=undefined] = Inv_Rep({ass(a,head(f),(k,i}),dequeue(f), assign(t,k,head(f)))))

Inv_Rep((ass(a,head(f),(k,i}),dequeue(f), assign(t,k,head(f)))) A put(convert({a,f,t))k,i).shortcut=head(f) A

put(convert({a,f,t)),k,i).store= convert((ass(a,head(f),(k,i}),dequeue(f), assign(t.k,head(f))))

Therefore, from A; we can deduce this last assertion, denoted As.

Let’s see what assertion we can deduce from A,.

Inv_Rep({a,f,t)) A lookup(t,k)#undefined
= (Lemma 5)
Inv_Rep({a,f,t)) A t=assign(ti k,lookup(t.k)))

21

= (Abstraction Function)
Inv_Rep({a,f,t)) A
convert((a,f,t))= put(convert((a,putFirst(flookup(t k)),deassign(t,k))).k, cons(a,Jookup(t,k)).inf).store
= (Equality Redefinition and Vk:k € putFirst(fk))
Inv_Rep({a,f,t)) A
convert({a,f,t))= put(convert((ass(a,lookup(t.k),{cons(a,lookup(t,k)).key,i}),
putFirst(f lookup(t,k)),deassign(t,k))),k,cons(a,lookup(t,k)).inf).store
= (The introduction of the operation put in both sides of the equality)
Inv_Rep({a,f,t)) A
put(convert({a,f,t)) k,i).store= put(put(convert({ass(a,lookup(t,k),(cons(a, lookup(tk)).key,i)),
putFirst(f lookup(t,k)),deassign(t,k))) k,cons(a,lookup(t,k)).inf).store k,i).store A
put(convert({a,f,t))k,i).shortcut= put(put(convert({ass(a,lookup(t.k),(cons(a, lookup(t,k)).key,i}),
putFirst(f lookup(t,k)),deassign(t,k))),k,cons(a,lookup(t,k)).inf).store k,i).shortcut
= (Eq. of store put(put(st,k,i;).store k,iz).store= put(st,k,iz).store, and
put(put(st,k,i;).store k,iz).shortcut=put(st,k,i;).shortcut)
Inv_Rep({a,f,t)) A
put(convert({a,f,t}) k,i).store= put(convert({ass(a,lookup(t,k),(cons(a, lookup(tk)).key,i)),
putFirst(f lookup(t,k)),deassign(t,k))),k,i).store A
put(convert({a,f,t))k,i).shortcut= put(convert({ass(a,lookup(t,k),(cons(a, lookup(t.k)).key,i)),
putFirst(f lookup(t,k)),deassign(t,k))), k,cons(a,lookup(t,k)).inf).shortcut
= (Eq. of array cons(ass(A,i,v),i)=v)
Inv_Rep({a,f,t)) A
put(convert({a,f,t}) k,i).store= put(convert({ass(a,lookup(t,k),(cons(a, lookup(tk)).key,i)),
putFirst(f lookup(t,k)),deassign(t,k)}),k,cons(ass(a,lookup(t,k), (cons(a,Jookup(t,k)).key,i}),lookup(t.k)).inf).store A
put(convert({a,f,t))k,i).shortcut= put(convert({ass(a,lookup(t,k),(cons(a, lookup(t.k)).key,i)),
putFirst(f lookup(t,k)),deassign(t,k))) k,cons(a,lookup(t,k)).inf).shortcut
= (Lemma 6)
Inv_Rep({a,f,t)) A
put(convert({a,f,t}) k,i).store= put(convert({ass(a,lookup(t,k),(cons(a, lookup(tk)).key,i)),
putFirst(f lookup(t,k)),deassign(t,k)}),k,cons(ass(a,lookup(t,k), (cons(a,Jookup(t,k)).key,i}),lookup(t.k)).inf).store A
put(convert({a,f,t))k,i).shortcut= put(convert({ass(a,lookup(t,k),(cons(a, lookup(t.k)).key,i)),
putFirst(f lookup(t,k)),deassign(t,k))) k,cons(a,lookup(t,k)).inf).shortcut A
lookup(deassign(t,k),k)=undefined
= (Lemma 8)
Inv_Rep({a,f,t)) A
put(convert({a,f,t}) k,i).store= put(convert({ass(a,lookup(t,k),(cons(a, lookup(tk)).key,i)),
putFirst(f lookup(t,k)),deassign(t,k)}),k,cons(ass(a,lookup(t,k), (cons(a,Jookup(t,k)).key,i}),lookup(t.k)).inf).store A

22

put(convert({a,f,t))k,i).shortcut= put(convert({ass(a,lookup(t,k),(cons(a, lookup(t.k)).key,i)),
putFirst(f lookup(t,k)),deassign(t,k))) k,cons(a,lookup(t,k)).inf).shortcut A
— isIn?(convert(({ass(a,lookup(t k),{cons(a, lookup(t,k)).key,i)), putFirst(f,lookup(t,k)),deassign(t,k)}).k)
= (Inv_Rep({af,t}) A lookup(t,k)7#undefined] =
Inv_Rep((ass(a,lookup(t,k),(cons(a,lookup(t.k)) .key,i}), putFirst(f,lookup(t k)),deassign(t,k)}))
Inv_Rep({a,f,t)) A put(convert({a,f,t}) k,i).shortcut=head(putFirst(f, lookup(t.k)) A
put(convert({a,f,t}) k,i).store= put(convert({ass(a,lookup(t,k),(cons(a, lookup(tk)).key,i)),
putFirst(f lookup(t,k)),deassign(t,k))) k,cons(ass(a,lookup(t,k), { cons(a,lookup(t,k)).key,i)),lookup(tk)).inf).store
= (Abstraction Function and Lemma 10)
Inv_Rep({a,f,t)) A put(convert({a,f,t}).k,i).store= convert({ass(a,lookup(tk),{cons(a,lookup(t,k)).key, i}),f,t))A
put(convert({a,f,t)),k,i).shortcut=lookup(t,k)
= ([Inv_Rep(({a,f,t)) A lookup(t,k)#undefined] = Inv_Rep({ass(a,lookup(t.k), {cons(a,lookup(t.k)).key,i}),f,t}))
Inv_Rep({ass(a,lookup(t,k),(cons(a,lookup(t,k)).key,i }),f,t)) A
put(convert({a,f,t))k,i).store= convert({ass(a,lookup(t,k),{cons(a,lookup(t.k)).key, i}),f,t)) A

put(convert({a,f,t)),k,i).shortcut=lookup(t,k)

Therefore, from Ay we can deduce this last assertion, denoted Ajy.

By introducing these new assertions we have:

function impl_put((a:array;f:queue;t:table); k:key;i:information)
return((aj:array;fi:queue;ty:table); sc:shortcut)
{Pre: Inv_Rep(({a,f,t)) }
if lookup(t,k)=undefined then
{A;: Inv_Rep({a,f,t)) A lookup(t,k)=undefined}
{As}
Py
else
{Ag: Inv_Rep({a,f,t)) A lookup(t,k)#undefined}
{A4}
Py
end if
{Post: Inv_Rep((as,f1,t1)) A convert({as,fy,t1))=put(convert((a,f,t)).k,i).store A
sc=put(convert((a,f,t)).k,i).shortcut}

return ((a;,f1,t1),s¢)

23

Having these two new assertions it is easy to identify, by means of the assignment rule, which

expressions should be assigned to aq, f1,¢1, and sc in each case. By doing these assignments we obtain

the following implementation of the put function:

function impl_put((a:array;f:queue;t:table); k:key;i:information)
return((aj:array;fi:queue;ty:table); sc:shortcut)
{Pre: Inv_Rep(({a,f,t)) }
if lookup(t,k)=undefined then
{A;: Inv_Rep({a,f,t)) A lookup(t,k)=undefined}
{As}
ap:= ass(a,head(f),(k,i))
f1:= dequeue(f)
t1:= assign(t,k,head(f))
sc:= head(f)
else
{Ag: Inv_Rep({a,f,t)) A lookup(t,k)#undefined}
{A4}
ap:= ass(a,lookup(t,k),{cons(a,lookup(t,k)).key,i))
fii=1
tii=1t
sc:= lookup(t,k)
end if
{Post: Inv_Rep((as,f1,t1)) A convert({as,fy,t1))=put(convert((a,f,t)).k,i).store A
sc=put(convert((a,f,t)).k,i).shortcut}

return ((a;,f1,t1),s¢)

24

3.3 Chosing implementations for the components of the representation

Once we have derived the code of the operations, we study two particular implementations of the new
ADT?. In both of them we use the dynamic memory zone as an array and the queue of the system as
that of the free shortcuts. These two implementations differ in the implementation of the table. In the
first one, we have used a hashing table with chaining. Using a hashing table requires the parameter
KFY to include also a hashing function. In the second implementation we have implemented the
table with an AVL* [1].

We give next the cost of the operations of the ADT depending on the implementation used for
table (see Table 1).

Table 1: The cost of the functions

COST
FUNTIONS AVL HASHING
TABLE
create o(1) O(r)
put O(logn) o(1)
getInfKey O(logn) o(1)
getInfSho o(1) O(1)
getKey o(1) o(1)
isIn? O(logn) o(1)
getShorteut | O(logn) o(1)
isEmpty? o(1) o(1)
remove O(logn) o(1)
modify o(1) O(1)

As it can be seen, the cost of the operations getKey, getInfSho and modify is constant in both

implementations because the table is not accessed, in this case. The cost of the remaining operations

#See [11] for more details.

*An AVL is a binary search tree where the diference between the height of its subtrees is less or equal than 1 and the

subtrees are AVL in turn.

25

depends on the cost of the operations with the table. Thus, the operation create has a cost O(1) if an
AVL is used, because the cost of creating an AVL is constant; on the other hand, if the hashing table
is used, the cost is O(r), where r is the number of hashing values.

The operations put, getinfKey, isIn?, getShortcut and remove have cost O(logn), if an AVL is
used, and this is due to the fact that the operations of consulting, assignment and removing in an AVL
have cost logarithmic in the height of the tree [9, 13], while for the hashing table these operation has
an average cost O(1) [10, 7] therefore the operations put, getinfKey, isIn?, getShortcut and remove
will have a cost that is O(1) in average. We notice that, if the number of the elements is far superior to
the number of hashing values or, if the hashing function is not good enough, the cost of this operations

may well be linear.

4 An Example: The Tennis Ladder

In this section we present a simple example, taken from [1], of an application that requires the use of
pointers for efficiency. We will show a modular solution, another with pointers and one using the new
ADT STORFE we have designed. Then, we will compare the results.

Aho, Hopcroft and Ullman [1] presented this example to justify the use of pointers to achieve
efficiency. We treat again this example in order to see the effect of using the new ADT.

Suppose we wish to maintain a “tennis ladder”, in which each player is on a unique “rung”. New
players are added to the bottom, that is, the highest-numbered rung. A player can challenge the player
on the rung above, and if the player below wins the match, they trade rungs. We can represent this
situation as an abstract data type, where the underlying model is a mapping from names (character
strings) to rungs (integers 1, 2,...). The three operations we perform are

ADD(LAD,name) adds the named person at the highest-numbered rung.

CHALLENGE(LAD,name) is a function that returns the name of the person on rung ¢ — 1 if the
named person is on rung z, ¢ > 1.

EXCHANGE(LAD,i) swaps the names of the players on rungs 7 and ¢ — 1, ¢ > 1.

4.1 Aho, Hopcroft & Ullman’s Solutions to the Problem

The first solution uses an array LADDER, where LADDER][{] is the name of the person on rung i. If

we also keep a count of the number of players, we can add a player to the first unoccupied rung can

26

in some small constant number of steps.

The operation EXCHANGE is also easy, as we simply swap two elements of the array. However,
CHALLENGE(LAD,name) requires that we examine the entire array in search of the name, which
takes O(n) time, if n is the number of players on the ladder.

On the other hand, as a second solution, we might consider a hash table to represent the map-
ping from names to rungs. Under the assumption that we can keep the number of buckets roughly
proportional to the number of players, ADD takes O(1) time on the average. Challenging takes O(1)
time on average to look up the given name, but O(n) to find the name on the next lower-numbered
rung, since the entire hash table may have to be searched. Exchanging requires O(n) time to find the
players on rungs ¢ and ¢ — 1.

Suppose, however, that we combine the two structures. The cells of the hash table will contain
pairs consisting of a name and a rung, while the array will have in LADDEFR[i] a pointer to the cell
for the player on rung ¢. In this way we can add a name by inserting into the hash table in O(1) time
on the average, and also placing a pointer to the newly created cell into the array LADDER at the
position marked by the cursor neztrung (this is used to know the position the new player enters in).
To challenge, we look up the name in the hash table, taking O(1) time on the average, get the rung
i for the given player, and follow the pointer in LADDFER[i — 1] to the cell of the hash table for the
player to be challenged. Consulting LADDFR[i — 1] takes constant time in the worst case, and the
lookup in the hash table takes O(1) time on the average, so CHALLENGE is O(1) in the average case.

EXCHANGE(LAD,i) takes O(1) time to find the cells for the players on rungs ¢ and i — 1, swap the
rung numbers in those cells, and swap the pointers to the two cells in LADDER. Thus EXCHANGE
requires constant time even in the worst case. Clearly, this solution is best in terms of efficiency; but

it has the problems mentioned in the introduction:
e The implementation of the table must be known.
e The function of inserting to the table must be modified, in order to obtain a pointer to the cell.
e We must assure that the functions of the table maintain the data in the same physical place.

These aspects do not fit well into the modular design, since they do not respect its main properties,

like abstraction and reusability.

27

4.2 The solution with the ADT STORE

We start from the same idea. We maintain two structures: a store that corresponds to the hash table
of the previous solution and the array LADDFER. In the store, we will maintain the names of tennis
players together with its rung, and in the array we will have the shortcuts to access to the name of
tennis players.

Using this solution, we can add a name to the store by means of the put operation and then we
assign the shortcut returned by this operation to the corresponding position into the array LADDFR.
Thus, ADD(LAD,name) takes O(1) time to assign the shortcut to the corresponding position in the
array and O(1) time on the average, the operation put, supposing the store is implemented with a
hash table or O(logn) time in the number n of tennis players, even in the worst case when the store
is implemented by an AVL.

Therefore, ADD(LAD,name) takes O(1) time on the average or O(log n) worst-case depending on
the implementation used for the store.

For challenging we search the name in the store, obtaining its classification #; then, using the
shortcut LADDER]i — 1], we access to the wanted player. Accessing to the data using the shortcut
LADDER]Ji — 1] takes a constant time, in the worst case, and accessing the store by the name needs
again O(1) time on the average or O(logn) time in the worst case. Consequently, that is the time for
CHALLENGE(LAD,i).

The operation EXCHANGE(LAD,i) needs time O(1) to update the ladder of players 7 and 7 — 1
in the store by using the shortcuts and interchanging the them in the LADDER.

To summarize, the efficiency using the ADT STORE is the same as the best of those previously
proposed, but without the drawbacks arising in this case. If we use the ADT STORE implemented by
a hash table, the cost of all the operations is exactly the same as in the example using the pointers. If
we use the ADT STORFE implemented by an AVL the cost of some operations grows up to O(logn)
instead of O(1) on the average, but this has nothing to do with the use of shortcuts (it comes from
the AVL itself).

By using the STORE we do not need to know the implementation of the table, neither to modify the
insertion operation, nor to assume that the data occupies the same place in the structure. Concluding,
we obtain a solution that is completely modular without penalising the efficiency (see Fig. 4). Last

but not least, at this point all the ADT’s used in the solution offer a full equational specification,

28

which allows one to either formally derive or, a posterior, formally verify, if necessary, the programs

implementing the LADDER operations [3].

Hash Table Array Store Array

shortcuts

names and ladder Ladder L adder

Figure 4: Solutions to the ladder problem without shortcuts (left side of picture) and using shortcuts

(right side).

5 Codifications

The ADT STORE has been codified in the following three programming languages®: ADA [2], Modula-
2 [14] and C++ [12]. The details are found in [11], here we describe only some of the most relevants
aspects.

Modula-2 is not able to codify a modular design; it does not offer a mechanism for creating a
generic or parameterized ADT. In order to overcome the lack of this mechanism, we have constructed
a definition module where the parameters are defined. This solution has the inconvenience that it
does not permit more than one instance of the ADT. Another problem arises while encapsulating the
new data type. Since the encapsulating needs the data type be implemented by pointers another level
of indirection in the operations is produced.

ADA| in its whole, offers good mechanisms to program by using the modular methodology. In

SThese three codifications are available at http://www-Isi.upc.es/~jmarco/

29

particular, it gives a good mechanism for encapsulating and genericity. However, notice that since the
representation must be in the package definition it is visible to the user, although it is not accessible.
The fact that ADA uses garbage-collection technique enables us to have a greater control on the errors
of the operations with the shortcuts.

C++ offers many advantages coming from the fact of being a Object Oriented language. Since it is
possible to define virtual classes, it allows us to do a unique implementation of the new ADT with an
additional parameter which indicates the implementation of the table to be chosen. The constructive

and destructive methods of the classes enable us to have our own garbage-collection on the shortcuts.

6 Conclusions

We have designed and implemented a new abstract data type (ADT), that we call STORE. Our
motivation was to obtain an abstract mechanism which provides direct access to the data without
losing the modularity (in fact, it guarantees full modularity), and also obtaining the same efficiency
as with pointers. The ADT STORE offers such a mechanism, referred to as shortcut, which behaves
naturally as pointers. The difference between both of them is that, using shortcuts, the access to the
data is done without knowing how is stored the data in the structure, and therefore there is no loss
of modularity at all.

Also, we have done two implementations of the new ADT, based in a certain representation ob-
tained by usual methods of modular programming. It is interesting to notice that, given the complete
modularity of the new ADT, our implementations can be used interchangeably in the same contexts.

The future research will consist in finding a method for an automatic definition of shortcuts within
the paradigm of Object Oriented Programming. More precisely, the idea is to define a new class, i.e. a
shortcut, that is independent from the data structure used to store the data. This, in turn, would have
two aspects: the shortcut will depend only on the data and the inheritance mechanism will be used.
Other lines of interest for further research would be the study of more adequate formal institutions
for our specification (e. g. behavioural or loose semantics) and finding a more realistic model for the

dynamic memory in order to rule out the supposition that it behaves like an array.

30

Acknowledgment

We want to thank J.L. Balcazar, for his direction of the project from which originated the main idea
of this work, and also for his suggestions and for the amount of time he spent in reviewing carefully

this paper.

References

[1] Aho, A.V.; Hopcroft, J.E. and Ullman, J.D. Data Structures and Algorithms. Addison-
Wesley, 1983.

[2] Barnes, J.G.P. Programming in ADA. Addison-Wesley, 1984.
[3] Dijkstra, W. Discipline of Programming. Prentice-Hall, 1976.
[4] Ehrig, H. and Mahr, B. Fundamentals of Algebraic Specification 1. Springer-Verlag, 1985.
[5] Ehrig, H. and Mahr, B. Fundamentals of Algebraic Specification 2. Springer-Verlag, 1990.

[6] Franch, X. Fstructuras de datos: Fspecificacion, Disenio e Implementacion. Edicions UPC,

coleccién Politext n. 30, 1994.

[7] Gonnet, G.H. and Baeza-Yates, R. Handbook of Algorithms and Data Structures. Addison-
Wesley, 2nd. edition, 1991.

[8] Hoare, C.A.R. Proofs of Correctness of Data Representation. Acta Informatica, 1972.

[9] Horowitz, E. and Sahni, S. Fundamentals of Data Structures in Pascal. Computer Science

Press, 4th. edition, 1994.
[10] Knuth, D.E. The Art of Computer Programming. Vol. 3, Addison-Wesley, 1973.

[11] Marco, J. Dreceres: “pointers” abstractes. Projecte Final de Carrera, Facultat d’Informatica de

Barcelona, 1996. Directed by J.L. Balcazar (written in Catalan).
[12] Robert, S. C++ Components and Algorithms. Prentice-Hall, 1992.

[13] Wirth, N. Algorithms and Data Structures. Prentice-Hall, 1986.

31

[14] Wirth, N. Programming in Modula-2. Springer-Verlag, 3rd. edition, 1988.

32

