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SIDE VI

Abstract

It is shown that the 2-discrete dimensional Lotka-Volterra lattice, the two di-
mensional Toda lattice equation and the recent 2-discrete dimensional Toda lattice
equation of Santini et al can be obtained from a 2-discrete 2-continuous dimensional
Lotka-Volterra lattice.

1 Introduction

Recently two new integrable systems, a 2-discrete dimensional Lotka-Volterra system
[5] and a 2-discrete dimensional Toda lattice system [9] have been investigated. Both
these systems lie on 2-dimensional square lattices and additionally they both have
one continuous independent variable. For both these systems, multisoliton solutions
can be found by using a Darboux transformation approach and indeed the solutions
can be expressed very compactly in terms of pfaffians. The aim of this paper is to
investigate the relationship between these two systems and other more well known
Toda lattice equations. The main result is that all the systems investigated can be
obtained from a 2-discrete 2-continuous dimensional Lotka-Volterra lattice system.
The solutions of these systems fall into two basic classes, (i) lattice solutions and (ii)
molecule solutions. The lattice solutions are defined over the whole of the lattice while
the molecule solutions only exist on some finite part of the lattice. In the cases where
we have a two dimensional lattice the solutions could fall into both classes by being
lattice like in one of the discrete dimensions and molecule like in the other.

In Section 2 we shall look at some different Toda lattice equations and their so-
lutions. In Section 3 we shall investigate the 2D Lotka-Volterra lattice equation. In
Section 4 we look at the 242 Lotka-Volterra lattice which can be regarded as a mas-
ter system from which all the other systems can be obtained and shall look at the
reductions which take us from this master lattice to the other systems.

2 Toda lattice equations and solutions

There are several different variations on the Toda lattice equations, here we shall
briefly recall some of these systems and their solutions using a bilinear approach. The
solutions to all the systems we shall consider can be expressed in terms of grammians
[8] or Gram-type pfaffians [2].
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2.1 The two continuous dimensional Toda lattice

The two continuous and one discrete dimensional Toda lattice equation ((2,1)-TL
equation) is given by [3]

0%Q
Z XN oQni1 _ 9oQ@n Qn-1 1
9rds  © e e ’ (1)
where n = ..., —1,0,1,.... Using the change of variables
2
Qu =tog (a+ gro-ogr,)) )

equation (1) can be integrated with respect to « and s to obtain

0%r, oty 0Ty,

9r9s " Oz Os
Here we have set integration constants equal to zero and the « is a constant which
will play an important role in the choice of solutions. The two basics cases are o = 1
or « = 0. The former gives lattice solutions and the latter gives molecule solutions. In
terms of the Hirota D-operator the equation becomes

= Tpi1Tn_1 — Q Ti. (3)

DIDST’I’I cTn = 2(Tn+17_n*1 -« 7_7%) (4)

The o = 1 case:

Choose a change of variables s = —xz_1, then the equation becomes
1 2
—§DzDLlTn T = Tn1Tn—1 — Th- (5)

Solutions can be written in terms of grammian determinants [8]

Cij + (*)n/ fi(n)gg(‘_n)dz for 1<4,5 <N, (6)

Tn =

where fi(") and gj(m are n'" derivatives with respect to x if n > 0 (or —n'" antideriva-

tives if n < 0) and f; and g; satisfy
ofi (-1) dg; (-1)
2 fl i B 7
priat I maat (7)
Typically soliton solutions can be obtained by taking
f = epIJr%z*l g= quJr%I*l,

With some simple algebraic manipulation we can recast the solutions in terms of
determinants and bordered determinants, for simplicity we will only consider 7y, 7

and 7_1.

T = Cij“l‘/ 26 9dz| = Y| for 1<ij<N,
1 g(_l)

T1 = R
f(O) T
1 g(O)

T—1 = R
f(—l) T
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where i = (fla f23f3) DRI fN)T’ 2 = (915925935 DR 7gN) and TZ] = Cij + fz fz(O)gj(O)d‘r
In this form it is easy to show that the 7-functions satisfy the bilinear form of the
(2,1)-TL equation (5) by calculating the derivatives with respect to z and x_;:

0 (0) 0 (=1
o _ _ ! O _ . (8)
81' i(o) T ’ (9:671 i(,l) T ’
o 0 g ©) (-1)
627'0 B 0 0 g(*l) B 0 2 B 0 Q (9)
0x0x_1 i(_l) T i(o) T

i(O) f(*l) T

Then it is possible to see that equation (5) is equivalent to the Jacobi identity

0 0 g© 0) (-1 0) -1)
0 0 g |T|‘ © L ‘ ‘ oy C | M o ? ‘ ‘ © g ‘ 0.
FO e JA S T I T ilf T
(10)
The o = 0 case:
In this case we carry out a change of variables s = —y, giving the equation
1
7§DIDyTn T = Tna1Tn—1- (11)

The solutions to this system can also be written down as (bordered) grammians, but
this time they are 2-component grammians (a 2-component wronskian version of this
can be found in [3]). We will just write out 7_1, 79, 71 explicitly.

Cij-f—/ qﬁiwjdx—/ inlzjdy‘zuu for 1<4i,j<N,

70
U
T = - )
¢ Q
0 ¥
T—-1 = - ;
RS

where ¢ = (¢1, ¢2,...,0n)T, ¥ = (1,2, ..., ¥n) and similarly for the tilde variables.
The ¢,1, 5 and J all obey linear equations of the form

Oox v ’ Oy v ’

(n) 7(n)
0Y; _ 7/)(‘”+1) 0Y; _ J(n+1)
Ox 7 Oy 7

As with the o = 1 case, the derivatives can be calculated and equation (11) can be
shown to be equivalent to a Jacobi identity. The other 7-functions 749, 743...., are
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determinants with progressively wider borders. For example 7» is given by

T9 = —

oo o
lRSHIRSH!

¢

Eventually for M = N + 1 the block of zeros in the top left hand corner of the
determinant is larger than the €2 in the bottom right corner and consequently 7y; =
T—M — 0.

This demonstrates an important distinction between lattice solutions (case a = 1)
and molecule solutions (case a = 0). The lattice solutions are defined on the whole of
the lattice while the molecule solutions are just on a finite part of the lattice.

x

2.2 The two discrete dimensional Toda lattice equation.

In recent work of Santini et al [9] a new lattice, the (1,2)-TL equation, in one contin-
uous dimension and two discrete dimensions is described. The system is given by

d 1 d
(_ Q;mq) = Ay (tip gtip—1.q eAprfl,q)-FAq(up,qup’q_l eAqu,q—l) (12)

U
Py Up,q dT
M — e*ApAqu,q (13)
)
Up,q

where p and g label the lattice points and

Apf = fp-i-l,q - fp,qa Aqf = fp,q+1 - fp,q

are differences in the two discrete directions. Choosing

Tp+1,q+1 Tp+1,qTp,q+1
Qzlog p+1,9+ 7 w= p+1.9'p,g+ (14)
Tp,q Tp,aTp+1,q+1

equation (13) is automatically satisfied and (12) becomes a quadrilinear form. By the
judicious introduction of an auxiliary variable y, the quadrilinear form can be split
into a bilinear system [6, 10]

DyTpq * Tp+1,g+1 = DyTpg41 - Tp+1,qs (15)

_ 2
§D1Dy7p,q *Tp,g = Tp+1,qTp—1,¢ = Tp,q+1Tp,q—1 — ATp 4- (16)

Now in bilinear form we can see the similarity to the case with two continuous dimen-
sions. As with the continuous case when carrying out the bilinearization we have the
freedom to introduce an « as the coefficient of Ti - The value of this o will determine
the type of solutions obtained. For this bilinear form it is possible to write down
solutions explicitly in terms of pfaffians of two different types, DKP and DKP’. These
different types relate to the Lie algebraic structure of the solutions, the first being
D-type Lie algebra and the second a D’-type Lie algebra, some more information can
be found about these in [7].

Recall that a pfaffian is an object (a1, aq,...,an), N even, with a set of labels
a1,...,an. It can be defined by its (recursive) expansion rule:
N
(a17a25 .. aaN) - Z(ahaj)(aQa e 5@7 o 'aN) (17)

Jj=2
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with skew-symmetric elements (o, o;):
(ai; o) = —(0y, i), (18)

where @ indicates that the jth entry has been removed. Indeed if you take an N x N
skew symmetric determinant with entries a; ; = (4, j) then

det(ai,j) = (1, 2, s ,N)Q. (19)

The o = 0 case:

This case will give lattice solutions, which we will present in terms of pfaffians. How-
ever, the discrete coordinates p and ¢, are not the most natural coordinates to express

these solutions. Hence we introduce rotated coordinates, m and n such that p = mTJF",
q — m2—77/

, and dependent variable F' such that 7,y = Fpp14,p—q = Fmn. This transforms
(15,16) into

Dsz,n ' Fm+2,n = DyFm+1,n—1 ' Fm+1,n+la (20)
1
§D1DyFm,n . Fm,n = m+1,n+1Fm71,n71 - Fm+1,n71Fm71,n+1- (21)
Let 6; satisfy
0
a—Gi(m,n) = 0;(m,n—1)—06;(m,n+1), (22)
T
0
a—&-(m,n) = 0;(m—1,n)—6;(m+1,n), (23)
Yy
Oi(m+1,n+1)+60;(m,n) =0;(m+1,n)+0;(m,n+ 1), (24)

then the pfaffian elements are chosen to satisfy

(ts Nmsrn = (650 mn + 0i(m,n)0;(m + 1,n) — 0;(m + 1,n)0;(m,n)

= (Zaj) + (iaja C?acg)a (25)
(iaj)m,n-i-l = (Z’j)’m,n - el(ma TL)GJ (ma n+ 1) + el(ma n+ 1)9] (ma TL)

= (i,) + (i,4, ¢4, cp), (26)
g . .
%(’L,j)m,n = 60;(m,n—1)0;(m,n+1)—0;(m,n+1)0;(m,n —1)

= (i,4,¢5, ¢ ), (27)
(%(i,j)m,n = 60;(m+1,n)0;(m—1,n)—0;(m—1,n)0;(m+1,n)

= (iajv Co—lacg)a (28)

where the pfaffian elements
(k,c)) =bOu(m+in+j), (c,d)=0. (29)

These pfaffian elements are the same as the pfaffian elements used in the two discrete
dimensional Lotka-Volterra lattice [5]. The pfaffian elements without subscripts are
taken to be the elements at the lattice point (m,n). It can be shown that these above
relationships define the pfaffian elements in a consistent way.
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The actual pfaffian elements that we are interested in here are:

(G Dmtrner = (4,5) + (4, J}C(fvccl))

(G Dmr1n—1 = (,5) + (4, J,CuCo Y

(G )m—tmrr = (5,4) + (i, 4,21, cp),

(G m—1n-1 = (i,5) + (4, jr 2 1> € 1),

(6 )mr2n = (6:5) + (0,4, ¢5,65) + (i, 4, 3, ¢p)-

The form of the pfaffians to be used in equations (20,21) is given by Fpiint; =
(1,2,3, - , N)m+int;- If we abbreviate Fy, , = (o) and use some addition formulae
for pfaffians, see [3, §2.10] , then we obtain

Fotintr = (o) + (o Claco>

Fm+1,n71 = (‘) + ( Cl’ c0 >’
Foins1 = (9)+(ecy,

Frin-1 = (8)+ (e >,

Frton = (o) + (8¢}, CO) + (o), cp).

Derivatives of these pfaffians can be written down and the pfaffians can be shown to
satisfy the equations (20,21). We will discuss these solutions later in connection with
the 2D Lotka-Volterra system.

The o = 1 case:

Dy7p.g - Tp+1,g+1 = DyTpg+1 " Tp+1,q (30)

o 2
5z Hylp,q 'p,g — Tp+l,q'p—1,g — 'p,q p,q—1 7 'pgq-
2D DyTpo T Tpt1.gTp—1 Tpqt1Tp.g—1 — T, (31)

Now in bilinear form this case will give us molecule solutions. The system (30,31) is
satisfied by choosing a pfaffian with entries

(i, 1)y = cis + (*1)’”/ (fi@)g](_—p) B gz(—mf](p)) . (32)

This pfaffian is a skew symmetrized version of the grammian used for the standard
2D Toda lattice (6). Will will not discuss the details in this section as with judicious
choice of 7-function in the g-direction on the lattice, these solutions are the same as
the pfaffianized Toda lattice solutions which we discuss in the next section.

2.3 The pfaffianized Toda lattice equation

In addition to Santini el al’s work [9], Hu et al and Willox have another 2-D Toda
lattice equation [4, 10]. In Hu et al’s paper they obtain this equation by the process
of pfaffianization, in Willox’s paper the equation is obtained by looking at generalised
Jacobi identities. The pfaffianization procedure involves taking a bilinear system with,
for instance, grammian solutions. The solutions are then replaced by pfaffians with
similar entries. These pfaffians satisfy a bilinear equation quite close to that of the
original grammian case but with an extra bilinear term involving some new 7-functions.
This new equation makes up part of the pfaffianized Toda system, but as new 7-
functions have been introduced, more equations are needed to make a closed system.
Now for the case of the pfaffianized Toda lattice the terms in the pfaffian are taken to
be:

(i, 1)p = {cij + (=P / (fP g — g P g for 1<ij< N,  (33)
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with ¢;; = —c¢;j;. The f; and g; obey the linear equations (7) as in the standard 2-D
Toda lattice case. By simple manipulation, the pfaffian entry at one lattice point can
be expressed in terms of the entry at an adjoining point:

(i f)pp1 = cij + (1P / T e oy g
= (i) + (VP (05,9, 1 P)

where

(i,9®) = gZ(P)7 (i, f®)) = fi(l’), (g®), f)y = 0.
Using an addition formula for pfaffians [3, §2.10] we obtain

(1,2, ,N)pi1 = (1,2,--- ,N), + (=1)P1(1,2,- - 7N7g(—p—1),f(p))p’
which can be abbreviated to

Tpr1 = Tp + (=1)P T (o 7PV, fP)),,
Similarly

Tp—1 = Tp + (=1)P" (e g, f(pil))p'

Derivatives of the pfaffian elements can be calculated and from these the derivatives
of the pfaffians themselves can be calculated:

a%Tp N )
o (-p=1)_ p(p-1)
N (eg P,
82
ST = (o gt fle=1) g(=p) f(p)) + (o gt P, f(p—1)> + (o gt=P=1), f(p))_
-1

The (pfafian) Jacobi identity

(o gt =) g(=p) f(p))(,) — (o gt=P=1), f(p—l))(. 9(_p),f(p))+
(o g(fpfl)’g(fp))(. f(pfl)’f(p)) + (o g(fp)’f(pfl))(. g(fpfl), f(p)) =0 (34)

gives us the first pfaffianised Toda lattice equation:

2 —
§D1Dy7‘p “Tp = Tp41Tp—1 — T — Op0p, (35)

while a second pfaffian identity gives us two further equations that complete the pfaf-
fian system

Dyt -0pt1 = —DyTpy1 - 0p, (36)
DITerl . Ep = *DyTp . Eerl, (37)
where o and & are new functions introduced by the pfaffianization procedure given by

op=(1,2,...,N, fe= §®) Gp=(1,2,...,N,g7P=1 =) (38)

The equations (35-37) can be related to the 2D Toda equations of Santini et al simply
by considering the the o and & to be 7 but shifted in a second discrete direction. i.e.
identifying

Op = Tp,q+1, Op = Tp,q—1, Tp = Tp,q- (39)
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With this identification the equations become precisely the o = 1 case of the (1,2)-TL
equations (30,31). The only difference here is in the interpretation of the labels, for the
pfaffianised case we only need 7, _1, 7p0 and 7,1 whereas for the (1,2)-TL equations
we could extend out (finitely) further in the g-direction having 7-functions

5 Tp,—2; Tp,—1, Tp,0, Tp,1; Tp,2;

The character of these solutions is lattice like in the p-direction and molecule like in
the g-direction. How far the lattice extends in the +¢-direction will depend upon the
size of the pfaffians involved.

3 The 2 Dimensional Lotka-Volterra System.
The two dimensional Lotka-Volterra lattice ((1,2)-LV lattice)

2ut(m,n) + eAi(ﬁ(m,n)Jru(m,nJrl) + eAfn@b(m,n)Jru(erl,n)

- eAiqﬁ(m,n—l)-{-u(m,n) - eAfnqS(m—l,n)-i-u(m,n)
_ An (eAid>(mfl,n)7u(mfl,n)) + Am (eAfnd)(m,nfl)fu(m,nfl))

u(m,n) = A Apd(m, n)

is another system with two discrete dimensions. It has been investigated recently by
Hu et al [5]. Like the (1,2)-TL system of Santini et al, this system has solutions that are
lattice like in both discrete directions. By using the dependent variable transformation

Ferl n+1Fm n)

u=log| =—————— | = A, Ay log F, 1, =log Fyy n
& (Fm-l-l,nFm,n-i-l & ' ¢ 8 '

and introduction of auxiliary variables x, y such that D, 4+ D, = 2D; the 2D Lotka-

Volterra system can be written in bilinear form:

DszJrl,n . Fm,n = m+1,n71Fm,n+1 - Fm+1,n+1Fm,n71 (40)
DyFm,n—i-l . Fm,n = m—l,n+1Fm+1,n - Fm+1,n+1Fm—1,n- (41)

The solutions to this system can be expressed as pfaffians [5], indeed these pfaffians
are exactly the same as for the (1,2)-TL system. The pfaffians can be defined using
equations (22-29). As the solutions are the same for the two systems, this suggest
that there may be a relationship between the systems themselves and indeed this is
the case. Taking the bilinear form of the Lotka-Volterra system (40,41) we can turn
it back into a nonlinear form by choosing v = log F', this gives

VUmna+Un—Um—V __ evmn+vn—vm—v (42)

evmn-‘rvm—vn—v (43)

)

(U — V) =€

(Un _ v)y — evmn-‘rvm—vn—v _

where here for brevity of presentation we shall take the subscripts m or n to denote an
increment in that variable, and the subscripts m or  to denote a decrement in that
variable. If we take (42) and add (42) shifted down in the m-direction and also (43)
and add (43) shifted down in the n-direction, we find we can construct an equation

et (v — v ) = e (v, — V)y- (44)

Secondly taking the y-derivative of (42) and using (43) to eliminate the y-derivatives
on the right hand side we obtain

Amvmy — Am(evmn-‘rvmﬁ,—% _ evm,ﬁ+vrﬁ,n_2v). (45)
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+ s

Figure 1. The (1,2)-LV lattice, incorporating two copies of the (1,2)-TL lattice, one copy con-
sisting of the filled in lattice points, the other consisting of the open circular lattice points. The
natural coordinates for the (1,2)-TL lattice are coordinates rotated by /2 relative to the (1,2)-LV
lattice.

If instead we use the same transformation v = log F' on the (1,2)-TL equation we get
(44) and

Viy = (evmn-l-'umﬁ—?u _ evmﬁ-l—vmn—Qv)- (46)
which is (45) without the difference A,,. From this we can conclude that the (1,2)-TL
system and the (1,2)-LV are equivalent.

Although we can get from the Lotka-Volterra system to the Toda lattice system
the actual lattices in the two systems are not the same as the (1,2)-LV system has
twice as many lattice points as the (1,2)-TL system. The (1,2)-LV system is defined
on a lattice with points m, n both integers while the (1,2)-TL system is defined on a
lattice with points m, n both integers and m + n even, or equally possible we could
take m, n both integers with m + n odd. Thus we can fit two copies of this Toda
lattice system on to the Lotka-Volterra lattice.

4 Reductions from a 2+2 System

Notice that both the (1,2)-LV lattice and the (1,2)-TL lattice systems have bilinear
forms with two discrete variables and two continuous variables, one of the variables
in each case is actually an auxiliary variable that is eliminated when the equations
are returned to their nonlinear form. We may regard the equations (20, 21, 40, 41)
as equations from a 2 + 2 dimensional system which we will call the (2,2)-LV system.
This 2 + 2 dimensional system contains a whole hierarchy of equations. Equations
(20), (21), (40) and (41) represent some of the simplest in the hierarchy.

In general to obtain an integral system from this (2,2)-LV system we need to
pick out certain combinations of equations and carry out reductions, so as to obtain
properly constructed closed systems. We have already seen two basic reductions:

The (1,2)-LV

The (1,2)-LV is obtained by choosing equations (40, 41) and then eliminating the
variable y between the two equations.
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The (1,2)-TL

This is obtained by first considering the (2,2)-LV system as two copies of a 2+ 2 Toda
lattice, so choose equations (20, 21). These lie in the (2,2)-LV system and they only
involve half the lattice points. As with the (1,2)-LV system there are two bilinear
equations and two continuous variables, so we need to eliminate one of these variables
between the two equations.

In addition to these two reductions we can obtain the (2,1)-TL (this is the standard
two continuous dimensions and one discrete dimension case). This can be achieved by
again removing half the lattice points from the (2,2)-LV system to get the (2,2)-TL,
then take equations that use only these lattice points, i.e. (20) and (21), now rotate
back into the natural coordinates for Toda lattices, i.e. set p = 242 ¢ = =" with
Tpq = Fptqp—q = Fmn. Then finally set all the 7-functions off the main horizontal

axis equal to zero:

Ti,0 75 0 and Ti,j = O, Vj 75 0,
leaving us with

_ 2
5 DaDyTp,0 * Tpo = Tpt1,0Tp-1,0 — ATy p- (47)

In the a = 1 case this can be realized by reducing the pfaffian solutions to grammian
solutions by setting half the eigenfunctions f; and g; to zero [1]. i.e. set

fi=0 for 1<i<N/2 9gi=0 for N/24+1<i<N.

This will give back the lattice solutions (6). For the o = 0 case it is less clear how to
proceed as in the 2-discrete dimensional lattice cases we have only looked at solutions
that would reduce back to lattice solutions rather than molecule solutions.

5 Conclusions and Discussion

We have looked at both lattice solutions and molecule solutions to some integrable
systems including the two discrete dimensional Toda lattice of Santini et al [9], the
pfaffianized Toda lattice [4, 10] and the two discrete dimensional Lotka-Volterra equa-
tion of Hu et al [5]. With the identifications (39), the bilinear forms of the pfaffianized
Toda lattice and the o = 1 case of two discrete dimensional Toda lattice are the same.
Although the bilinearization of the two, 2-discrete dimensional systems is different
the solutions are essentially the same. This is an indication that the equations in these
two systems come (via reduction) from the same bilinear hierarchy. This is indeed the
case as all the equations are low order equations in a 242 Lotka-Volterra hierarchy.
The connection between the two systems is in fact closer still, as it is possible to
directly transform (up to a difference operator) from one system to the other.
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