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Synopsis 

Over the last few decades, the study of water waves is becoming relevant for more 
applications, surpassing their traditional study regarding ships and coastal structures and 
engulfing relatively new fields such as offshore platforms and energy harvesting from water 
waves. These problems are usually defined over very large physical domains and hence, the 
classic and fully nonlinear Navier-Stokes equations have found limited applicability due to 
their complexity and vast demand of computational time. Hence, the nonlinear irrotational 
(and inviscid) water wave problem (NLIWW) has been greatly employed for the study of 
many practical and highly demanding cases, with many new numerical methods arising. The 
framework of said new methods is the strive for computationally efficient solvers for highly 
nonlinear and complex problems. 

In the first Chapter of this thesis, we present and describe the Hamiltonian Coupled-Mode 
method (HCM) for the full NLIWW problem. This method was first presented for the fully 
nonlinear problem in (Athanassoulis & Belibassakis, 2000). For this purpose we utilize an 
exact vertical eigenfuction series expansion together with Luke’s unconstrained variational 
principle to derive an equivalent variational reformulation of the NLIWW problem. Concerns 
regarding the validity of this reformulation, which were initially presented in (Athanassoulis 
et al., 2016), are also addressed. We then proceed to reformulate the Euler-Lagrange 
equations by using a more computationally efficient system as was presented in 
(Athanassoulis & Papoutsellis, 2015). In the second Chapter, we calculate analytically the 
coefficients of the new formulation and present a way their computation can be implemented 
efficiently. We also present asymptotic results regarding these coefficients and other 
components of the model. Finally, we describe the truncated system to be used for the 
numerical implementation and, although we do not prove formally the validity of this 
truncation, we state some arguments in favor of its usage. 

For the numerical part, in Chapter 3, we develop an efficient and parallel implementation of 
the model utilizing C++. The code can use an arbitrary order for the finite difference method 
(FDM) with results being presented for schemes from 2nd order up to 12th order. We also 
analyze the form the discretized system assumes. We then describe the 4th order classical 
Runge-Kutta method used for the numerical time integration of the solution, completing thus 
the description of the code. To prove its numerical accuracy and efficiency the code is tested 
with computationally demanding, highly nonlinear cases. At first the accurate and efficient 
calculation of the DtN operator is of great importance and a variety of results regarding that 
matter are presented for a commonly used analytical test case. Following that, we verify the 
ability of the code to model a variety of complex problems, starting from long-time 
propagation of solitary waves, reflection of solitary waves on a vertical wall and asymmetric 
collision of two solitary waves over a flat bottom. We then proceed to present results for 
seabeds of arbitrary (and quite abrupt) bathymetry with solitary waves propagating over them. 
Finally, we address the problem of a moving seabed by simulating and presenting results for 
the experiments executed by Hammack in (Hammack, 1973). 
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Introduction 

In the 5th of July of the year 1687, Isaac Newton publishes his three-volume work 
Philosophiae Naturalis Principia Mathematica, a milestone for the scientific literature, where 
the Laws of Motion and the theory of differential calculus are first introduced. Yet in Book II, 
Prop, XLV of his publication, he contributes a less known milestone for the scientific 
community. He presents the first theory of water waves. It could come as a surprise how can 
the movement of planets and stars intrigued countless scientists before Newton to write books 
attempting to predict their behavior, yet no such theory existed for a phenomenon so plainly 
familiar to them and vital for the sea trade and coastal structures of their era (and ours). This 
historical oddity can testify for the difficulty that gravity water waves showcase with regard 
to their theoretical study. Mathematically, the water wave problem cannot be stated as a 
classical partial differential equations problem, taught in all undergraduate schools of 
engineering and science, since part of the boundary of the domain, the free-surface, is an 
unknown field. Physically, water waves exhibit an abundance of complicacies that waves can 
produce. They can shape steady formations and travel almost unaltered for long distances, 
they break approaching the shore, disperse in deep water and diffract near objects. Hence, 
despite their numerous applications, the advancement of the water wave theory for around the 
next 150 years after Newton’s first publication will be limited and mostly confined within the 
frame of linear water wave theory, (see (Craik, 2004) for a review of the works of that era). 
Today, water waves draw more attention than ever from the scientific community, playing an 
essential role for the safety of life at sea and coastal regions, the durability of ships, offshore 
platforms and coastal structures, the usage of turbine wave energy converters and other 
important applications. Models for the prediction of their behavior are vital and the 
advancements of mathematics and computer science can (for around the last 50 years) 
provide the needed resources for the development and utilization of such models. Yet, even 
though most recent models have largely abandoned the linear water wave theory, the majority 
of them work based on the assumptions of an incompressible, irrotational and inviscid flow, 
assumptions that we shall adopt too. However, such assumptions constitute physical 
reductions of the problem and not plain mathematical linearizations, and models adopting 
them have proved their efficiency in many demanding physical problems such as propagation 
of large amplitude waves over variable bottoms, wave collisions, wave-body interactions and 
waves over a moving bottom. As a result, a very interesting and open problem for research is 
the formulation of a water wave model based on the nonlinear irrotational water wave theory 
(NLIWW) that is computationally efficient. In this diploma thesis, the numerical 
implementation of such a model, the so called Hamiltonian Coupled Mode method, first 
presented in (Athanassoulis & Belibassakis, 2000) in its fully nonlinear form, will be 
presented and tested on demanding and highly nonlinear physical problems. But before we 
describe in more detail the method utilized here, we shall provide a synoptic review of the 
general literature in NLIWW theory from when it was initiated and especially for the 
methods used today. 

Models regarding the behavior of nonlinear water waves first emerged during the 19th 
century. One of the first notable works of the time was (Stokes, 1847) who, employing the 
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now traditional Stokes-expansion, provided nonlinear solutions of periodic steady waves of 
small amplitudes. Another significant work of that era came from (Boussinesq, 1872) who 
derived the two evolution equations-system known as the Boussinesq equations, following 
the observations of Russell with regard to the solitary waves. The work of Boussinesq found 
applications on the propagation of small amplitude long waves as well as helped to establish 
the theoretical and physical existence of the solitary waves, a notion that was debated at that 
time. Although Boussinesq provided an analytic description of the free-surface elevation for 
solitary waves, he did not provide a simple equation for which the aforementioned free-
surface elevation can be derived as a steady solution. This step was completed by (Korteweg 
& de Vries, 1895) with the development of what is known as the KdV equation. Other 
important simplified models of the time were provided by (Barré de Saint-Venant, 1871) and 
(Rayleigh, 1876) although their application today are very limited. As can be seen, scientists 
of that era focused towards the derivations of simple evolution equations that engulf the 
kinematics and dynamic properties of the (simplified) model (usually for shallow or 
intermediate depth). This trend can be attributed to the lack of means to solve large systems 
of partial differential equations (since at that era no computers existed). For that purpose a 
variety of tools taken from mathematical physics was utilized, including potential theory, 
Fourier and Laplace transformations, conformal mappings, Green’s functions and integral 
equations as well as petrubation theory. However, the reduced models developed during this 
era were mainly targeted towards problems with flat bottom and waves of small amplitude, 
since in other cases the physical properties of the problem became too complex. A detailed 
review of many of the works described above can be found in the classical books (Stoker, 
1957) and (Wehausen & Laitone, 1960). 

A new approach towards the fully nonlinear water wave problem was initiated during the 
1960’s. Considering the case of an irrotational, incompressible and inviscid flow, the main 
drawback of the classical formulation, computation-wise, was the need to solve the Laplace 
equation for the interior of the fluid domain. This equation, being a kinematic constraint of 
the problem, could be reformulated to a more suitable constraint if the water wave problem 
could be stated through a variational principle. The first publication towards such an 
approach came from (Petrov, 1964) who derived the dynamic evolution equation as result of 
a variational principle stated for the Lagrangian of the system. However, his approach 
requires the solution of the problem to a priori satisfy the kinematic constraints as stated in 
the classical formulation. As a result Petrov’s work drew little attention. Yet, it was only a 
little later when (Luke, 1967) derived the classical formulation through an unconstrained 
variational principle. For his method, Luke utilized as an action functional the space-time 
integral of the pressure in the domain of the field. It was shown then that the Euler-Lagrange 
equations of the functional correspond to the classical hydrodynamic water wave problem. 
Although Luke’s Functional did not originate from the traditional Hamiltonian formulation, 
its unconstrained nature (excluding the irrotationality of the flow) was to become a milestone 
for models derived in the future. The practical importance of Luke’s approach was first 
noticed by (Whitham, 1967) who utilized the variational principle by exploiting an 
asymptotic expansion of the potential of the fluid and derived the Boussinesq equations. A 
little later, (Zakharov, 1968) derived the Hamiltonian reformulation of the problem, by using 
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the total energy of the system as the Hamiltonian. Zakharov’s variational principle used as 
variables the free-surface elevation of the system together with the trace of the velocity 
potential on the free-surface, variables who Zakharov proved to be canonical for the water 
wave problem. Continuing Petrov’s Hamiltonian approach, while utilizing his transformation, 
Zacharov’s approach set as possible to derive the free-surface evolution equations under the 
kinematic constraints in the interior and other boundaries of the fluid. The system was now 
written as a couple of evolution equations defined on the free-surface with variables being the 
free-surface elevation and the trace of the potential that was also defined upon the free-
surface. Hence, the only obstacle preventing the evolution equations from being a closed 
problem was the need to calculate the normal (to the free-surface) derivative of the potential 
defined on the free-surface. This unknown field had to be calculated through the kinematic 
constraints of the fluid. The significance of this reformulation was further magnified with 
(Craig & Sulem, 1993) who introduced formally the Dirichlet to Neumann operator that 
corresponds to the normal velocity of the fluid on the free-surface. Due to their contribution, 
the Hamiltonian approach for the water waves is usually referred to as the Zakharov Craig 
Sullem formulation (ZCS). It was now apparent that a numerical approach of the nonlocal 
problem of the ZCS formulation required an accurate and efficient method for the calculation 
of the DtN operator, regardless of whether the operator itself was explicitly defined in the 
numerical approach or not. 

Today, the literature regarding the NLIWW problem can be separated into methods that 
target on solving the full problem without further mathematical or physical simplifications 
and simplified models based on asymptotic expansions and assumptions regarding the 
shallowness, nonlinearity and bottom variation of the problem. The latter models comprise 
the most popular line of work throughout the history of the nonlinear water wave theory. 
Today they are utilized due to their extremely fast numerical solution, given that most of 
them comprise entirely of one or two evolution equations, and due to their well-studied 
mathematical behavior. However, their practical applicability is limited to problems with a 
weakly varying seabed and generally not significant dispersion or nonlinearity. Important 
such models are the so called Boussinesq Type models (inspired by the work of Boussinesq), 
that either eliminate the vertical variable from the flow equations or assign a simplified 
prescribed behavior to them, see for example (Serre, 1953), (Green & Naghdi, 1976) 
(Nwogu, 1993), (Mitsotakis, Dutykh, & Carter, 2014). Other such models are the shallow 
water equations initiated by (Barré de Saint-Venant, 1871) with other models seen in (Xing & 
Shu, 2005) & (Dutykh & Clamond, 2012) and the mild slope equations with such models 
seen in (Berkhoff, 1972), (Isobe & Abohadima, 1998), (Klopman, Van Groesen, & 
Dingemans, 2010). A detailed and mathematical description of many of the above models can 
be found in the book (Lannes, 2013). As for the fully nonlinear models, most of them can be 
assigned to either direct numerical methods, or the so called Higher Order Spectral Methods, 
models that will be described below. 

Advancements in the computational capability of computers, have allowed the 
implementation of a variety of direct numerical methods. Such methods, have been mainly 
used for calculating wave-body interactions, with many applications found in the prediction 
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of wave forces on marine installations. From these models, the most widespread one is the 
boundary element method (BEM) (Longuet-Higgins & Cokelet, 1976), (Grilli et al., 1994), 
(Clamond & Grue, 2001). The main idea behind this method is the exploitation of Green’s 
theorem to project the problem defined on the water domain, onto the boundary of the fluid. 
This technique allows for the dimensional reduction of the problem at the cost of projecting it 
at a generally more complex subdomain and forming a discretized approximation that 
requires the inversion of a full matrix. As a result, in case of large and complex boundary 
geometries, 3D direct numerical methods can be competitive (with regard to the 
computational time) with BEM. The most straightforward of these methods is the finite 
difference method (FDM) whose simplicity in implementation has drawn recently attention to 
the method (Bingham & Zhang, 2007), (Engsig-Karup, Bingham, & Lindberg, 2009). 
Furthermore, numerical evidences imply that high-order direct numerical models are more 
efficient than low-order ones for water wave problems (Kreiss & Oliger, 1972). As a result 
finite element methods have been studied on the scope of gravitational water waves (Cai et 
al., 1998), (Rycroft & Wilkening, 2013), (Gagarina et al., 2014), noting that these methods 
treat the weak formulation of the NLIWW problem. The main trait of this approach is its 
inherent flexibility with respect to adaptive grids and high-order approximations. The main 
downside of this approach is the need of regridding at each time step, a problem that is 
general handled with the help of a time-dependent mapping of the water domain onto a 
simple stationary solution domain (for the Laplace equation). 

A class of models extensively used for solving the fully nonlinear water wave problem, are 
the so called Higher Order Spectral methods (HOS), with first numerical results presented in 
(West et al., 1987) and (Dommermuth & Yue, 1987) for the flat bottom case. These models 
are based on an expansion for the free-surface elevation and vertical velocity in a way where 
the evaluation of the DtN operator becomes efficient. Such methods were extended in the 
sloping bottom case in (Liu & Yue, 1998). In a similar approach (Craig & Sulem, 1993) 
expanded the DtN operator in the form of a functional Volterra-Taylor series in powers of the 
free-surface elevation, in the Fourier space. This numerically efficient new description of the 
DtN operator is the main innovation of the aforementioned paper, while its applicability is 
constrained in spatially periodic surface waves and domains. Finally, a recent implementation 
of such a method for cases with a variable bottom can be found in (Gouin et al., 2015). 

In the theory of (both linear and nonlinear) water waves, many authors utilized vertical 
eigenfunction expansions for the dimensional reduction of the problem. This expansion could 
either be applied to the velocity potential, for the case of water waves, or to the pressure field 
for the case of acoustic waves. As a result the field in discussion is expressed in a way were 
its vertical structure is a priori known and its horizontal behavior is dependent on a series of 
introduced modal amplitudes, each corresponding to one eigenfunction of the expansion. This 
technique of dimensional reduction is generally referred to as the coupled mode method in the 
literature. For acoustic waves within a medium whose properties and boundaries vary slowly 
with the horizontal variables, i.e. a stratified medium, (Pierce, 1965) provided such a vertical 
series expansion of normal modes. His method was based on the assumption that the normal 
modes are uncoupled, an assumption inspired from the mathematically equivalent Born-
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Oppenhaimer approximation for the Schrodinger’s equation regarding the separation of 
electronic and nuclear motions. The uncoupling of the modes is assumed for the purpose of 
retaining the needed calculations for the system manageable for the hardware of the time. 
Furthermore, (Milder, 1969) investigated channel classes of non-uniformities, regarding the 
sound-velocity profile, for which the normal mode assumption is applicable. For the case of 
water waves, such representation are presented in (Massel, 1993) and (Porter & Staziker, 
1995) in the context of extending the applicability of the mild slope equation. In these papers 
the assumption of uncoupled modes used for the aforementioned acoustic models is not used. 
However, even though all these models are presented for the case of varying bottoms, the 
expansions used for the problem cannot comply with the sloping bottom boundary condition 
in a truncated form. As a result, such models were not accurate for cases with a sloping 
bottom and hence did not satisfy the conservation of energy. 

With this initiative, prof. Athanassoulis and prof. Belibassakis commenced a new line of 
work with the paper (Athanassoulis, Belibassakis, & Livaditi, 1998) and the application of 
their method on acoustic waves. In that paper, an enhanced local mode representation 
(derived from a regular Sturm-Liouville problem) of the pressure is utilized together with a 
variational principle applied to the transmission problem. The idea behind the method is to 
subtract from the velocity potential a suitable function so that the difference satisfies the 
boundary conditions of the Sturm-Liouville problem and thus ensuring the rapid convergence 
of the method. Hence, a new enhanced coupled-mode system of equations arise. The big 
contribution of this paper was the introduction of the sloping bottom mode (and as a result an 
additional equation) which makes the model consistent with the bottom boundary condition 
and the conservation of energy. However, no evidence is given concerning the independence 
of the terms of the expansion (and as a result the validity of the variational formulation). With 
(Athanassoulis & Belibassakis, 1998) & (Athanassoulis & Belibassakis, 1999) the method is 
now applied to water waves over variable bathymetry. This time the series expansion is 
applied to the velocity potential of the field. Again, this method provided a model consistent 
with the sloping bottom boundary conditions and conservation of energy. The new variational 
formulation is based on the linearized Luke’s variational principle. Yet, since a truncation of 
this model cannot comply with the free-surface evolution equations of the full water-wave 
problem, the method was restricted to the linear water-wave theory. Also, in the 
aforementioned paper a theorem is stated concerning the admissible function space for the 
potential, for the representation to form a basis. Numerical results for scattered linear waves 
over an arbitrary bottom were presented in (Belibassakis et al., 2001) & (Belibassakis et al., 
2011) while results for weakly nonlinear waves were presented in (Athanassoulis & 
Belibassakis, 2002).  

In the paper (Athanassoulis & Belibassakis, 2000) the free-surface mode is introduced, 
allowing a truncation of the model to adapt to the free-surface boundary conditions. As a 
result, the model is reformulated as a nonlinear coupled-mode system of 2nd order differential 
equations in the propagation space, fully accounting for the effects of the nonlinearity and 
dispersion. Furthermore, a theorem is stated without proof concerning the admissible space 
for the velocity potential in order for the newly enhanced series to converge uniformly. The 
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modal amplitudes needed for the representation of the velocity potential are first presented 
here. The coupled mode system presented in this paper comprises of two evolutionary 
equations, one algebraic and one vector-equation. We should also mention that in that paper 
there was not given a proof for the term-wise differentiability of the infinite series, since the 
asymptotic behavior  4

n O n 

  was only validated numerically and not rigorously. 

The first proof for the term-wise differentiability of the infinite series representation arises at 
(Athanassoulis & Belibassakis, 2003). The theorem presented in that paper proves the 
enhanced series expansion twice term-by-term differentiability up to and including the 
boundary. The main essential advantage of this approach is the rapid convergence of the 
expansion throughout the domain and as a result the need for a little number of modes in 
order to simulate challenging problems without simplifications. We therefore obtain an exact 
reformulation of the fully nonlinear irrotational and inviscid problem and not a simplification 
of any kind (excluding the assumption that the waves will not break, an assumption essential 
for all such models and not limited to the current method). This trait counters the 
computationally challenging form of the system presented in the aforementioned two papers, 
a form that was revised in the papers we will presented below. 

A first reformulation of the fully nonlinear system is presented in (Athanassoulis & 
Belibassakis, 2007). The idea behind the simplification is the calculation of the modal 
amplitudes, at a specific time instant, through a system of partial differential equations. This 
subproblem corresponds to the kinematic constraints of the problem and practically is 
associated with the calculation of the Dirichlet to Neumann operator. As a result, the free-
surface evolution equations are drastically simplified since the problem can be solved (at 
each discrete time-step) in two steps, solving the substrate problem for the modal amplitudes 
and advancing the solution through the free-surface evolution equations. We should also note 
that in that paper the equivalent steady problem for calculating periodic solutions of the 
model on a periodic cell, is first introduced. For a more detailed discussion on the equivalent 
steady problem see (Papoutsellis, 2016). The reformulation of the problem is advanced even 
further, following the same idea, in (Athanassoulis & Papoutsellis, 2015) were both the 
substrate problem and the evolution equations are drastically simplified. The paper also 
provides a formula for the calculation of the Dirichlet to Neumann operator linking the 
operator only with the free-surface modal amplitude and no other modal amplitude. 
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Chapter 1: Analytic Formulation of the Problem 
 
1.1 Geometric configuration of the Problem 

Consider an orthogonal Cartesian co-ordinate system 1 2 ,Ox x z  with the z-axis being the 
vertical axis, facing upwards, and the still water level corresponding to 0z  . We investigate 
the motion of an incompressible, inviscid and homogenous fluid with a free-surface 

 ,z t x  over a variable and possibly time dependent bathymetry  ,z h t x . The 

flow is assumed irrotational, therefore enabling the expression of the fluid velocity as the 
gradient of a scalar velocity potential ( , , )x z t .  

The horizontal domain of the fluid is the half plane 2
1 2 1{ ( , ) : }X x x x a   x , 

where a  is an arbitrary real number. The vertical fluid extent is the strip defined by the 
graphs: 

 ( , ) ( , ) : , ( , ){ }X t z X X z t      x x x              (1.1a) 

 ( , ) ( , ) : , ( , ){ }h X t z X X z h t      x x x              (1.1b) 

where ( , )h X t  represents the time-dependent seabed and ( , )X t  represents the unknown, 
time-dependent free-surface of the fluid. Therefore, the problem in discussion is defined on a 
non-uniform, strip-like domain: 

  ( , ) ( , ) : , ( , ) ( , )hD X t z X X h t z t       x x x x            (1.1c) 

Furthermore, we define the vertically closed domain ( , )hD X t : 

  ( , ) ( , ) : , ( , ) ( , )hD X t z X X h t z t       x x x x            (1.1d) 

which will be used in the sections to follow. 

The lateral boundary of the fluid domain ( , )hD X t  can be split into the following parts: 

The first part is denoted as the excitation boundary and is the subset aS  of the vertical plane 

1{ }x a  defined by 

   1 2 2 2( , ) , , ( , , ) ( , , )aS z x a x h a x t z a x t:      x .           (1.1e) 

The second part, is a conventional boundary-at-infinity, denoted by S  and defined as: 

 
2 2 1/2

1 1 2, ( ) ,
( , )

0 .

x a x x
z S

h z




        
x              (1.1e) 
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with h  is the constant depth at infinity. 

The local total depth ( , ) ( , ) ( , )H t t h t x x x  is assumed smooth, finite and strictly 
positive everywhere. The reason behind this restriction will be explained further below. 

 

Fig 1. The geometric configuration of the fluid domain, Figure taken from (Papoutsellis, 
2016) 

Remark regarding the physical assumptions: Apart from the assumption that the local 
depth ( , )H tx  is finite and strictly positive, there is another more subtle assumption we 
made. It is the assumption that the free-surface   and the bottom bathymetry h  remain 
always single-valued functions of the x variable. These assumptions, combined with a certain 
needed smoothness from the aforementioned functions, will be explained in detail in the 
subsequent sections. Although the smoothness assumption may be overlooked as non 
restrictive, the other two assumptions cannot. As a result the method to be analyzed in the 
sequel cannot solve problems involving phenomena like wave-breaking and geometries that 
contain shores (zero bathymetry). 

Remark regarding the excitation boundary: The excitation boundary is introduced here for 
the purpose of presenting in the following sections the correct boundary conditions the model 
can assume in case of an incident wave. Yet, in the numerical implementation we will not 
examine in detail the case of excitation boundary conditions. This neglect is done because 
results for such cases have been presented in detail before, see e.g (Athanassoulis & 
Papoutsellis, 2015) and are investigated even more thoroughly in (Papoutsellis, 2016). In this 
thesis we focus our numerical results to initial value problem test cases that present high 
nonlinearity and very large horizontal domains. This way we can showcase the efficiency and 
accuracy of the designed code. Furthermore, in the absence of excitation we can easily test the 
ability of the model to conform to the conservation of energy and mass, attributes vital for 
long-time simulations. Hence, incident wave problems and problems regarding imposed free-
surface pressure will be presented synoptically in this work. However, this limited 
presentation regarding these problems should not undermine the ability of the model to 
simulate effectively and easily such cases. 
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1.2 Classical formulation, Luke's principle & other important contributions 

Classical differential formulation of the water-wave problem with lateral excitation 

The classical formulation describing the water wave evolution with respect to the free-surface 
elevation ( , )t  x  and the wave potential ( , , )z t  x  is generally stated as (see e.g. 
(Stoker, 1957), (Wehausen & Laitone, 1960), (Johnson, 1997)) 

 2 2 0z     x                  in   0 1( , ) ,hD X t t t t               (1.2a) 

 ,h t h  N                                       on   0 1( ) ,h X t t t               (1.2b) 

 0t     N                             on   0 1( , ) ,X t t t t              (1.2c) 

 2 surf1 ( ) 0
2t

pg


          on   0 1( , ) ,X t t t t              (1.2d) 

where 
1 2

( , )x x   x  is the horizontal (2D) gradient, 
1 2

( , ) ( , , )z x x z       x  is 

the corresponding three-dimensional (3D) gradient, 
1 2

2 2 2( , )x x   x  is the horizontal 

Laplacian, t  denotes the time derivative, ( , 1)h h  xN  and ( , 1)  xN  are 

the outward (with respect to the fluid) normal (but not necessary of unit length) vectors on 
( )h X  and ( , )X t  respectively, and surf ( , )p tx  denotes any externally applied pressure. 

Furthermore, g  is the acceleration due to gravity, and   is the (constant) density of the fluid. 
Eqs (1.2c), (1.2d) express the kinematic and dynamic free-surface conditions, respectively. Eq 
(1.2b) is the impermeability condition on the seabed, and Eq (1.2a) is the Laplace equation, 
accounting for the irrotationality and incompressibility of the fluid flow. 

For Eqs (1.2a)-(1.2d) to yield a unique solution, they should be complemented by appropriate 
conditions on the lateral boundaries and initial conditions for the free-surface elevation and 
the potential at the free-surface and the lateral boundary aS .  

Lateral conditions for the problem under consideration can be of the form: 

 2 2( , , ) ( , )a aa x t x t    ,           2x  ,     0 1t t t             (1.2e) 

1 2 2

2 2

either ( , , , ) ( , , )

or ( , , , ) ( , , )
x a a

a a

a x z t V x z t V

a x z t x z t



  

            
,     aSx .     0 1t t t              (1.2f) 

 ( , ) , ( , ; ) 0t z t  x x ,          S x ,    0 1t t t            (1.2g) 

The lateral conditons of Eqs (1.2e) & (1.2f) represent, respectively, the free-surface elevation 
and the values of the normal velocity (or, alternatively, the values of the wave potential) on 
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the excitation boundary aS  at each time instance t . The data a  and aV  (or a ) are known 
functions. Eq (1.2g) supplements the problem with  a radiation condition at infinity. 

Furthermore, the initial prescribed data can be written concisely in the form: 

 
0 0 0 0 0

0

( , ) ( ) , ( , ( ) , ) ( , ) ,

and specify (compatible) data on the boundary of ( , ) .h

t z t z

D X t

     x x x x x
            (1.2h) 

Collectively, Eqs (1.2) define the classical differential formulation of the non-linear 
irrotational water wave problem (or NLIWW problem, for abbreviation). The 2D formulation 
(one horizontal dimension) of the problem can easily be derived from Eqs (1.2), assuming that 
the unknown fields ( , )   and the data functions surf( , or , )a a aV p   are independent of 

the variable 2x . In this case, the fluid domain 2( , )hD X t    takes the form of a half-strip 

with arbitrary, yet single-valued, (upper and lower) boundaries, while aS  and S   become 

vertical intervals at 1x a  and 1x  , respectively. 

Notational remark: As a compromise between clarity and conciseness, from now on the 
boundary values (traces) of the various fields will be represented by using brackets with a 
sub-script denoting the boundary. For example, Eqs (1.2b) will be written as 

  0.h z h



 N  Keeping explicitly track of the boundary values is important in the 

present problem since, on the free surface and the seabed, the trace of horizontal differential 
operators on fields depend on the order of application of differentiation and taking the trace. 
For example,  zz 

 


    x x . 

 

Luke's Variational Principle 

An unconstrained variational principle for irrotational water waves was introduced in (Luke, 
1967), by Luke. In that paper Luke provided an unconditional variational principle for the 
NLIWW problem in a horizontally unbounded fluid. In this approach, the fluid pressure was 
exploited as a Lagrangian density, with the assumption of zero free-surface pressure. As seen 
in (Athanassoulis & Papoutsellis 2015), the Lagrangian density of this principle, augmented 
by two simple terms accounting for the presence of applied pressure and lateral excitation, is 
given below: 

 

 
1

2 2 surf

, ( ( , ) , ( , , ) )

1 1| | ( )
2 2 0

a

a
a x ah

t zh

L L t t

V dzpg z dz




 







   

               
  





x x

x
             (1.3a) 
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The last term of Eq. (1.3a) highlights the fact that the excitation of the fluid domain may 
occur either by specifying the normal velocity aV  or the values the potential a  there. The 

respective action functional is defined by integrating  ,L    over the region 0 1[ , ]X t t : 

    1

0

, ,
t

t X
L d dt     x                 (1.3b) 

Luke's variational principle states that the two fields ,   satisfy the NLIWW problem, Eqs 

(1.2a)-(1.2d) & (1.2f), if and only if they render the functional  ,S    stationary. As can be 

found in many books of Calculus of Variations (see e.g (Gelfand & Fomin, 1963), (Elsgolc, 
1961)) the above statement corresponds to the variational equation: 

 [ , ; , ] [ , ; ] [ , ; ] 0 ,                               (1.4) 

for all admissible variations ,  . Here [ , ; ]      and [ , ; ]    denote the 

first partial variations (functional derivatives) of  ,S    with respect to the potential   and 

the free surface elevation   in the directions   and  , respectively, They are derived by 
adapting the classical procedure (see e.g. (Luke, 1967), or (Whitham, 1974)) by guarding the 
lateral term at aS  after the integration by parts. However, the variational derivatives 

calculated in this Section differ from the ones presented in (Athanassoulis & Papoutsellis, 
2015), due to the time-dependent sloping-bottom. By direct application of the theory of 
variational calculus we get: 

     
1

0

2 2 surf

, ; , ,

1 1| | ( )
2 2

t

t zt X
z

pg z g d dt





     

 


      

                   
  x x

  

    (1.5a) 

     

  
 

1

0

1

, ; , ,

| | ( )

0

a

a

t

t z zt X h

a x ah

dz d dt

V dz





     

  









        

            

  


  



x x x

  

           (1.5b) 

Equation (1.5b) needs further treatment since it contains derivatives of the increment  . 

Utilizing Leibniz's rule for the part of the integral with kernel t  , and using the Green-

Gauss theorem for the part of the integral with kernel | | ( )z z        x x  we get: 
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     
    

 

1

0

1

1 10 1
2

, ;

,a

a

t

t z zt X

t h z h z h h

t

x a x at h x a

S

h d z d dt

V d z d x dt

  





    

 



  

    

 

      

       

          

 



  





N

N x           (1.5c) 

Note: In Eq (1.5c) we took into account the lateral conditions the velocity potential and the 
free-surface elevation must satisfy. For the excitation boundary aS we have the conditions 

    0
x x x x 

 
 

    because the velocity potential is given there. For the boundary at 

infinity S  we assumed that , 0   and as a result     0
S S

 
 
   . These 

conditions are needed for the correct application of the Green-Gauss theorem. 

As said, Eq (1.5c) differs from the formulae given by (Athanassoulis & Papoutsellis, 2015). 
Yet, it can easily be seen that assuming a time-independent bottom bathymetry, the above 
formula transforms to the variational derivative presented in the aforementioned paper. 

The significance of Luke’s principle lies in the ability to express the fully nonlinear water 
wave problem through a variational principle free of a priori stated kinematic constraints 
(except for the assumption of irrotationality). Since the entirety of the water wave problem is 
derived through a variational principle, this method allows us to reformulate the classical 
problem by choosing different representations (i.e a series expansion) for the velocity 
potential or the free-surface. Hence, utilizing for example, as will be shown in this chapter, a 
vertical series expansion, we can easily derive a dimensionally reduced reformulation of the 
fully nonlinear water wave problem and thus replace the computationally demanding Laplace 
equation throughout the interior of the fluid’s domain, with a different system of equations, 
that can be much more efficient to solve computationally-wise. 

 

Zakharov-Craig-Sulem Hamiltonian formulation 

As seen in the introduction, it was (Petrov, 1964) who provided directly the validity of 
Hamilton's principle for free-surface flows for the first time, yet it was Zakharov (Zakharov, 
1968) who first recognized that the free-surface elevation ( , )t x  and the trace of the 
velocity potential on the free-surface: 

    ( , ) , ( , ) , zt z t t   


  x x x                 (1.6) 

are conjugate canonical variables, for the NLIWW problem and formulated it as an 
evolutionary Hamiltonial system on ( , )  . Much later, Craig & Sulem (Craig & Sulem, 
1993) introduced the Dirichlet to Neumann operator (DtN) and extended the Hamiltonian 
formulation in the finite depth case. It is easy to extend further this approach including lateral 
excitation. However, the great contribution of that paper was the formal definition of the 
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Dirichlet to Neumann operator for the water wave problem. Including lateral excitation, the 
DtN operator is defined as: 

        , , a z z zzG h V    
  

  
           x xN               (1.7) 

where   satisfies the Laplace equation (1.2a) in ( , )hD X t , the Neumann condition, Eqs 

(1.2b), on the moving bottom surface ( , )h X t , the Dirichlet condition (1.6) on the free-

surface ( , )X t  and one of the lateral conditions on ( )hS a  (see Eq (1.2f)). Using the 

modified DtN operator (1.7), the Zakharov-Craig-Sulem (ZCS) Hamiltonian equations take 
the form: 

[ , , ]t a
H G h V

  


                    (1.8a) 

2
surf2

2
( [ , , ] )1 ( )

2 2(1 | | )
a

t
pG h VH g    

  
 

  
        

 
x x

x
x

        (1.8b) 

where H  is the Hamiltonian of the system, given by 

 2 surf1 1[ , ] [ , , ]
2 2a

X

pH G h V g d      


        x               (1.9) 

and /  , /   denote the variational (Volterra) derivatives. Equations (1.8) should be 
supplemented by boundary and initial data. This new form of the evolution equations shows 
that we only require the calculation of the DtN operator in order to solve Eqs. (1.8) 
(complemented with appropriate initial data). Therefore it is clear that any reformulation of 
the kinematic constraints of the problem, focuses strongly on calculating efficiently and 
accurately the DtN operator at every time step. 
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1.3 Representation of the velocity potential by a vertical series expansion 

Luke’s variational principle showcased, as was first noticed by (Whitham, 1967), that by 
introducing an expansion of the velocity potential we can reformulate the fully nonlinear 
water wave problem into a new system of equations in favor of computational efficiency. This 
methodology found use in two approaches, the first and most popular being the replacement 
of the potential through an approximate expansion and as a result deriving a simplified form 
of the problem, while the second being the representation of the potential by an exact 
reformulation. A few notable such approximate expansions can be found in (Isobe & 
Abohadima, 1998), (Klopman, Van Groesen, & Dingemans, 2010), (Yates & Benoit, 2015). 
The expansion presented here follows the second approach, being an exact representation of 
the potential, and was first presented in its complete form in (Athanassoulis & Belibassakis, 
2000) for the fully nonlinear water wave problem, although it was previously utilized in a 
slightly (yet essentially) different form for the linear water wave problem in (Athanassoulis & 
Belibassakis, 1999). The aforementioned expansion was the first exact representation of the 
velocity potential to be employed for the exact variational reformulation of the fully nonlinear 
water wave problem. All the models described above are rendered possible by the 
unconstrained nature of Luke's principle. It is this critical characteristic that enables the 
introduction of various convenient representations for the velocity potential  , ,z t   x , 

without the need to a priori consider the kinematic aspects of the problem, described in Eqs 
(1.2). The stepping stone for any such model is the analysis of the potential Φ by a vertical 
series expansion (assuming that it is well represented by such an expansion) that contains 
unknown horizontal functions and suitably prescribed vertical ones. Some exploited functions 
for the vertical structure of the potential are polynomials (Klopman et al., 2010), hyperbolic 
functions (Isobe & Abohadima, 1998) and enhanced eigenfunction series (Athanassoulis & 
Belibassakis, 1999). Nonetheless, in its more general form the vertical expansion of the 
potential can be expressed as: 

 ( , , ) ( , ) ( ; ( , ) , ( , ) )n n
n

z t t Z z t h t  x x x x              (1.10) 

where the functions nZ  explicitly prescribed vertical functions and ( ; )n t x  are the time-

dependent modal amplitudes, dependent only on the horizontal space-coordinates. It should 
be also noted that functions nZ  can also be implicitly time-dependent through their   and h  
dependency. 

The motivation for utilizing such a representation greatly influences the choice of functions to 
be used as well as the difficulty of the matter. Whether the goal of the representation is the 
extraction of an approximate water wave model or the derivation of an exact variational 
reformulation of the fully nonlinear water wave problem the nature of the series to be used is 
crucial. The first case is the most commonly encountered in the literature and it encompasses 
the representation of Φ through a finite series, neglecting any discussions concerning 
convergence. As a result, said models exclusively rely on their numerical performance (and 
some asymptotic arguments) to showcase their effectiveness at describing nonlinear water-
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wave phenomena. For the second case, which is the one described here, we search an infinite 
and convergent series, that can exactly represent the velocity potential throughout the fluid 
domain up to and including the boundaries. Furthermore, since the classical formulation of 
the problem requires a certain level of smoothness from the velocity potential, this series must 
conform with said requirements regardless of the fact that the free-surface boundary 
conditions and the Laplace equation are satisfied by the variational principle without a priori 
consideration. Therefore, we require, and hence must prove, the infinite series to be term-by-
term differentiable up to and including the boundary and to provide continuous second space 
derivatives for the velocity potential as well as a continuous trace of the derivatives on the 
boundaries. Without the above restrictions, Luke's variational principle cannot be rendered 
exact when applied to the functional variables ( ,{ } )n n  . 

Note: Even though an exact representation of the velocity potential must utilize an infinite 
series, a numerical implementation of such a method would require its truncation. However, 
such a finite-dimensional problem would still be distinct from any finite-dimensional 
approximate representation of the velocity potential in the sense that the equations of the 
problem will arise as a truncation of an exact reformulation of the problem, rendering the 
model much more capable of describing nonlinear phenomena. Of course comparisons about 
its numerical efficiency (in terms of computational time) with approximate models cannot be 
made a priori. 

In what is to follow, we will construct in detail a uniformly convergent series expansion of the 
form (1.10), as seen in (Athanassoulis & Papoutsellis, 2015). Said series will represent 
exactly the velocity potential ( , , )z t x  and its first and second derivatives, throughout the 

fluid domain ( , )hD X t  at every given time 0t t . It should be noted that the proof of 

convergence properties for the series is based on the assumption that the classical formulation 
has a solution. 

The vertical functions used here are indexed by the set  2, 1, 0,1, 2, ...n    . The subset 

, 0{ }nZ n   was first presented (with different indexing) in (Athanassoulis & Belibassakis, 

1999) and is defined as the set of the eigenfunctions derived from the local regular Sturm-
Liouville problem: 

 2( ) ( ) 0, ( , ) ( , )z z n nZ z Z z h t z t      x x          (1.11a) 

 0[ ( ) ] 0z n zZ                  (1.11b) 

 [ ] 0z n z hZ                 (1.11c) 

where the parameter 0  is a positive constant, whose choice will be discussed further below. 

The eigenvalues , 0nk n    of the above Sturm-Liouville problem are defined as the 
positive roots of the equations: 
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 0 0 0tanh[ ( ) ] 0k k h                (1.12a) 

 0 tan[ ( ) ] 0 , 1n nk k h n                (1.12b) 

and the corresponding eigenfunctions, normalized so that 1 , 0n z
Z n


       are given by 

the formulae: 

 0
0

0

cosh[ ( ) ]
( ; , )

cosh[ ( ) ]
k z h

Z z h
k h








            (1.13a) 

 
cos[ ( ) ]

( ; , ) , 1
cos[ ( ) ]

n
n

n

k z h
Z z h n

k h





 


           (1.13b) 

An important detail is the implicit dependence of the eigenvalues { , 0}nk n   on x  and t  

through their dependence on functions ( , )h tx  and ( , )t x . This dependence shall not be 
simplified throughout the following Chapters, in opposition to all existing approximate 
theories (for example (Klopman et al., 2010)). 

From the theory of regular Sturm-Liouville problems (see e.g (Birkhoff & Rota, 1989), 
(Coddington & Levinson, 1955)) the system { ( ) , 0}nZ z n   constitutes an orthogonal 

2L basis for functions defined on the instantaneous vertical segment ( , ) , ( , )[ ]h t t x x . 

As such, an expansion of the form 
0

n n
n

Z




  has been used previously by (Massel, 

1993), (Porter & Staziker, 1995), (Chamberlain & Porter, 1995) and others to develop 
monochromatic, linear extended mild-slope model equations, or other linearized models in 
acoustics (Athanassoulis, Belibassakis, & Livaditi, 1998) or gravity waves (Athanassoulis & 
Belibassakis, 1999). Thus, such an expansion seems to be a possible candidate for the series 
expansion (1.10). Another testimony towards that belief is the following lemma, which is 
produced as a direct application of Theorem 4.1, page 197 from (Coddington & Levinson, 
1955), to the current problem. This lemma proves that under certain conditions the 
convergence of the series is uniform: The proof of this lemma is omitted. 

Lemma 1: Let 2( , , ) ( [ , ] ). t L h   x  on [ ( , ) , ( , ) ]h t t x x  for each fixed 

0 1( , ) [ , ]t X t t x  and satisfy the boundary conditions (1.11b), (1.11c). Then on 

[ ( , ) , ( , ) ]h t t x x  Φ admits the representation: 

  
0

( , , ) , ( ; , ) ( ; , )n n
n

t Z z h Z z hz   




 x   

where the series converges uniformly. 
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However, the above Lemma shows that such an expansion cannot be applied successfully 
outside of the mild-slope bathymetry spectrum, even in the linearized regime since we 
generally lose the uniform convergence of the expansion. This observation is reinforced by 
the need for a truncation of the series in order to obtain a numerical solution. For that case, we 
can easily note that such a truncated series cannot approximate effectively the velocity 
potential for the nonlinear case. Our claim can be proved just by noting that the boundary 
conditions, the potential will satisfy, on the free-surface and the sloping-bottom, are: 

 0 0z       on   , t x               (1.14a) 

 0z     on   ,h t x               (1.14b) 

meaning that it does not even satisfy the linearized free-surface condition 0t t g   

and the bottom impermeability conditionof Eq (1.2b). To improve the situation it is necessary 
to enhance the series expansion giving it the ability to converge to the correct boundary 
conditions. This is done by introducing two additional modes, as was first implemented in 
(Athanassoulis & Belibassakis, 1999) for the sloping bottom mode 1 1Z    and (Athanassoulis 

& Belibassakis, 2000) for the free-surface mode 2 2Z   , without a clear theoretical 

justification. In accordance with the above discussion, the two new vertical functions 2Z   

and 1Z    are selected to satisfy the boundary conditions: 

 2[ ] 1zZ       0 2 0[ ( ) ] 1/z zZ h                       (1.15a,b) 

 2[ ] 0z z hZ                               (1.15c) 

 1[ ] 1zZ       0 1[ ( ) ] 0z zZ                         (1.16a,b) 

 1 0[ ] 1/z z hZ h                             (1.16c) 

where the constant 0h  denotes a reference depth and is introduced for dimensional 

consistency. Conditions (1.15b), (1.16c) are critical in the sense that they ensure 
0 2[ ( ) ] 0z zZ       and 1[ ] 0z z hZ    , thus permitting the functions 2Z   and 

1Z   to account for inhomogeneities on the boundaries  , t x  and  ,h t x  respectively. 

Conditions (1.15c), (1.16b) are introduced to separate the influence of the two functions on 
one vertical boundary each (yet for the right-hand sides of these conditions any basis of the 

2  is a valid choice). Because the above conditions do not uniquely define said functions, we 
pick out the solutions corresponding to the least degree polynomials (in the vertical variable) 
which leads to the following results: 

 
2

0 0 0 0
2

0 0

1 1( )( ; , ) ( ) 1
2 ( ) 2
h hz hZ z h h
h h h

 
 



 
   


                     (1.17a) 
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2
0 0 0 0

1
0 0 0

1 1( ) 1( ; , ) ( ) ( ) 1
2 ( ) 2
h hz hZ z h z h h
h h h h

 
 



 
     


               (1.17b) 

The motivation behind the introduction of these two modes can be traced to the fact that series 
expansion of the Sturm-Liouville problem (1.11), converges uniformly to    , , ,h x t x t    

if the function it represents, satisfies the same boundary conditions as the Sturm-Liouville 
problem. As a result, by subtracting from the velocity potential these functions 
(complemented by their corresponding modal amplitudes 1 2,   ) we achieve just that in a 
relatively easy manner.  

Previously, we stated that the solution of the Sturm-Liouville problem constitutes a basis in 
for the space 2 ( [ , ] )L h  . Hence, logically the question for what space does the new 
enhanced series constitutes a basis arises. A rigorous proof concerning this question has not 
been published yet. This question is not only of formal importance, but of essential 
importance too, since if this representation is not a basis of the space we search for solutions, 
the change of variables    2 1 0, , , , ,...       that will be shown in Section 1.4 for the 

variational principle is invalid. Yet, it can be shown that the aforementioned series forms a 
basis for the Sobolev space   2 ,H h  (locally for every horizontal point). Although this 

question will remain unanswered here, a more practical question that we shall answer is 
whether this representation converges rapidly to the solution of the problem. This question 
was first answered without a proof in (Athanassoulis & Belibassakis, 2000). A detailed proof 
concerning the admissible space the velocity potential belongs to, is first supplied in 
(Athanassoulis et al., 2015) and is presented below: 

Theorem 1 (Athanassoulis et al., 2015): Let Φ be a function defined on 0 1( ) [ , ]hD X t t  , 

and assume that for each 0 1( , ) [ , ]t X t t x  the z  function 2( , , ) ([ , ])t C h   x . 
Then Φ admits the series expansion: 

2 2 1 1

0

( , , ) ( , ) ( ; , ) ( , ) ( ; , )

( , ) ( ; , )n n
n

z t t Z z h t Z z h

t Z z h

   

 

    





  



x x x

x
            (1.18) 

where the modal amplitudes ( , ) , 2n t n x  are related with ( , , )tz x  by the equations  

2 0 0( , ) [ ] [ ]( )z z zt h        x       1 0( , ) [ ]z z ht h    x       (1.19a,b) 

 
2

2
*( , ) ( , , ) ( ; , ) , 0n n n

h
t Z z t Z z h d z n



 



 x x           (1.19c) 
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where 2  stands for the usual 2L  norm of the function  . The series is uniformly 

convergent for [ ( ) , ( , ) ]z h t  x x . 

Proof: Our goal is to obtain a new 'velocity potential' *  from   and the functions 
2 1,Z Z   that will satisfy the boundary conditions of the Sturm-Liouville problem (1.11) 

and the smoothness requirements of Lemma 1. These properties will enable as to use Lemma 
1 on * , which in sequence, will prove the theorem for function   . 

Thus, given Φ, the parameters  0 0,h   and the vertical functions 2 1,Z Z  , we define the 
function: 

0 0 2

0 1

*( , , ) ( , , ) [ ] [ ]

[ ]

( )z z z

z z h

z t z t h Z

h Z
    


  

  

   

 

x x
            (1.20) 

Applying the boundary operators [ ]z z h  and 0[ ]z z h    to both members of Eq. 

(1.20) and taking into account the boundary conditions of functions 2 1,Z Z  , we easily 

obtain: 

 *[ ] 0z z h     and 0
*[ ( ) ] 0z z              (1.21a,b) 

Thus, * ( , , )z t x  as a function of the vertical coordinate z , satisfies the same boundary 
conditions as the eigenfunctions ( ) , 0nZ z n  , of the regular Sturm-Liouville problem 

(1.11) and 2* ( , , ) ( [ , ] )t C h   x . Applying now Lemma 1 we conclude that, for each 

fixed 0 1( , ) [ , ]t X t t x , function * ( , , )z t x  admits the following, uniformly convergent, 
series expansion: 

 
0

* ( , , ) ( , ) ( ; , )n n
n

z t t Z z h 




x x                (1.22) 

where ( , ) , 0n t n x  are given by Eq (1.19c). Substituting Eq (1.20) to Eq (1.22) and 
solving for ( , , )z t x  we obtain the needed wanted series expansion         

From the analysis done up to now, we can deduct that the constant 0 0   serves the purpose 

of defining the auxiliary Sturm-Liouville problem (1.11a)-(1.11c) in a convenient way. Let it 
be stressed that the validity and the uniform convergence of the series expansion (1.18) is not 
affected by the choice of the parameter. However from the point of view of the numerical 
treatment of the problem, optimal choices of 0h  and 0  do exist (See Section 3.2 for a 
numerical argument concerning the matter). 
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Furthermore, the term 2 2Z   will be referred to as the free-surface mode, the term 

1 1Z   as the sloping-bottom mode, term 0 0Z  as the propagating mode and 

1n nZ n   as the evanescent modes. It should be noted though that the names propagating 

and evanescent do not imply that the physical notions of these modes correspond to the 
classical propagating and evanescent modes of the water wave theory . For example the field 
strength of the evanescent modes presented here does not vanish exponentially in the 
horizontal direction (nor does it vanish in general). 

Finally, for us to use the calculus of variations for a reformulation of the problem we must 
ensure that the infinite series representation is at least twice term-wise differentiable with 
respect to the horizontal variables  1 2,x x  and once term-wise differentiable with respect to 

the time variable t  and the vertical variable z . It is known that an infinite series of the form 

   
1

,n
n

f x u x x X




   is term-wise differentiable if (but not only if) we can find a 

convergent series 
1

n
n

M



  such that  n nu x M n


   . Such a proof was first presented 

in (Athanassoulis & Belibassakis, 2003) and stated that under certain smoothness assumptions 
regarding ( , , )z t x  the modal amplitudes n  decay at a rate of 4n . 

Theorem 2 (Athanassoulis et al,. 2003): Let Φ be defined on 0 1,[ ]h tD t   and assume that  

4 3( , , ) ( ) ( )h ht C D C D          4 3( ) ( )( , , ) 0
h hC D C Dt       for   S x     (1.23) 

and 1
0 1,( , , ) ([ ])tz C t  x . Then, the modal amplitudes ( , )n t x  satisfy the estimate: 

 4
0 1, ,max{ | ( , )| , , [ ] } ( )n nX I tt X t I t O n  

 
    x x            (1.24) 

Proof: Using Eq (1.11a), we reformulate Eq (1.19c) as: 

 
2 2

2
*( , )n n n z z n

h
t Z k Z d z



 
 


 x               (1.25) 

where *  is defined from Eq (1.20). Integrating by parts two times, we obtain 

 
2 2

2
* * *( , ) [ ] [ ]n n n z n h z n h z z n

h
t Z k Z Z Z d z


    

 
 



          x   

Using the boundary conditions of *  and nZ , we see that the boundary terms cancel out, and 

 
2 2

2
*( , )n n n z z n

h
t Z k Z d z



 
 



      x               (1.26) 
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Integrating by parts twice again, Eq (1.26) we obtain: 

 
2 4 2 3 4

2
* * *( , ) [ ] [ ]n n n z z n h z n h z n

h
t Z k Z Z Z d z


    

 
 



           x   

which, after applying the boundary conditions of *  and nZ  reduces to 

2 3 3
0

2 4
2 4

* * *

*

[ ( ) ] [ ]
( , )

z z n z z n z h

n n n
z n

h

Z Z
t Z k

Z d z








  



  
 



                 
x           (1.27)  

The last formula is an estimate of the magnitude of ( , )n t x . Invoking eigenvalue-

asymptotics for large values of n , one can easily find that
1/ ( ) ( ) ( )nk n h O n O n       and we readily confirm that  

 ( ) 1nZ z     ( )| (1)nZ z h O    2| || (1)nZ O .           (1.28) 

Furthermore, 2 3 4* * *, ,z z z      are uniformly bounded on 4 3( ) ( )h hC D C D   from 

the assumptions declared above. Thus we obtain 4( , )n t A n x  uniformly on X  
which proves the theorem.               
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1.4 Variational reformulation of problem 

In this Section, we exploit the representation of the velocity potential, presented in Section 
1.3, to derive a variational reformulation of the nonlinear irrotational water wave (NLIWW) 
problem. In the first part of this Section we will formulate the Euler-Lagrange equations of 
the variational problem without explicitly referring to the vertical expansion of Section 1.3 
given by Eqs (1.13) & (1.17), but only utilizing an expansion of the form (1.18). As a result, 
the derived Euler-Lagrange equations will hold for any arbitrary vertical expansion of the 
velocity potential (finite or infinite, approximate or exact). In the last part of this Section we 
will exploit the discussed series expansion and reformulate the Euler-Lagrange equations to a 
new, numerically efficient, system that is equivalent to the classical NLIWW problem, first 
presented in (Athanassoulis & Papoutsellis, 2015). 

Replacing Eq (1.18) to Luke's action functional, would mean that a change of functional 
variables has taken place in the form of ( , ) ( , )   φ  where ( , ) { ( , )}n nt t φ φ x x . 

To simplify notation, we rewrite Eq (1.18) as T( , , )z t x φ Z  with 
( , , ) { ( ; ( , ) , ( , ) )}n nz h Z z t h t  Ζ Ζ x x . This manipulation of the action functional 

denotes a Kantorovich-type dimensional reduction of the NLIWW problem (see (Kantorovich 
& Krylov, 1958) & (Athanassoulis & Belibassakis, 2000)). In more detail, the fact that the 
vertical structure of the velocity potential is a priori known, transforms the 3D NLIWW 
problem to one solely defined on the horizontal plane. In addition, this dimensional reduction 
is not of the same nature as the one imposed by a Boundary Element Method (Grilli, Skourup, 
& Svendsen, 1989). In such a method the problem is projected onto the boundary of the 
domain, and although the reformulated problem is defined on a surface as well, said surface 
can assume a much more arbitrary form since it is defined on 3 . Another problem is the fact 
that such a surface is time-dependent since it encompasses the free-surface elevation. As a 
result, implementing a Boundary Element Method for solving the NLIWW problem would 
require computations to be done using curvilinear coordinates, continuous re-meshing of the 
domain  (Grilli et al., 2001) as well as the arithmetic calculation of surface integrals, all tasks 
that are very time consuming. To surpass the problem of recreating the grid at every time-
step, many models incorporate a time-independent transformation of the domain at the 
expense of formulating new systems with time-dependent coefficients (Bridges & Donaldson, 
2011). On the other hand the current method simply projects the problem to the horizontal 
plane. Thus the new domain is a time-independent area of the horizontal plane. However, this 
quality comes at an expense, since it is exactly this form of dimensional reduction that 
requires the free-surface elevation and the sloping bottom to be single-valued functions of the 
horizontal space variables. More on this subject will be said in following Chapters. 

The new action functional T[ , ] [ , ( ) ]   φ φ Z    can be explicitly calculated from Eqs 
(1.3a), (1.3b), by substituting Eq (1.18) and utilizing the notation introduced above: 
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fT 2 sur
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t X h

t

a x at h

pdz g d dt

V dz dx dt




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




 




               
       

  

  

φ φ Z φ x

φ Z

 

    (1.29a) 

where T[ , ] [ , ( ) ]   φ φ Z   is the transformed kinetic energy density. given by: 

 2T1[ , ] | ( ( ) ) |
2 h

dz


 


 φ φ Z              (1.29b) 

Assuming that the transformation ( , ) ( , )   φ  is regular and invertible, the critical 

points of [ , ]   and [ , ] φ  are essentially the same in the sense that: 

 [ , ; , ] 0 [ , ; , ] 0           φ φ               (1.30) 

Accordingly, the NLIWW problem is transformed through the new functional variables, to the 
following variational equation: 

 
2

[ , ; , ] [ , ; ] [ , ; ] 0
m m

m
            





  φ φ φ φ              (1.31) 

where [ , ; ]   φ  and [ , ; ]  
φ φ φ  are the partial variations of the functional 

[ , ] φ  in the directions   and  φ  respectively. The variations ( , ) φ  are arbitrary, 

admissible functions of  ; tx , that satisfy the following constraints: 

(i) The isochronality constraint 

(ii) The vanishing at infinity constraint at a rate ensuring the convergence of the integrals 
appearing in the right-hand side of Eq (1.29a) 

(iii) constraint  
1

0x a


  since the free surface elevation is assumed known on the 

excitation boundary 

(iv) constraint  
1

0m x a


  in case of Dirichlet lateral conditions for the potential. 

The next step for the derivation of the new formulation, is the explicit calculation of the 
variational partial derivatives appearing in Eq (1.31). This task can be done in many ways, yet 
we can utilize the chain rule for functional derivatives (see (Gasinski & Papageorgiou, 2006), 
Prop. 4.1.12), as a tool that will greatly simplify our calculations. The following proposition, 
taken from the book cited above, comes especially handy: 
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Proposition 1 (Gasinski et al. 2006): Let , , ,X Y Z  be Banach spaces. Furthermore, let the 
following be true: 

 mapping :f X Y , is Gâteaux differentiable at ,x X  with ( ; )f x h  denoting its 
Gâteaux derivative with respect to the increment .h X   

 mapping :g Y Z , is Fréchet differentiable at   ,f x Y  with ( )Dg y  denoting its 
Fréchet derivative. 

Then the mapping :k g f X Z   is Gâteaux differentiable at x X  with 

 ( ; ) ( ( ) ; ( ; ) ) ( ( ) ) ( ; )k x h g f x f x h Dg f x f x h       

The following Lemma, proven in (Athanassoulis et al., 2015), derives the needed formulae for 
the partial variational derivatives of Eq (1.31) utilizing the aforementioned Proposition: 

Lemma 1 (Athanassoulis et al,. 2015): The partial variations [ , ; ]   φ  and 

[ , ; ]
m m   φ  appearing in Eq (1.30) are calculated by the following formulae: 

T T T[ , ; ] [ , ( ) ; ] [ , ( ); ( ( ) ) ]             
   φ φ Z φ Z φ Z           (1.31a) 

 T[ , ; ] [ , ( ); ( ) ]
m m m mZ       
 φ φ Z             (1.31b) 

where the variations [ , ; ]    and [ , ; ]      are given by Eqs (1.5a) & (1.5b) 

respectively. 

Proof: We start by applying the chain rule for composite operators as described in 
Proposition 1. In our case 1 2( , ) ( , )x x x   φ  and 1 2( , ) ( , )y y y    . As a result  

 mapping f  represents the transformation    , ,    and can be rewritten as 

        1 2, , , , ,f f f        .  

Applying Proposition 1, for the directions 1f  and 2f  separately, we get:  

1 2( ; ) ( ( ) ; ( ; ) ) ( ( ) ; ( ; ) )k x g f x f x g f x f x                     (1.32a) 

1 2( ; ) ( ( ) ; ( ; ) ) ( ( ) ; ( ; ) )k x g f x f x g f x f x                      (1.33b) 

Now implementing the fact that: 

 mapping g  represents the action functional [ , ]    

 mapping k  represents the new action functional [ , ] φ  
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  1 ,f      and     T
2 , ( )f   φ Z   

we get from Eqs (1.32a) & (1.32b): 

T T T[ , ; ] [ , ( ) ; ] [ , ( ); ( ( ) ) ]             
   φ φ Z φ Z φ Z         (1.33a) 

 T T[ , ; ] [ , ( ); ( ) ]       
 φ φ φ φ Z Z φ              (1.33b) 

Eq (1.33a) is identical to (1.31a). To prove Eq (1.31b), we invoke the linearity of the variation 

with respect to the increment, i.e 
2

[ , ; ] [ , ; ]
m m

m
      





 φ φ φ φ  . The Fréchet 

differentiability of the action functional [ , ]    implies that [ , ; ]     is a linear 
operator on  . Therefore, we can write: 

T

2 2

[ , ; ] [ , ; ] [ , ( ); ( ) ]
m m m m

m m

Z          
 

 

 

  φ φ φ φ φ Z           (1.33c) 

Thus, Eq (1.31b) follows by using the arbitrariness of the increments m , completing the 
proof.                   

 

Euler-Lagrange equations derived from an arbitrary vertical series expansion 

In this subsection, we will calculate the variations of Eqs (1.30) and derive the corresponding 
Euler-Lagrange equations, hence allowing us to obtain a new formulation of the NLIWW 
problem. The equations we shall obtain were first presented in (Athanassoulis & Belibassakis, 
2000), however as will be seen later this form will not be the final model we will discretize 
and solve numerically. Notice that in the current subsection the vertical series representation 
(1.13), (1.17) of Section 1.3, will not be explicitly used. As a result the Euler-Lagrange 
equations we will derive can be used by any kind of vertical expansion of the form (1.18), 
approximate or exact. Furthermore the index of the vertical functions need not be 

 2, 1    but any arbitrary subset of  . These calculations were first presented in 

detail in (Athanassoulis et al., 2015). The exploitation of the vertical functions as calculated in 
Section 1.3 will be done in the following subsection.  

 We start by calculating the variation   ,S   . Utilizing Eq (1.31a) we substitute 
T ( )  φ Z  in Eq (1.5a) & Eq (1.5c) and ( )mZ     in Eq (1.5c), obtaining: 



Part I: Chapter 1. Analytical Formulation of the Problem 
 

27 
 

   

 

 

 

1

0

1

0

2T T

T 2 surf

T

2

T

1[ , ; ] ( ) | ( ) |
2

1 ( ( ) )
2

( ) ( )

( )

t

t
t X

z
z

t

t m m zzt Xm

t h z

pg z g d dt

Z

h





  

    

  


    


















       
       

                  

      

 

 

xφ φ Z φ Z

φ Z x

N φ Z

N φ Z



 

 
1

1 110

T

T
2

( )

( ) ( )

( ) ( )
a

a

m m z hh

m m
X

t

x a m m x ax at X h

Z

Z d z d dt

V Z d z d x dt









  

   

   







         
  
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φ Z x
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   (1.39) 

Continuing on the derivation of the Euler-Lagrange equations, we want to simplify Eq (1.3). 
In order to do that, we expand the following terms: 

 

     

T

2

2

2 2

2
( ) ( )

2 ,0 , ,

m m n n m
h hn

n z n m n z n m
h hn n

n
Z d z Z Z dz

Z Z dz Z Z dz

 

 

 

 

     

 




 

 

  





    
         

 

  

 x

x x x

φ Z

  

 

 

T

2

2

2 2

2
( ) ( )

2

m m n n m
h hn

n n m n n z n m
h hn n

n
Z d z Z Z dz

Z Z dz Z Z Z dz

 

 

 

 

     

 




 

 

  





    
         

 

  

 x

x x x

φ Z

      (1.40a) 

and 

 

    

T

2 2

( ) ( )h m m z h

x n n n n n z nz h z hz h
n n

Z

h Z Z Z

   

    




 

 
 

     

           x x

N φ Z

      (1.40b) 

From Eqs (1.40a) & (1.40b), we can define the following operators: 

  , , , 2mn mn mn x mnl h a c m n       b             (1.41a) 
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where ( , )mna h ,     1 2,mn mn mnb bb  and ( , )mnc h , with , 2m n   , are matrix coefficients 

defined by the following formulae: 

 ( , )mn n m
h

a h Z Z dz





                 (1.41b) 

     1 2( , ) , 2mn mn mn n m n m z hh
h b b Z Z dz h Z Z



 




         x xb          (1.41c) 

    2( , ) ,mn x n z n m h x n z n m z hh
c h Z Z Z dz N Z Z Z



  




                   (1.41d) 

Invoking Eqs (1.40) and (1.41) we can derive the following relation: 

 
  

   
2 2

[ , ] T T
mn n m

hm n

T T
h

z h

h dz






  
 

 



   

     


  Z Z

N Z Z

 

 

            (1.42) 

Finally Eq (1.39) is reformulated as: 

1
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                 
  

  Z

Z



       (1.43) 

Next, we calculate the variations [ , ; ]
m m  

φ φ φ . Utilizing Eq (1.31b) we substitute the 
T ( )  φ Z  and ( )m mZ     in Eq (1.5c), obtaining: 
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(1.44) 
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In the same direction as with the partial variation   ,S   , we expand the following 

terms: 
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and 
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From Eqs (1.45a) & (1.45b), we can define the following operators: 

 2 1 2L [ , ] A ( , ) (B ( , ) , B ( , ) ) C ( , )m n m n m n m n mnh h h h h        x x     (1.46a) 

where A ( , )mn h , 1 2( , ) ( B ( , ) , B ( , ) )m n m n m nh h h  B   and C ( , )mn h , with , 2m n   , 
are matrix coefficients defined by the following formulae: 

 A mn n m
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Z Z d z



                (1.46b) 
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    x x             (1.46c) 
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Invoking Eqs (1.45) and (1.46) we can derive the following relation: 
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Finally Eq (1.44) is reformulated as: 
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
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 



              
   

             

 



  

N φ Z

x

φ Z



2

(1.48) 

 

Having replaced the derivatives of the variations ( , ) φ  we can now invoke the 
arbitrariness of the variations ( , ) φ , and derive the following Euler-Lagrange equations 

for the functional [ , ] φ : 

  

2T T

2 2

T T surf

1: ( ) ( ) [ , ]
2

( ) ,

t mn n mz z
m n

t zz

g h

p

 

  

    







 

 
 



                    

               

 φ Z φ Z

N φ Z φ Z

  (1.49a) 

 
 

T

2

: ( )

L [ , ] ,

m t m zz

mn n t m z h
n

Z

h h Z

 
 

 









           

  

N φ Z

           (1.49b) 

 
1 11 1

( ) ( )

2

: A Ba a
m x n mn n mn mx ax a x a

n

g   


 


                            (1.49c) 

where 

  
1

( )A
a

a

a
mn n m x a

h
Z Z dz






                (1.50a) 
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1

1

( )B
a

a

a
mn x n m x ah

Z Z dz




                   (1.50b) 

  
1

a

a

m a m x a
h

g V Z dz





                (1.50c) 

Eq (1.49c) corresponds to a Neumann lateral condition on the line 1{ }x a . In case of 

Dirichlet excitation, Eq (1.49c) is replaced by the following lateral condition: 

  
1

, 2a
n nx a n 


                 (1.49d) 

where , 2a
n n   are known values. 

The system defined by (1.49), together with an initial condition and a radiation condition at 
infinity is equivalent the classical formulation of the NLIWW and could be used to implement 
such problems. This system has the form of two nonlinear evolutionary equations, one scalar 
(1.49a) and one vector (1.49b). Such systems have been extensively used for the derivation of 
approximate models from Luke's variational principle (see e.g. (Isobe & Abohadima, 1998), 
(Klopman, Van Groesen, & Dingemans, 2010)). This models however, is an exact 
reformulation of the NLIWW problem and as such it is expected to behave better than the 
corresponding approximate models. It should also be noted that the approximate models cited 
above can be derived from the Euler-Lagrange equations (1.49) with the proper 
representations of the vertical structure of the velocity potential and the corresponding 
linearizations. As a result, system (1.49) has a much more general meaning and actually the 
approximate models cited above can be derived from system (1.49) with the proper 
linearizations and explicit representation of the vertical structure of the velocity potential. 

 

Hamiltonian reformulation of the NLIWW 

In this subsection we will explicitly utilize the vertical series expansion presented in Section 
1.3, Eqs (1.13), (1.17). Hence, the reformulation of the problem that will be presented here is 
not generally true for an arbitrary vertical expansion (1.18) of the velocity potential.  

As up to now in the process of deriving the new formulation of the NLIWW, we have 
transformed the classical problem to a pair of equations (one scalar and one vector) defined on 
the free-surface combined with lateral boundary conditions from Eq (1.48). The current state 
of the problem is not numerically efficient, in the sense that it couples two systems: 

      
2 2

[ , ] T T T T
mn n m h

z hhm n

h dz


   
 

 

        
  Z Z N Z Z      



Part I: Chapter 1. Analytical Formulation of the Problem 
 

32 
 

   
2

L [ , ] T T
m n m m h m

z hhn

h Z dz Z


 




      
  Z N Z    

together with the nonlinear classical evolutionary equations of the free-surface. Thus, even 
though the new formulation is defined in a dimensionally reduced space, in comparison with 
the classical formulation, it still presents many difficulties regarding its arithmetical 
treatment. This is understood from the fact that the numerical simulation of nonlinear and 
time-dependent systems is very time consuming and in many cases unstable. A first 
reformulation of these equations was first provided in (Athanassoulis & Belibassakis, 2007) 
however the form of the evolution equations was still relative complex. A second 
reformulation of the problem was presented in (Athanassoulis & Papoutsellis, 2015) where 
the numerically inefficient evolution equations of Eqs. (1.49) were transformed to two simple 
evolution equations coupled with a substrate problem of partial differential equations (in 
which essentially all the numerical complexity lies). Also, in this new form explicit use of the 
DtN operator is used to represent the coupling between the substrate problem and the 
evolution equations. We shall derive and present this model in the current Section. 

Noticing that the nonlinearity of Eqs (1.49a) and (1.49b) is restrained only in the terms that 
correspond to the classical free-surface equations, we search a way to decouple the linear 
systems defined above with the free-surface equations. The following Lemma will help us in 
achieving this goal: 

Lemma 2 (Athanassoulis et al., 2015): Let 2{ ( ; )}n nt 
φ x  satisfies Eqs (1.47) at every 

0 1[ , ]t t t . Then, the function T  φ Z , where the vertical functions Z  are given by Eqs 
(1.13), (1.17), satisfies the Laplace equation (1.2a) and the bottom impermeability condition 
(1.2b). 

Proof: Let us fix an *m m . Subtracting from Eqs (1.49a) the *
thm  equation, we get the 

relation: 

 
*

2
*

( L [ , ] L [ , ]) , 2mn m n n t m m z h
n

h h h Z Z m  





                 (1.51a) 

But by utilizing Eq (1.47), we also get the formula: 

2
*

( L [ , ] L [ , ]) ( )

( )

mn m n n m m
hn

h m m
z h

h h Z Z d z

Z Z



   









  

     

  *

*
N

          (1.51b) 

Combining Eqs(1.51a) with (1.51b) we get: 
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 
*

( )m m t h m m z hh
Z Z d z h Z Z



 


          *
N              (1.52) 

Consider now a function  , defined on the closed domain ( , )hD X t , which is zero on the 

boundaries   and S  , and arbitrary (admissibly smooth) in the open domain ( , )hD X t  

and on the seabed boundary h . Applying Theorem 1 of Section 1.3, we conclude that there 

exists an admissible sequence 2{ ( ; )}m mt  
ψ x  such that 

2
m m

m

Z 


 

  . The 

fact that  4
m O n 


  makes the series rapidly convergent and thus, the various term-

by-term operations made below are justified. Multiplying the thm  equation (1.52) by m  

and integrating over X , and summing over m , we obtain: 
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 
 

 

        

 



*
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N x

             (1.53) 

 Consider now the function 
2

( )m m m
m

Z Z 


 

  *
. Since 

  
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      
 


   

    * *
  

and   0z  


  by construction, we conclude that     . Consequently, we also 

have 

 
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( )m m m m m m z hz hz h
m m z h

Z Z Z Z    
 
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 
                
 

 * *
  

Thus, identity (1.53) takes the form 

    0t h z h
X h X

dz d h d


    
 


      x N x             (1.54) 

Since   is arbitrary in the open domain ( , )hD X t  and on the seabed boundary h , we 

conclude that the function T  φ Z  satisfies the Laplace equation and the bottom 
impermeability condition, by using the standard arguments of the calculus of variations.          
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Lemma 2 allows us to simplify our formulation of the system by rewriting Eqs (1.49) as two 
couple problems. In more detail, the equations T( ) 0 φ Z  in ( , )hD X t  and 

T( )h th  N φ Z  on h , established by Lemma 2, in conjunction with the identities 
(1.42) and (1.47), lead to the much more numerically efficient new identities: 

 
2

L [ , ] ,mn n t m z h
n

h h Z 





  ,     
2

[ , ] 0m n n
n

h 


 

 ,.. . 2m  ,         (1.55a,b) 

joined with the new evolutionary equations of the free-surface 

 T( ) 0t z 



      N φ Z               (1.56a) 

 
2T T surf1( ) ( )

2t z z

p
g

 


 
              φ Z φ Z            (1.56b) 

In this way. the infinite system of Eqs (1.49a) is split into one scalar evolution equation 
(1.56a) which corresponds to the kinematic free-surface condition and an infinite system of 
time-independent equations, given by (1.55a). Furthermore, Eq (1.49) is drastically simplified 
(dynamic free-surface condition). This reformulation is very practical for the numerical 
implementation of the problem since the nonlinearity of the problem is only located on the 
free-surface equations, while the infinite system of boundary conditions of (1.55a) is linear 
(of course in any numerical implementation of the problem the system should be truncated, 
yet the above statement will still stand). 

The physical interpretation of the aforementioned infinite system of Eq (1.55a) is not clear at 
this point, but it will be presented in the following Lemma. For reasons of notation we first 
introduce the trace of the wave potential: 

      T

2

( , ) , ( , ) , nz z
n

t z t t
 

   


 
 

     x x x φ Z            (1.57) 

Lemma 3 (Athanassoulis et al. 2015): For each 0 1[ , ]t t t  the infinite system of PDEs 

  
2

L [ , ] ,mn n t m z h
n

h h Z 





  ,       2m  ,    Xx             (1.58) 

supplemented with the boundary condition (1.49c) or (1.49d) on the excitation boundary, the 
vanishing at-infinity conditions , 0n    for S x , and the algebraic constraint (1.57), 
is equivalent to the boundary value problem 

 0  ,  ( , ) ( , )hz D X tx               (1.59a) 
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   0h z h


 N  ,   Xx              (1.59b) 

   z  


 , Xx               (1.59c) 

 
1

1
x ax a

V


       or       
1

ax a 


 ,        2( , ) ( )hx z S a          (1.59d) 

 0 ,  S x                (1.59e) 

Proof: Let   be the unique classical solution of problem (1.58), with Tφ Z  being its modal 
expansion, in accordance to Theorem 1 of Section 1.3. Then, we readily see that Eqs. (1.59c) 
and (1.59e) yield directly Eq. (1.57) and the radiation conditions 0n   for S x . 

Furthermore, in view of identity (1.47), 2{ }n n 
φ  satisfies Eq. (1.58). In order to obtain 

the conditions (1.49c) on the excitation boundary, we multiply the first of Eqs. (1.59d) by mZ

, integrating over [ , ]a ah   and expand T  φ Z .  

Now suppose that the admissible sequence 2{ }n n 
φ  satisfies Eqs (1.58) and consider 

the field T  φ Z . Then, using Eqs. (1.57) and (1.59d), we see at once that   satisfies Eqs. 
(1.58c) and (1.58e). In order to prove (1.58a,b) take an arbitrary admissible function  , 

defined on the closed domain ( , )hD X t . Applying Theorem 1 of Section 1.3, we conclude 

that there exists an admissible sequence 2{ ( ; )}m mt  
ψ x  such that 

2 m mm
Z 




 . Multiplying the thm  Eq. (1.58) by m  integrating over X , and 

summing over m , we obtain an equation like Eq. (1.54). Then, we continue by using 
variational arguments, as in Lemma 1. The lateral excitation condition (1.58d) [either the 
Neumann or the Dirichlet one] is also easily obtained by using (1.49c) or (1.49d), and the 
series expansion. Thus the theorem is proved            

Anyone of the two equivalent problems (1.59) or [(1.58), (1.57) & (1.49c) or (1.49d)] will be 
called the substrate problem. The former will be referred to as the classical and the later as 
the modal form of the substrate problem. The solution of this problem determines the DtN 
operator, which permits us to close the two evolution equations (1.56a) & (1.56b). In many 
works dealing with the study of the NLIWW problem, the DtN operator is defined by means 
of a problem like (1.59) (usually under the assumptions of a flat horizontal seabed and spatial 
periodicity instead of the lateral conditions (1.59d,e)) and treated by operator expansion 
techniques (see e.g. ). Our next step is the explicit introduction of the DtN operator in the 
free-surface equations as well as their restatement in a form that contains only the free-surface 
fields ( , )  . The following Lemma helps us towards this transformation. 
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Lemma 4 (Athanassoulis et al., 2015): Assuming that ( , )n n t  x  and 

( ; ( , ) , ( , ) )n nZ Z z t h t x x , and that the series Tφ Z  is appropriately convergent (or 
finite), the following equations hold true: 

  T T T( ) z tzz zt t  


 
              φ Z φ Z φ Z            (1.60a) 

  T T T( ) z zz z  


 
               xx xφ Z φ Z φ Z            (1.60b) 

  T T( )z z zz  
     φ Z φ Z               (1.60c) 

In the case where ( ; ( , ) , ( , ) )n nZ Z z t h t x x , 2n  , are given by Eqs (1.13), (1.17), 

the last equation can be also written by the simpler form: 

 T 1
0 2 0( )z z

h


  


     φ Z               (1.60d) 

Proof: To prove Eq. (1.60a) calculate first T( )t φ Z  at an interior h z    , 

 T T T( )t t t t h        φ Z φ Z φ Z , and, then, take the limit as z  , obtaining 

  T T T( ) t tz zzt H   
            φ Z φ Z φ Z   

On the other hand, since   ( ( , ) ; ( , ) , ( , ) )z z t t h t  


 Z Z x x x , we have 

     T T T
t z t tz z zzt H  


  

               φ Z φ Z φ Z Z   

Subtracting the latter equation from the former, we obtain Eq. (1.60a). Eq. (1.60b) is proved 
similarly, while Eq. (1.60c) is obvious since   is z  independent. To prove Eq. (1.60d), use is 

made of the equations 1
znZ


     , 1

2 0 0zz Z h








       and 0zz nZ





     , 

1n  , which hold for the specific choice of vertical functions .                      

 

Assuming that the surface fields ( , )   are known, at any specific time t , the sequence of 

modal amplitudes 2{ }n n 
φ  can be determined by solving the modal substrate problem. 

What is most important, for the specific choice of vertical functions 2{ }n nZ  , is that the 

substrate problem communicates with the dynamic evolution Eqs. (1.56) only by means of the 
free surface mode 2  (as seen by combining Eqs. (1.56) and (1.60)), which becomes the 

modal alternative of the usual DtN operator. Clearly 2  as all modes 2{ }n n 
 , depends on 
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, ,h   and the lateral excitation aV  or a  applied on ( )hS a . To emphasize this fact we 

introduce the notation 

 2
[ , , ]

[ , ]
[ , , ]

a
a

a

h V
h

h
 

  
 

 





               (1.61) 

Now substituting (1.60) in Eqs (1.56), and taking into account Eq. (4.24) we arrive at the 
following: 
Lemma 5 (Athanassoulis et al. 2015): The NLIWW problem is equivalent with the following 
system of two nonlinear evolution equations 

 2 1
0 0( ) ( ) ( | | 1) [ , ]at h h                x x x            (1.62a) 

  f22 2 1 sur
0 0

1 1( ) ( | | 1) [ , ]
2 2 at

pg h h       


         x x         (1.62b) 

where 2[ , ] ( , )h t    x  is the first element of the modal sequence 2{ ( ; )}n nt 
x  

obtained by solving the modal substrate problem {(1.57), (1.58), (1.49c) or (1.49d). 

Proof: For Eq. (1.62a) we invoke Eq. (1.56a) together with Lemma 4 while taking into 
account that the normal outer-vector of the free-surface is written as ( , 1)  xN : 

     T T T( , 1) , 0t z zz zz  
  

 
           x xx φ Z φ Z φ Z   

Introducing also the representation of (1.57):  T( , ) zt





x φ Z , we have: 

    T T( , 1) , 0t z zz z 
   

 
       x xx φ Z φ Z   

Furthermore, calculating the formulas: 1
2 0 0zz Z h









        1 0zz Z



   

 0 , 0
zz nZ n





       we arrive to the following formula: 

2 1 1
0 2 0 0 2 0

2 2

0t n n
n n

h h         
 

 
 

 


              x xx   

 2 1
0 0( ) ( ) ( | | 1) [ , ]at h h                x x x    

where 
2

( , ) n
n

t 




 x  and 2[ , ]a h     

Now to prove Eq. (1.62b), we invoke Eq. (1.56b) and follow the same process as before, to 
obtain: 
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 
2 2T T T T surf1 ( ) ( )

2z t zzz z zt
p

H g  


  

                           xφ Z φ Z φ Z φ Z

  

and using Lemma 4, together with Eq. (1.57) we get: 

 

    

1
0 2 0

2 21 1
0 2 0 0 2 0

surf1
2

tt h g

ph h

     

       





 
 

     

 
          

  
xx

  

  

   
1

0 2 0

2 22 1
0 2 0

surf1 1
2

tt h g

ph

       

    








        

 
        

  

xx

xx

  

Invoking the already proved Eq (1.62a) and 2[ , ]a h     we have: 

 

   

22 1
0 0

2 22 1
0 0

surf

( | | 1) [ , ]

1 [ , ] 1
2

a

a

t h h g

ph h

      

     






      

 
       

  

x

xx




  

or better written as: 

  f22 2 1 sur
0 0

1 1( ) ( | | 1) [ , ]
2 2 at

pg h h       


         x x    

Thus, the proof is complete.               

Lemma 5, allows us to write our exact reformulation of the NLIWW problem, collectively, in 
the following form: 

The free-surface evolution equations: 

 2 1
0 0( ) ( ) ( | | 1) [ , ]at h h                x x x            (1.63a) 

  f22 2 1 sur
0 0

1 1( ) ( | | 1) [ , ]
2 2 at

pg h h       


         x x         (1.63b) 

complemented with the infinite-dimensional substrate problem: 

  
2

L [ , ] ,mn n t m z h
n

h h Z 





    2m    Xx          (1.63c) 

and the algebraic constraint: 
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  
2

( , )n z
n

t


 



 

  x               (1.63d) 

supplemented with the Neumann boundary conditions on the excitation boundary 

  
1 11

( ) ( )

2

A B , 2a a
x n mn n mn mx ax a

n

g n 





                       (1.63e1) 

or the Dirichlet boundary conditions on the excitation boundary 

  
1

, 2a
n nx a n 


               (1.63e2) 

and the vanishing at-infinity condition: 

 ( , ) , ( , ; ) 0 , 2mt z t m   x x   on x S            (1.63f) 

 

The numerical implementation of the system, of Eqs. (1.63), will be analyzed in Chapters 2 
and 3 together will results for various highly nonlinear and computationally demanding test 
cases. Also comparison with accuracy of other methods implemented for the NLIWW 
problem will be done in Chapter 3. 

Remark: Having formed the HCM system of Eqs. (1.63) a logical question that arises is how 
this system is compared in terms of numerical efficiency with regard to approximate models 
that were derived through some variational principle. A lot of these models, due to their 
approximate nature devise the vertical expansion in a way that significantly reduces the 
numerical cost of the resulting model while also trying to limit the physical simplifications 
(see for example (Klopman et al., 2010)). Hence, such models are expected a priori to be 
much faster than the current model, yet they should not be able to simulate cases with high 
nonlinearity due to their physical reductions. However, simplified approximate models exist 
whose system assumes schematically the same form as ours (two free-surface evolution 
equations coupled with a substrate problem) and thus cannot be a priori assumed more 
efficient (numerically) than the model presented here (see for example (Isobe & Abohadima, 
1998)). The same can also be seen for models without explicit physical reductions that 
however utilized an approximate representation of the velocity potential (Yates & Benoit, 
2015). 
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Chapter 2: Analytic Treatment of the HCM System 
 
 
In the end of the previous Chapter, we derived a reformulation of the classical NLIWW prob-
lem in the form of Eqs. (1.63). Having done so, we now turn our attention towards the numer-
ical implementation of the aforementioned system. The first part of any numerical implemen-
tation for such a system is its analytic treatment. In more detail, we need to derive explicit 
formulae for the coefficients of the equations of the problem, derive a finite and efficient 
truncation of the infinite system and study the asymptotic behavior of the truncated system as 
well as the behavior of the infinite system. These aspects of the system will be analyzed in the 
current Chapter.  
 
2.1 . Analytic calculation of the spatial derivatives of the vertical basis , 2nZ n   
 
Before we can formulate a numerical implementation of the HCM system, we need to explic-
itly calculate the matrix coefficients , , ,, ,m n m n m nA B C  of the substrate problem of Eq. (1.63c). 
Yet, the calculation of the matrix coefficients , , ,, ,m n m n m nA B C , given by Eqs. (1.46b)-(1.46d), 
requires the derivation of analytic expressions of the spatial derivatives of , 2nZ n  . More 
specifically, the calculation of the vertical integrals appearing in mnB  and mnC  can be executed 
only when explicit expression for the gradient nZx  and the horizontal Laplacian nZx  are 
available. The purpose of this section is to derive in a systematic way such expressions. A part 
of these calculations ( 1)n   have been derived in (Athanassoulis & Papoutsellis, 2016). For a 
detailed derivation of these results see Appendices A & B. 
 

Spatial Derivatives for 2, 1n     
 

The horizontal gradients of the free-surface mode 2Z  , Eq. (1.17a), and the sloping-bottom 
mode 1Z  , Eq. (1.17b), are easily found by straightforward differentiation. The results can be 
conveniently expressed as follows 
 

( 0) (1) ( 2) 2( , ) ( , ) ( ) ( , ) ( )n n n nZ t t z h t z h     x F x F x F x , 2, 1n    ,   (2.1a) 
 

where the ( )k
n F coefficients are ( , )t x dependent (vector) fields, given by  

 

( 0)
2 2a H   xF ,  (1) 2

2
2a h
H  xF , ( 2 ) 2

2 2
a H
H   xF ,           (2.1b)  

(0)
1 2

0

1 h a H
h    x xF , (1) 1

1
2a h
H  xF , ( 2 ) 1

1 2
a H
H   xF ,              (2.1c) 

 

The horizontal Laplacians of 2Z   and 1Z  are similarly derived, and they can be expressed in 
the form: 
 

   2( 0 ) (1) ( 2 )( , ) ( , ) ( , ) , 2, 1n n n nZ G t G t z h G t z h n        x x x x ,      (2.2a) 
 

where the ( )k
nG coefficients are ( , )t x dependent (scalar) fields, given by 

 

   0 1(0)
n n nG h    x xF F ,     (1) (1) (2)2n n nG h    x xF F ,           (2.2b) 

 2(2)
n nG  x F ,     2, 1n    .           (2.2c) 
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Finally, the first and second vertical derivatives of 2Z   and 1Z  are given below: 

 1
1

0

2 1( )z
a

Z z h
H h    ,        2

2
2 ( )z

aZ z h
H   ,           (2.3a) 

 12
1

2
z

a
Z

H  ,  2 2
2

2
z

aZ
H  .              (2.3b) 

 
 

Spatial Derivatives for 0n   
 

The calculation of the gradient of the propagating mode 0Z , Eq. (1.13a), is more involved. 
The x dependence of 0Z  comes through its dependence on the free-surface elevation 

 ;t x , the bottom bathymetry  h ,tx , and the parameter  0 0 0( , ) ( , )k k t k H t x x , 
which is implicitly defined by means of Eq. (1.12a). Therefore, such a calculation requires the 
use of the implicit function theorem (to calculate the derivative of  0 ( , )k H tx ), and the 
chain rule (to pass from the derivatives with respect to  , h  and 0k  to the x gradient). 
Since ( , )H t x ( , ) ( , )t h t x x , it follows that 0 0 0h Hk k k     . Using the im-
plicit function theorem we can easily prove the following Proposition that first appeared in 
(Athanassoulis & Papoutsellis, 2016).  
 
Proposition 1: For 0n  , the first and second derivatives of ( )nk H  are given by the follow-
ing equations: 

2 2
0 0 0

2 2
0 0 0

2 2
0

2 2
0 0

( )
, 0

( )

( )
, 1

( )

n h n H n
n n

n

k k
n

H k
k k k

k k
n

H k





 



 

              

             (2.4a) 

 

 2
0 02 1 2 , 0H n H n

H n H n
n n

k k
k k H H n

k k
 

                     
           (2.4b) 

 

n H nk k H   x x ,   22
n H n H nk k H k H      x x x ,       (2.4c,d) 

 
 
A detailed proof of Proposition 1 can be found in Appendix A and as a result will not be pre-
sented here.  
 
Furthermore, in order to write the space derivatives of the , 0nZ n   functions in a simpler 
manner, we introduce the functions  
 

0
0

0

sinh[ ( ) ]
cosh ( )

k z hW
k H


 ,   sin[ ( ) ] , 1
cos ( )

n
n

n

k z hW n
k H


   .         (2.5a,b) 
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Having these comments in mind, we proceed in the calculation of 0Zx  as follows:  
 

    0 00 0 0 0 0 0 0Z Z ( ) Z Z ( )k H h k HZ k k h             x x x .     (2.6) 

 
 

The partial derivative 0Z  is easily calculated by direct differentiation of Eq. (1.13a), and 
use of the local dispersion relation, Eq. (1.12a), leading to  
 

0 0 0
0 0 02

0

cosh[ ( ) ] sinh ( )
cosh ( )

k k z h k H
Z Z

k H 


     .            (2.7a) 

 

Working similarly, we find  
 

0 0 0 0 0h Z k W Z   ,                (2.7b) 
 

0

0
0 0 0

0
( )k

HZ z h W Z
k


    ,                (2.7c) 
 

where 0W  is the conjugate of 0Z , as defined in Eq. (2.5a). Substituting the derivatives 0Z , 

0Zh , 
0 0Zk  from Eqs. (2.7a,b,c) into Eq. (2.6), we obtain  

 

0
0 0 0 0 0 0 0

0
1 ( ) ( ) ( ) ( )H

H
kZ H H Z k H z h W k h W

k


                
x x x x .  (2.8) 

 

Finally, we can write the gradient of the propagating mode 0Z  in the following form: 
 

 (1) (2) (3)
0 0 0 0 0 0 0( , ) ( , ) ( , ) ( )Z t Z t W t z h W    x F x F x F x ,            (2.9) 

 

where the vector fields (1)
0F , ( 2)

0F , (3)
0F  are given by 

 

 0 0(1)
0 0 0

0 0

( )
1 HH k k H

H
k k

 
           

x
xF ,          (2.10a) 

 

 (2)
0 0 ,k h xF   ( 3)

0 0 0H k H k    x xF .      (2.10b,c) 
 

For the second horizontal derivatives, the gradient of the conjugate function 0W  is required. 
The x dependence of 0W  is of the same structure as for 0Z . Thus, working similarly as 
above, one can easily derive the formula: 
 

 
0 00 0 0 0 0 0 0( ) ( ) ( ) ( )k H h k HW W W k W W k h             x x x .          (2.11) 

 

Further, by direct differentiation of Eq. (2.5a) and use of Eq. (1.12a), we obtain  
 

 0 0 0W W    ,               (2.12a) 
 

 0 0 0 0 0hW k Z W   ,              (2.12b) 
 

 
0

0
0 0 0

0

( )k

H
W z h Z W

k


    ,             (2.12c) 
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Substituting now the derivatives 0W , 0hW  and 
0 0k W  from Eqs. (2.12a,b,c) into Eq. (2.11), 

we find 
 

0
0 0 0 0 0 0 0

0
1 ( ) ( ) ( ) ( )H

H
kW H H W k H z h Z k h Z

k


                
x x x x ,   (2.13) 

 

which can also be written in the form 
 

 (1) ( 2) (3)
0 0 0 0 0 0 0( , ) ( , ) ( , ) ( )W t W t Z t z h Z    x F x F x F x ,          (2.14) 

 

where the fields (1)
0F , ( 2)

0F , (3)
0F  are given by Eqs. (2.10a,b,c).  

 
 To obtain the Laplacian of the propagating mode, we take the gradient of both mem-
bers of Eq. (2.9)  
 

 
       

   

0 0

(1) ( 2 ) (3)
0 0 0 0 0 0

(1) (1) ( 2 ) ( 2 )
0 0 0 0 0 0 0 0

( 3) ( 3) (3)
0 0 0 0 0 0

( Z )

( )

( ) ) ( )(

Z

Z W z h W

Z Z W W

z h W h W z h W

   

     

       

       





   

 

x x x

x

x x x x

x x x

F F F

F F F F

F F F

 

 
Utilizing again Eqs. (2.9), (2.13) for 0Zx  and 0Wx in the above equation and performing a 
simple rearrangement we get 
 

(1) ( 2) ( 3) 2 ( 4) ( 5)
0 0 0 0 0 0 0 0 0 0 0( ) ( ) ( )Z G Z G z h Z G z h Z G W G z h W        x  (2.15) 

 
with 

 
2 2(1) (1) ( 2) (1)

0 0 0 0G     xF F F ,           (2.16a) 

 
 ( 2 ) ( 2 ) (3)

0 0 02G  F F ,              (2.16b) 
 

 
2(3) ( 3)

0 0G  F ,              (2.16c) 

 
 ( 4 ) ( 2 ) (1) ( 2 ) (3)

0 0 0 0 02 ( )G h      x xF F F F ,         (2.16d) 
 
 (5 ) ( 3) (1) (3)

0 0 0 02G     xF F F ,            (2.16e) 
 
Finally, the first and second vertical space derivatives of the propagating mode are easily 
found to be: 
 
 0 0 0 ,zZ k W                 (2.17a) 
 
 2 2

0 0 0 ,z Z k Z                 (2.17b) 
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Spatial Derivatives for 1n   
 
The calculation of the gradient of the evanescent modes follows the same process as the one 
for the propagating mode.  For this reason, the derivation of the space derivatives for the eva-
nescent modes is omitted here but can be found in Appendix B. Similarly as before we can 
easily calculate the horizontal gradient of the functions , 1nZ n   as: 
 

(1) ( 2) (3)( , ) ( , ) ( , ) ( ) , 1n n n n n n nZ t Z t W t z h W n     x F x F x F x ,          (2.18) 
 
where: 

 
(1)

0 1 H n
n

n

kH H
k


         

xF ,  ( 2)
n nk h xF ,  (3)

n H nk H  xF , 0n         (2.19) 

 
Before we calculate the horizontal Laplacian of the functions nZ , we need the gradient of the 
functions , 0nW n  . In fact, by use of chain rule, while following the same steps of the cal-
culations for 0W  the following Proposition can be proven: 
 
Proposition 2: The horizontal gradient of the functions , 0nW n   is given by the following 
formula: 
 (1) ( 2) (3)( , ) ( , ) ( , ) ( )n n n n n n nW t W t Z t z h Z    x F x F x F x            (2.20) 

where the functions ( ) ( , ) , 1, 2 ,3i
n t i F x  are given by Eqs. (2.10) for 0n   and by Eqs. 

(2.19) for 1n  , respectively. 
 
For a proof of this Proposition see Appendix B. 
Differentiating one more time, the second horizontal derivatives of nZ arise in the form 
 

   
 

2(1) ( 2 ) (3)

( 4 ) (5 )

( , ) ( , ) ( , )

( , ) ( , ) , 1
n n n n n n n

n n n n

Z G t Z G t z h Z G t z h Z

G t W G t z h W n

     

   

x x x x

x x
          (2.21) 

 
where: 

 
2 2(1) (1) ( 2) (1)

n n n nG     xF F F ,            (2.22a) 

 
 (2) (2) (3)2n n nG  F F ,               (2.22b) 
 

 
2(3) (3) , 0n nG n  F               (2.22c) 

 
 ( 4 ) ( 2 ) (1) ( 2 ) ( 3)2n n n n nG h      x xF F F F ,           (2.22d) 
 
 (5) (3) (1) ( 3)2 , 0n n n nG n    xF F F             (2.22e) 
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Finally, the first and second vertical derivatives of the evanescent modes take the form: 
 
 , 0z n n nZ k W n                  (2.23a) 
 
 2 2 , 0z n n nZ k Z n                  (2.23b) 
 
Our persistence in expressing the space derivatives of the , 2nZ n   functions in such a 
manner has a very specific reason. These formulas visibly separate the z dependence of the 
functions nZx   and nZx . Such a representation will later make the analytic calculation of 
the matrix coefficients , , ,, ,m n m n m nA B C  a lot easier. Another, desirable trait of this represen-
tation is the expression of the z dependence of the space derivatives of the functions 

, 2nZ n   as a linear (at every horizontal point) combination of the functions ( )sz h , 
( )s

nz h Z  and ( )s
nz h W  with 0,1, 2s  . As a result the matrix coefficients of the sub-

strate problem can be written as a linear combination of the above functions and products of 
them. Hence, as will be shown in the next Section, we can significantly decrease the computa-
tional time needed for the calculation of the matrix coefficients, by calculating the vertical 
integrals of the functions given above instead of directly calculating the vertical integrals that 
appear in the matrix coefficients. 
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2.2 Analytic calculation of the matrix coefficients for the substrate modal problem. 
 
In this Section, explicit expressions of the matrix coefficients ,m nA , ,m nB , ,m nC , 2m n  are 

derived.  
 
The choice of the procedure used for the calculation of aforementioned coefficients, although 
insignificant for the theoretical formulation of the problem, is quite important for the 
implementation of the HCM method to a program. For the calculation of the matrix 
coefficients to be computationally efficient it must have little computational cost time-wise as 
well as regarding its memory needs (total amount of data needed to be stored). A very 
important quality of the HCM reformulation is that the matrix coefficients at every horizontal 
point * Xx , need only information defined on said horizontal point (more specifically 

*( , )t x , *( , )h tx , nk  and their spatial derivatives). In other words, in an implementation of 
the problem using the Finite Difference Method, the matrix coefficients of every horizontal 
point, of the discretized domain, can be calculated locally. This property allows for easy 
parallelization of the problem (a very important trait for large scale simulations) as well as 
practically diminishing the memory needs for the calculation of the matrix coefficients. As we 
will see in Chapter 3, we don't have to first calculate all the matrix coefficients of the 
discretized system and then create the matrix of the discretized (and truncated) substrate 
problem. On the contrary, we can built the matrix of the linear system point by point, while 
storing only the matrix coefficients of the horizontal point we currently do calculations on. 
Hence our only concern in this Section is the derivation of a way to calculate the matrix 
coefficients, in the spirit of minimizing the computational cost required for their numerical 
evaluation. 
 
To do so, we will exploit the representation of the spatial derivatives of the functions 

, 2nZ n  , presented in Section 2.1 to express the matrix coefficients, as a linear 
combination of a few basic integrals. The matrix coefficients are revisited below: 
 

,m n n m
h

A Z Z d z



 ,               (2.24a)  

 , 2 ( ) ( )m n n m m n z h
h

Z Z d z h Z Z


 


    x xB ,     1, 2i  ,        (2.24b)  

2 2
, ( ) ( , )m n n z n m h n z n m z hh

C Z Z Z d z Z Z Z




          x xN ,        (2.24c)  

 
We can also separate the integral and the boundary terms of the above coefficients 

writing them as: 
 

 
int

, ,m n m nA A  , int b
, , ,m n m n m n B B B  , int b

, , ,m n m n m nC C C   
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with 
int

,m n n m
h

A Z Z d z



   

int
, 2 ( )m n n m

h
Z Z d z




  xB  ,   b

, ( )m n m n z hh Z Z
 

 xB   

int 2 2
, ( )m n n z n m

h
C Z Z Z d z




    x  , b

, ( , )m n h n z n m z h
C Z Z Z


     
 xN   

 
Substitution of the expressions for the first horizontal gradients, Eqs (2.1a), (2.9), (2.18),the 
expressions for the horizontal Laplacian, Eqs (2.3a), (2.15), (2.21), and vertical derivatives 
(2.3), (2.17), (2.23), leads to the following formulae: 
 

, ( 0; , ) , , 2m n m nA J Z Z n m  ,                (2.25) 

 
int ( 0 ) (1) ( 2 )

, 2 2 2 2( 0; ) (1; ) ( 2; )m m m mJ Z J Z J Z     B F F F ,          (2.26a) 

 
int ( 0 ) (1) ( 2)

, 1 1 1 1(0; ) (1; ) ( 2; )m m m mJ Z J Z J Z     B F F F ,          (2.26b) 

 

 int (1) ( 2) (3 )
,0 0 0 0 0 0 02 ( 0; ) (0; ) (1; )m m m mJ Z Z J W Z J W Z  B F F F ,         (2.26c) 

 

 int (1) ( 2 ) (3)
, 2 ( 0; ) ( 0; ) (1; ) , 1m n n n m n n m n n mJ Z Z J W Z J W Z n   B F F F .            (2.26d) 

 
 b

, , , 2m n m n hh Z Z m n


   xB ,             (2.26e) 

 
int ( 0 ) (1) ( 2 )2

, 2 2 2 2( 0; ) (1; ) ( 2 ; )
2 , 2m m mm Z Z Z

aC G J G J G J m
H   

       
,        (2.27a) 

 
int ( 0 ) (1) ( 2 )1

, 1 1 1 1
2 (0; ) (1; ) ( 2; ) 2m m m m

aC G J Z G J Z G J Z m
H   

       
,        (2.27b) 

 
int (1) ( 2 ) (3)

,

( 4 ) (5 )

( 0; ) (1; ) ( 2; )

( 0; ) (1; ) 2 and 0
m n n n m n n m n n m

n n m n n m

C G J Z Z G J Z Z G J Z Z

G J W Z G J W Z m n

   

   
,           (2.27c) 

 
   
   

0

b
, 1

, 2, 1

, 0

n m h
m n

n n m h

Z n
C h

Z Z n





       

x

F

F
             (2.27d) 
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where the following notation has been used for brevity 
 

 
( , )

( , )
; ( , , ) ( ( , ) ) ( , , )

t
s

h t
J s f z t z h t f z t dz




 

x

x
x x x             (2.28) 

with 

     ; ( , , ) ( ) , ( , , ) ,s sJ s f z t z h f z t u f  x x  

Integrals of the form (2.28) that appear in Eqs. (2.25), (2.26), (2.27), will be called basic 
integrals and their systematic calculation is the goal of the next two subsections. 
 
Formulae (2.25-2.27) indicate that the use of direct analytic formulae for the calculation of 
every matrix coefficient may be computationally inefficient since a lot of them share 
quantities, like the functions ( )i

nF  and ( )i
nG , as well as some basic integrals, with each other. 

Since the goal of this Section is to present a numerically efficient method for computing the 
matrix coefficients we will utilize the representation of Eqs. (2.25), (2.26) and (2.27) that 
allows us to reduce calculations by storing extra quantities (i.e. the basic integrals) that will be 
used for the computation of many matrix coefficients. In a sense, this new representation 
trades computational time for additional needed storage of information (the storage of the 
basic integrals). Yet, this is a trade-off we gladly make due to the fact that (as stated in the 
beginning of the Section) the memory needs for such calculations are too little (with or 
without the storage of the basic integrals), and as a result we are interested only in the 
decrease of the of computational time.  
 
Note: Some reasons for utilizing such a systematic approach, for the matrix coefficients, 
concern the practicality of the approach. Such a representation can be checked methodically 
and part-by-part in a program, while long analytic expressions for the matrix coefficients 
would be much more difficult to do so. Furthermore, this method can lead to a simpler way of 
calculating the asymptotic behavior of said coefficients. Yet, it should be noted that the reason 
behind our implementation of the calculation of the matrix coefficients in this way is done 
only for reasons of computational efficiency and not for the two traits discussed here. 
 
Following this trail of thought, we can further decrease the needed computational time by 
utilizing recursive relations for the basic integrals with functions   0 , 2n m m nf Z Z 

 
  or 

  0 , 2n m m nf Z W 

 
 , with respect to the polynomial degree s . These relations will result 

to a reformulation of Eqs. (2.26) & (2.27) that will include such basic integrals only for 
0s  . This way, we will reduce the number of the basic integrals needed to be calculated. 

For the computation of the basic integrals, at first we take on the simpler case where 

    2 0,n nn nf Z W 

 
 . Next we address the more intricate case   , 2n m m nf Z Z 


  or

  0 , 2n m m nf Z W 

 
  and when it is possible recursive relations are derived, allowing the 

corresponding integrals to be evaluated in terms of the previously calculated ones. 
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Calculation of basic integrals ( ; )nJ s Z and ( ; )nJ s W  

 
The basic integrals where f  is one of the vertical polynomial functions nZ , 2, 1n    ,are 
calculated in a straightforward manner even for arbitrary s  
 

 1 22
2

21( ; )
1 (3 ) (1 )

s saJ s Z H H
s s s

 
  

  
,             (2.29) 

 

1 21 2
1

0

1 1( ; )
1 (2 ) 3 1

s sa aJ s Z H H
s s h s s

 


           
.           (2.30) 

 
On the other hand, integrals involving the implicitly defined functions ,n nZ W , 0n  are less 
transparent and deserve more attention. Let us start off with the easy case 0s  . Integrating 

by parts and taking into account that  0 0 01/ zZ k W  ,  1/n n z nZ k W   , 0n   and that 

0[ ] [ ] 0z n zW W     we obtain 

 

   0 0
0 0 2

0 0 0

tanh1(0; ) z

k H
J Z W

k k k




              (2.31a) 

 

    0
2

tan1( 0; ) , 1n
n n h

n n n

k H
J Z W n

k k k
 


               (2.31b) 

 
where the relations (1.12a), (1.12b) have been used in obtaining the last equalities in 
(2.31a,b). In the same manner the next formulas can be calculated 

 
   0 0

0
0 0

11
cosh

(0; )
z

z h
Z k H

J W
k k






              (2.32a) 

 
   

1 1
cos

(0; )
z

n nz h
n

n n

Z k H
J W

k k






               (2.32b) 

 
For 1s  use will be made of the following recursive relations 
 

 0 0 0
0

( ; ) ( 0; ) ( 1; )s sJ s Z H J Z J s W
k

   ,           (2.33a) 

 

 ( ; ) ( 0; ) ( 1; )s
n n n

n

sJ s Z H J Z J s W
k

    ,           (2.33b) 
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 0 0 0
0

( ; ) (0; ) ( 1; )s sJ s W H J W J s Z
k

   ,           (2.34a) 

 

 ( ; ) (0; ) ( 1; )s
n n n

n

sJ s W H J W J s Z
k

   ,           (2.34b) 

 
Eq. (2.33a) is readily verified using integration by parts as in the derivation of (2.31a)( 0s  ). 
Indeed one easily finds that 
 

  1
0 0 0

0

1( ; ) ( )s
z

h
J s Z H W s z h Z dz

k









         
 , 

 
which upon using the left equality of (2.31a) and the notation (2.28) yields (2.33a). The 
derivation of Eqs. (33b) and (34a,b) is similar and is omitted. The usefulness of Eqs. (2.33-
2.34) is clear once it is noted that their right hand sides are given as a simple linear 
combination of the already calculated basic integrals Eqs. (2.31-2.32) and already calculated 
integrals of (2.33-2.34). 
 

Calculation of the basic integrals ( ; )n mJ s Z Z and ( ; )n mJ s Z W  

 
We start with the calculation of integrals involving polynomial functions 2Z , 1Z .Taking into 

account the definitions (1.17a), (1.17b) of 2Z , 1Z  and the notation (2.28) one easily verifies 
that for 2n   the following identities hold 
 

2
2 2( ; Z ) ( 2; ) (1 ) ( ; ) ,n n n

aJ s Z J s Z a H J s Z
H     ,          (2.35a) 

 
1

1 2
0

1( ; ) ( 2; ) ( 1; ) (1 ) ( ; ) ,n n n n
aJ s Z Z J s Z J s Z a H J s Z
H h                   (2.35b) 

 
2

2 2( ; ) ( 2; ) (1 ) ( ; ) , 0n n n
aJ s W Z J s W a H J s W n
H      .         (2.36a) 

 
1

1
0

2

1( ; ) ( 2; ) ( 1; )

(1 ) ( ; ) , 0

n n n

n

aJ s W Z J s W J s W
H h

a H J s W n

    

  
,          (2.36b) 

 
For the rest of these basic integrals we will derive recursive relations. Before we do this, we 
must calculate said integrals for 0s  . 
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In the case , 0m n  and 0s   we have 
 

2 2
0 0 0

0 0 2
0

( )(0; )
2

H kJ Z Z
k

  
                          (2.37a) 

 
2

0 0
2

1(0; ) , 1
2 2m m

m

HHJ Z Z m
k

  
               (2.37b) 

 
( 0; ) (0; ) 0 , , 0n m m nJ Z Z J Z Z n m n m                (2.37c) 

 

for the basic integrals with integral kernel of the form   , 0n m m nf Z Z 


 . Eq (2.37b) is 

readily verified utilizing integration by parts by noting that  1/n n z nZ k W    and 

furthermore utilizing the fact that 2 2 1m mW Z  , as well as the dispersion relation of Eq. 
(1.12b), which result to the formula: 

 
 

20
2 2

1(0; , ) [ ]
cosm m m

m m
h

J Z Z Z dz
k k H







     

and Eq. (2.37b) follows with simple calculus. For a detailed derivation of Eqs. (2.37) see 
Appendix C. 
 

For the basic integrals with integral kernel of the form   0, 0n m m nf Z W 

 
 , we have: 

 
2
0

0 0 3
0

( 0; )
2

J W Z
k


                 (2.38a) 

 

   

2
0 0

0 2 2 2 2
00 0 0

1( 0; ) 1 , 1
cosh cos( )m

mm m

kJ W Z m
k H k Hk k k k k

            
,     (2.38b) 

 

   

2
0

0 2 2 2 2
00 0

1( 0; ) 1 , 1
cos cosh( )

n
n

nn n n

kJ W Z n
k H k Hk k k k k

            
,    (2.38c) 

 

   

2
0

2 2 2 2
1( 0; ) 1 ,

cos cos( )

, 1 ,

n
n m

n mn m n n m

kJ W Z
k H k Hk k k k k

n m n m

           

 

,         (2.38d) 

 
2
0
3( 0; ) , 1

2m m
m

J W Z m
k


   ,              (2.38e) 
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The analytic derivation of these integrals can be found in Appendix C. To synoptically 
present one case of these calculations, i.e Eq. (2.38e), we use integration by parts to derive the 
formula: 

 
 

(0; , )
z

m m z h
m m m m

m
h

W W
J W Z Z W dz

k






     

Utilizing the dispersion relation of Eq. (1.12b) we easily get the wanted result. 
 
Lastly, we calculate the following integrals that will be used later for the recursive relations 
that will be derived for 1s  . 
 

2 2
0 0 0

0 0 2
0

( )(0; )
2

H kJ W W
k

  
               (2.39a) 

 
0

0
0

( 0; ) , 0n
n

J W W n
k k


                 (2.39b) 

 
2 2

0 0
2

( )(0; ) , 0
2

m
m m

m

H kJ W W m
k

  
               (2.39c) 

 
0(0; ) , , 0 ,n m

m n

J W W n m n m
k k


                (2.39d) 

 
In order to derive the recursive relations, integration by parts will be used. Another significant 
note is that we will replace the boundary terms that arise from the integration by parts with 
the formulae (2.37), (2.38), (2.39)& (2.31), (2.32). The results are derived in detail in 
Appendix C.  
 
For 1s   integration by parts in conjunction with notation (2.28) yields the following 
identities: 
 

0 0 0 0 0 0 0
0

( ; ) ( 1; ) ( 0; ) ( 0; )
2 1 2( 1)

s ss H s HJ s Z Z J s W Z J Z Z J Z
k s s

    
 

,     (2.40a) 

 

( ; ) ( 1; ) ( 0; )
2 1

(0; )
2 ( 1)

s

m m m m m m
m

s

m

s HJ s Z Z J s W Z J Z Z
k s

s H J Z
s

   





,         (2.40b) 
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0 0 0
0 2 2

0

( 1; ) ( 1; )( ; ) , 2n n n
n

n

k J s W Z k J s Z WJ s Z Z s n
k k

  
  


,         (2.40c) 

 

2 2
( 1; ) ( 1; )( ; ) , , 1 ,n n m m n m

m n
m n

k J s W Z k J s Z WJ s Z Z s n m n m
k k

  
  


,        (2.40d) 

 

For basic integrals with   , 0n m m nf Z Z 


 . And for basic integrals of the form 

( ; )n mJ s W Z  we have: 
 

0 0 0 0 0 0
0

( ; ) ( 1; ) (0; )
2

ssJ s W Z J s W W H J W Z
k

    ,           (2.41a) 

 

 1
0 0 0

0 2 2
0

1
0 0

2 2
0

( 0; ) ( 1; )
( ; )

2 ( ; )

s
n n

n
n

s
n

n

k H J W W s J s W W
J s W Z

k k

H k J s Z Z
k k





 







,          (2.41b) 

 

 

1
0 0 0

0 2 2
0

1
0 0

2 2
0

2 (0; )( ; Z )

( 0; ) ( 1; )

s

m
m

s
m m m

m

H k J Z ZJ s W
k k

k H J W W s J s W W

k k








 




,          (2.41c) 

 

 1 1

2 2

(0; ) ( 1; ) 2 (0; )
( ; )

s s
m n m n m n n n

n m
m n

k J W W H s J s W W k H J Z Z
J s W Z

k k

   



, (2.41d) 

 

( ; ) (0; ) ( 1; )
2

s
m m m m m m

m

sJ s W Z H J W Z J s W W
k

    ,          (2.41e) 

 
Eqs.(2.40-2.41) in conjunction with Eqs.(2.37-2.29) permits us to calculate all the remaining 
integrals required in Eqs.(2.25-2.27). This fact allows us to calculate the matrix coefficients in 
a manner that requires less calculations and therefore less computational time. 
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A reformulation of Eqs (26-27), for the calculation of the matrix coefficients. 
 
In this subsection, we will combine Eqs. (2.26-2.27) and the recursive relations of the former 
subsection to calculate in a more efficient manner the  integral part of  the coefficients ,m nB  

and ,m nC  (i.e. int
,m nB  and int

,m nC  ). The boundary terms of these coefficients need not to change. 

 
The calculation of the mnA  can be readily done by using Eqs. (2.25) and Eqs. (2.31), (2.37) so 
no further treatment is needed for these coefficients. 
 
Reformulation of coefficients ,m nB : 

 
We begin by stating that Eqs (2.26a), (2.26b) need not to be changed since they can directly 
be calculated from Eqs. (2.29), (2.30), (2.31).  
 
Eqs. (2.26c) can be reformulated using Eqs. (2.37a)-(2.38c) (and taking into account Eqs. 
(2.41e)) to: 
 

 int (1) ( 2 ) (3) (3)
0 ,0 0 0 0 0 0 0 0 0 0 0

0

12 (0; ) (0; ) (0; )
2

J Z Z H J W Z J W W
k

        
B F F F F  

                  (2.42a) 
 

int ( 2 ) (3)0
,0 0 0 0 0 02 2

0

22 (0; ) (0; ) , 2 , 0m m
m

kJ W Z J Z Z m m
k k

         
B F F            (2.42b) 

 
Eqs (2d) can be reformulated using Eqs (37b), (38d), (41e): 
 

int ( 2 ) ( 3)
, 2 2

22 (0; ) (0; ) , , 1n
m n n n m n n n

m n

kJ W Z J Z Z m n m n
k k

           
B F F ,     (2.42c) 

 

 int (1) (3) ( 2) (3)
,

12 (0; ) (0; ) (0; ) , 1
2m m m m m m m m m m m m

m
J Z Z J W Z J W W m

k
         

B F F F F

                     (2.42d) 
 

int ( 2 ) ( 3)
0 , 0 2 2

0

2 (0; ) (0; ) , 1n
n n n n n n

n

kJ W Z J Z Z n
k k

         
B F F           (2.42e) 
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Reformulation of coefficients mnC : 
 
We begin by stating that Eqs (27a), (27b) need not to be changed since they can directly be 
calculated from Eqs (5a), (5d), (6a) & (6b). 
 
 
Eqs (3c) can be reformulated using Eqs (8a)-(8e) to: 

2 2
int (1) ( 2 ) ( 3) ( 2 ) (3)
0 ,0 0 0 0 0 0 0 0 0

( 2) (3) ( 4 ) (5 )
0 0 0 0 0 0

0 0

(5) (3)
0 0 0 02

0 0

( 0; ) ( 0; )
2 3 4 3

1 ( 0; )
2

1 1 (0; )
2 2

H H H HC G G G J Z Z G G J Z

HG G G G H J W Z
k k

G G J W W
k k

                  
          

      

,    (2.43a) 

 

 

 

2
int ( 3) ( 5)
0 , 2 2 22 2 00

2
(3) (2)0 0

0 0 02 2 22 2 00

(2) (4)
02 2

0

4 ( 0; )

4 ( 0; ) ( 0; )

( 0; ) , 1

n n
n n n n n

nn

n n n
nn

n
n n n

n

k kC G G J Z Z
k kk k

k k
G J Z Z G J Z W

k kk k

kG G J W Z n
k k

          

 


         

,                   (2.43b) 

 

 

 

2
int ( 3) ( 5)0 0

,0 0 0 0 02 2 22 2 00

2
( 3) ( 2 ) ( 4 )0
0 0 0 02 2 22 2 00

( 2 )
0 02 2

0

4 2 (0; )

4 ( 0; ) (0; )

(0; ) 0 0

m
mm

m
m m m

mm

m
m

m

k kC G G J Z Z
k kk k

k kG J Z Z G G J W Z
k kk k

kG J W Z m m
k k

           

         

  


,          (2.43c) 

 

 

 

2
int (3) (5 )

, 2 2 22 2

( 2) ( 4 ) ( 2 )
2 2 2 2

2
( 3)

22 2

4 2 ( 0; )

( 0; ) ( 0; )

4 (0; ) , 1 ,

n n
m n n n n n

m nm n

n m
n n n m n n m

m n m n

m
n m m

m n

k kC G G J Z Z
k kk k

k kG G J W Z G J Z W
k k k k

kG J Z Z m n m n
k k

           

         

  


,                         (2.43d) 
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2 2

int (1) ( 2 ) ( 3) ( 2 ) (3)
,

( 2 ) (3) ( 4 ) ( 5)

( 3) (5)
2

( 0; ) (0; )
2 3 4 3

1 (0; )
2

1 1 ( 0; ) 1
22

m m m m m m m m m m

m m m m m m
m m

m m m m
mm

H H H HC G G G J Z Z G G J Z

HG G G G H J W Z
k k

G G J W W m
kk

                  
          

       

(2.43e) 
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2.3 Asymptotic behavior of the vertical integral coefficients 

The asymptotic behavior of the matrix coefficients ,m nA , ,m nB , ,m nC , , 2m n  , and the 

system in general, is insignificant for the procedure of implementing the HCM system into a 
code. However, the accuracy of such a code, as well as properties like convergence of the 
code, in a methodical study of any case, are heavily influenced by the asymptotic behavior of 
the substrate problem, and as a result from the asymptotic behavior of the vertical integral 
coefficients. Moreover, any study that needs to be done, that concerns the convergence of a 
truncated model of the infinite-HCM system, or existence of the solution of the full HCM 
system have such calculations as prerequisites. Hence, we believe that it is of good use, to 
calculate and present in this Section the asymptotic behavior of the matrix coefficients. In 
order to derive such calculations easily, we will first present the asymptotic behavior of the 
basic integrals of Section 2.2. Such calculations in turn require the knowledge of the 
asymptotic behavior of a few quantities related to the wave numbers , 1nk n  . The 

following Proposition, will give as this needed information concerning this matter. 

Proposition 1: The asymptotic behavior of the wave numbers , 1nk n   is given by the 
relation: 

  20
n

nk O n
H n




                  (2.44a) 

Moreover the following limiting formula holds: 

    
2 2

40
2 2

1 1 1
cos( ) 4

n

n

H O n
k H n




 
    

 
            (2.44b) 

Proof:  To prove the first scale of the proposition, we utilize the dispersion relation of the 
evanescent modes: 0tan( )n nk k H   , or written in a slightly different way 

 0tan( )n
n

Hk H
k H


    

Setting nx k H , and approximating locally, around n  the function tan( )x , by the two-

term Taylor series expansion: 31tan( ) ( ) ( ) ...
3

x x n x n      , we get the algebraic 

equation: 

 3 01( ) ( )
3

Hx n x n
x

        

Finally, solving the above equation by means of the petrubation approach we get the solution: 

  20 Hx n O n
n





    or  20
n

nk O n
H n




    
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and since the Taylor expansion of tan( )x  we used is valid only as n  ,we arrive at the 
desired conclusion.  

As for the second part of the Proposition, we use the Taylor series 

   2 41 1 51 1 ( ) ( )
cos( ) 2 24

n x n x n
x

         
, around n  which results to 

   2 41 1 51 1 ( ) ( )
cos( ) 2 24

n
n n

n

k H n k H n
k H

          
  

   2 40 01 1 51 1 ( ) ( )
cos( ) 2 24

n

n

H Hn n n n
k H n n

 
   

 
 

         
 

  

    
2 2

40
2 2

1 1 1
cos( ) 4

n

n

H O n
k H n




 
    

 
  

and thus the proposition is proved.              

Note: At this point, it is highlighted that the goal of this section is a synoptic presentation of 
the asymptotic behavior of the matrix coefficients of the substrate problem. We desire to 
sustain the coherence of the Chapter and not confuse the reader with a detailed derivation of 
the asymptotic formulas to be presented below. As a result, most of the proofs of these 
formulas have been moved to Appendix D. 

Having done so we can easily derive the asymptotic behavior of the vertical functions 
, 1nZ n   and theirs conjugate functions , 1nW n  . For both group of functions we use 

Eqs. (2.44) to derive the formulae: 

       2 2
40

2 2

cos[ ]
1 1 cos[ ]

cos( ) 4
nn

n
n

k z h z hHZ O n n
k H n H





  

     
 

         (2.45a) 

       2 2
40

2 2

sin[ ]
1 1 sin[ ]

cos( ) 4
nn

n
n

k z h z hHW O n n
k H n H





  

     
 

          (2.45b) 

We now move forward to the calculation of the asymptotic behavior of the spatial derivatives 
of the , 1nZ n   functions. For the horizontal gradient and the horizontal Laplacian of said 
functions, we implore Eqs. (2.18) and (2.21) respectively. As a result we also need the 
asymptotic behavior of the functions ( ) , 1 , 1, 2, 3i

n n i F , given by Eqs. (2.19), and of the 

functions ( ) , 1 , 1, ..., 5i
nG n i   given by Eqs (2.22). To calculate said asymptotics, we will 

make use of the following proposition that shows the asymptotic behavior of the first and 
second partial derivatives of the wave numbers , 1nk n   with respect to the total bathymetry 

 ,H tx . 
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Proposition 2: The asymptotic behavior of the partial derivatives H nk  and 2
H nk  are given 

by the following relations: 

 
2

20
2 ( )H n

Hnk O n
H n




     ,             (2.46a) 

  2
32 (1)H n

nk O
H


   ,              (2.46b) 

The following limits are also true: 

 1lim H n

n n

k
k H 


  , lim n

n
n

k H
k H 

 
 x x ,          (2.46c) 

 
2

2

2lim H n

n
n

k
k H 


 ,  

2

2
2 ( )lim n

n n

k HH
k HH 

 
 

x xx ,        (2.46d) 

A detailed proof of Proposition 2 is presented in Appendix D. 

 A detailed derivation of these formulas can also be found in Appendix D: For the 
( ) , 1 , 1, 2, 3i

n n i F , we have: 

 
3 3

(1) 40
0 2 21 H n

n
n

k HH H H O n
k n







            
x xF ,          (2.47a) 

 ( 2) 20
n n

Hnk h h h O n
H n




      x x xF ,           (2.47b) 

 
2

(3) 20
2n H n

Hnk H H H O n
nH



        x x xF ,          (2.47c) 

And for the ( ) , 1 , 1, ..., 5i
nG n i   functions we have: 

 
2 2 22 2(1) (1) ( 2) (1)

2 (1)n n n n
nG h O
H


       xxF F F ,          (2.48a) 

2 2
(2) (2) (3)

32 2 (1)n n n
nG H h O
H


      x xF F ,           (2.48b) 

 
2 2 22(3) ( 3)

4 (1)n n
nG H O
H


     xF ,            (2.48c) 

( 4 ) ( 2 ) (1) ( 2 ) ( 3)
22 (1)n n n n n

nG h H H h O
H
                x x x x xF F F F , (2.48d) 
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 2(5) ( 3) (1) (3)
22 2 (1)n n n n

nG H H O
H
            

 x x xF F F ,        (2.48e) 

For these Calculations, Proposition 2 was used as well as Eqs. (2.45). 

We will now briefly show the asymptotics of the basic integrals presented in Section 2.2. For 
a detailed derivation of the formulae to follow, see Appendix D.  

 

Asymptotics of basic integrals ( ; )nJ s Z  and ( ; )nJ s W  

We first prove the asymptotic formulae of the above integrals for 0s   by utilizing 
Proposition 1 of this Section. 

2
40 0

2 2 2( 0; ) ( )n
n

HJ Z O n
k n
 


                   (2.49a) 

 
2 3

50
3 3

3

1 1 ( ) , even
cos 4

( 0; )
2 ( ) , odd

n
n

n

H O n n
k H n

J W
k H O n n

n











   

  


           (2.49b) 

For 1s   we present the following Proposition, which is proven in Appendix D: 

Proposition 3: The asymptotic behavior of basic integrals ( ; )nJ s Z  and ( ; )nJ s W  with 
1s   is given by the following formulae: 

 
 

2
40

2 2

1
4

02 2

( ) , even
( ; )

2 ( ) , odd

s

n s

H O n n
n

J s Z
H H s O n n
n












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           (2.50a) 

 

2
40 0

3 3

1
4

( ) , even
4

( ; )
2 ( ) , odd

s

n s

H H s O n n
n

J s W
H O n n
n

 










           

           (2.50b) 

 

We then proceed to calculate the asymptotic behavior of the remaining basic integrals, by 
means of formulae (2.49) and Propositions 1, 2, 3 of current Section. 
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Asymptotic behavior of basic integrals ( 0; )n mJ Z Z , ( 0; )n mJ Z W  and ( 0; )n mJ W W  

1. Asymptotic behavior of Basic integrals (0; , )m nJ Z Z . For these basic integrals we take 
into account the symmetry of their kernel with respect to the indexes ,m n  reducing the 
number of cases we have to consider: 

 2
2( 0; , )nJ Z Z O n

  ,    2
1(0; , )nJ Z Z O n
  , as n          (2.51a,b) 

For , 0m n m  ,  ( 0; , ) 0m nJ Z Z  ,            (2.51c) 

  2(0; , )
2n n
HJ Z Z O n  ,   as n             (2.51d) 

2. Asymptotic behavior of Basic integrals ( 0; , )m nJ W Z : 

 
 
 

3

1

, even
(0; , )

, odd
n m

O n n
J W Z

O n n





 


, with 2, 1m     , as n            (2.52a) 

 1
0( 0; , )nJ W Z O n ,    as n              (2.52b) 

 3( 0; , )n nJ W Z O n  ,    as n             (2.52c) 

 2( 0; , )n mJ W Z O m  ,    as m              (2.52d) 

 2( 0; , )n mJ W Z O n  ,    as n              (2.52e) 

( 0; , ) ?n mJ W Z   ,     as ,n m c n              (2.52f) 

3. Asymptotic behavior of Basic integrals (0; , )m nJ W W . Here too, we take into account the 
symmetry of the basic integrals with respect to the indexes ,m n . 

1
0( 0; , ) ( )nJ W W O n  ,    as n              (2.53a) 

1(0; , ) ( )n mJ W W O n  ,    as n              (2.53b) 

1(0; , ) ( )n mJ W W O m  ,    as m              (2.53c) 

2(0; , ) ( )n mJ W W O n  ,    as ,n m c n             (2.53d) 

 2( 0; , )
2n n
HJ W W O n      as n              (2.53e) 
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Asymptotic behavior of matrix coefficients ,m nA , ,m nB , ,m nC  

We now proceed to the final part of this Section, which is the presentation of the asymptotic 
behavior of the matrix coefficients ,m nA , ,m nB , ,m nC  of the substrate problem. The asymptotic 

behavior of the coefficients ,m nA  can be taken directly from Eqs. (2.51) and therefore there is 
no need to rewrite them. 

Asymptotic behavior of coefficients mnB   

  2
, 21 (1 ) ( )m

m nB a H h O m    x , with 2, 1n    , as m            (2.54a) 

 
 , 0

0
1

cosh
m

m
hB

k H


  x ,    as m              (2.54b) 

, (1)m nB O  , with 2, 1m    ,  as n              (2.54c) 

 
 0,

0

1
2

cosh

n

nB h H
k H

      
  

x x ,  as n              (2.54d) 

 
 , 1

cos
m

m n
n

hB
k H


  x ,    as m              (2.54e) 

, 2 2m nB H h   x x ,    as n               (2.54f) 

,
2

(1) , even

2 ( ) , odd
m n

n H H O c
cB

n H H h O n c
c



           

x

x x

 , as ,m n c n      ,      (2.54g) 

,
1
2m mB h H   x x ,    as m              (2.54h) 

For the asymptotic behavior of the coefficients mnC   

   0
, 1 m

m n nC h    x F ,  with 2, 1n    , as m             (2.55a) 

 
 

 

1
0

,0
0

1
cosh

m
mC h

k H
    x

F ,   as m             (2.55b) 

, (1)m nC O ,    with 2, 1m      as n             (2.55c) 
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 
0,

0

1
[1 ]

cosh( )

n

nC h H
k H


     x x ,   as n             (2.55d) 

, (1)m nC O ,       as n             (2.55e) 

, (1)m nC O ,       as m              (2.55f) 

2 2 2
2

, 2 2 2
2

( ) , even

2 ( ) , odd
m n

n H O n c
c H

C
n H H h O n c

c H






 

 
         



x

x x x

 as ,m n c n       (2.55g) 

2
, ( )n nC O n ,      as n             (2.55h) 
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2.4 Truncation of the infinite-dimensional HCM system 

In the previous sections we presented a way to evaluate the matrix coefficients of the infinite 
substrate problem efficiently. However, any numerical implementation of the method requires 
the truncation of the infinite series representation and of the infinite substrate problem as well. 
The first step we take towards this goal is to truncate the vertical velocity potential series 
expansion from the infinite series  

  
2

( , , ) , ( ; , ) ( ; , )n n
n

t Z z h Z z hz   




 x   

to  

  
2

( , , ) , ( ; , ) ( ; , )
M

n n
n

t Z z h Z z hz   


 x , with M             (2.56) 

The second, and much more unintuitive, step is the truncation of the infinite dimensional 
substrate problem: 

   
2

L [ , ] ,mn n t m z h
n

h h Z 





    2m    Xx          (2.57a) 

complemented with the algebraic constraint: 

  
2

( , )n z
n

t


 



 

  x               (2.57b) 

 Such a task can be accomplished in many ways that will produce different results concerning 
the efficiency and convergence of the algorithm to be created. In addition, a formal truncation 
of an infinite system requires a proof that the truncated system's solution converges to the 
solution of the infinite system. Yet, this question is a very difficult mathematical question to 
answer and it is common practice to be omitted during the early stages of a model. As a result, 
we will not concern ourselves with such questions here. The infinite system in discussion is 
not a simple infinite-dimension system of linear pdes, but a system of pdes coupled with an 
algebraic constraint. The asymptotic properties of such systems have not been studied 
methodically, and no satisfactory literature could be found concerning this matter for the time 
being. Hence, no attempt is made to answer such questions. On the other hand, we concern 
ourselves with truncating the problem in such a way that minimizes the computational effort 
(given a constant amount of degrees of freedom) and produce solutions that converge as the 
number of used modes increases.  

The task of the truncated substrate problem of the HCM model, is the computation of an 
approximation of the nonlocal DtN operator: 
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        2 1
0 2 0, 1M MG h        


             x x x ,  

where  
2
M  denotes the approximation of the free-surface modal amplitude. 

 

The truncated version of the model we shall utilize in this thesis is the following: 

 

  
2

L [ , ] ,
M

mn n t m z h
n

h h Z 




    2 1m M      Xx ,      (2.58a) 

  
2

( , )
M

n z
n

t


 


 

  x ,             (2.58b) 

This truncation is not more theoretically justified than any other truncations of the substrate 
problem. Other truncations have also been utilized for this reason, yet this truncation seems to 
be satisfactory regarding computational efficiency and accuracy. A truncation that 
theoretically more consistently calculates the DtN operator is the system:  

  
2

L [ , ] ,
M

mn n t m z h
n

h h Z 




    2 m M     Xx          (2.59a) 

  
2

( , )
M

n z
n

t


 


 

  x               (2.59b) 

This truncated model allows us to minimize the approximate Hamiltonian of the system and 
as a result appears to be a likely candidate for our numerical scheme since no theoretical error 
is inserted in the calculation of the approximate DtN operator. Yet, the substrate system that is 
formed is overdetermined. As a result we require the use of a least square (approximate) 
method to solve the system. Such a method cannot yield an exact solution for the linear 
system but an approximate one. Hence the actual numerical solution we will derive from such 
a model will significantly diverge from the theoretical solution. Furthermore, such linear 
solvers are based on a transformation of the overdetermined system A X B  , where A  is a 

   4 3M M    matrix, to a determined system of the form T TA A X A B  . Hence, except 

for the time needed to solve a linear system, these methods require time for a matrix 
multiplication. As a result the required computational time for such a method is almost double 
than the required time for a determined system of the same dimension. On the other hand the 
truncated system of Eqs. (2.58) is determined and as a result requires much less computational 
time. Furthermore solvers for such systems are much more accurate than least-square solvers. 
However, the solution of such a system does not minimize the corresponding Hamiltonian of 
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the truncated potential. As a result such a model has inherent error inserted to it. However, it 
can be assumed that using enough modes this error can be rendered indifferent for us. Finally, 
other truncations can be used, i.e introduction of a Lagrange multiplier to the aforementioned 
overdetermined system (with the Lagrange multiplier being the DtN operator itself) or even 
subtracting on equation of (2.59a) from the rest. Yet, these truncations have not been studied 
thoroughly enough to be described here. 

Remark on truncations: In both the truncated models presented above the modal amplitude 
of the free-surface mode, the sloping bottom mode, the propagating mode and the first 
evanescent mode are included for any truncation. As a result the truncations refer to 1M  . 
Furthermore, the first 3 equations of the substrate problem together with the algebraic 
constraint of the problem are always included in the truncation. 
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Chapter 3: Implementation of the HCM method using FDM 

3.1 Discretizing the HCM system using Finite Differences 

With the setup and truncation of the HCM system complete, we now focus on the 
discretization of the system in order to implement the model to a computer program. For this 
purpose, we utilize finite differences as our first approach due to their easy and 
straightforward actualization, which would allow us to quickly generate an algorithm for the 
problem and test it on an abundance of different cases. We should mention however, that even 
though in Chapters 1 and 2, we presented the model and its analytical aspects for a 3D space 
domain (2 horizontal dimensions and 1 vertical), the code that is developed using a FD 
scheme strictly addresses problems defined on a 2D space domain. This restriction is imposed 
due to the fact that Finite Differences are not optimal for the case of a 3D domain. They are 
computationally inefficient compared to more advanced methods like Finite Elements and 
handle with more difficulty domains of arbitrary shape. One should notice, that the domain on 
which we solve the problem is not the actual domain of the physical problem, but its 
projection on the horizontal axis or plane. Considering this fact we understand that in a 2D 
space problem, the actual domain of the model will always be an interval of the xaxis. As a 
result, there is no complexity in the representation of the domain and we can easily create the 
needed horizontal grid for the discretization. However, in the case of a 3D domain, its 
projection on the horizontal plane can assume a very arbitrary shape and even though the 
architecture of the scheme is essentially the same in both dimensions, the creation of the grid 
is a much more demanding task (due to its restrictive topology). Hence, for the case of a 3D 
domain, the implementation of the Finite Element Method appears to be a much more 
promising solution for the problem. Such an implementation has been carried out for the 
substrate problem of the HCM method, yet it will not be presented here. 

In this section, we present in detail the discretization to be done for the numerical scheme. 
The aforementioned process is divided into three subsections. In the first one, we deal only 
with the space discretization and the substrate problem, thus restricting ourselves to a fixed 
time *t . In the second one we examine the time-discretization and describe the time-stepping 
method used to solve the free-surface boundary equations in the time domain. Finally, we 
address a more subtle numerical aspect of the model, that of the calculation of the eigenvalues 

, 0nk n   of the Sturm-Liouville problem, as were discussed in Section 1.3.  

 

Space discretization and the Finite Difference Method 

Finite difference methods are numerical discretization schemes used for the purpose of 
solving differential equations by approximating them with difference equations. In these new 
equations, finite differences approximate the derivatives. Towards this goal, we utilize a 
Taylor series expansion for the fields in question: 
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         
 

' (2) ( )
2 ...

1! 2! !

n
i i i n

i i n i

f x f x f x
f x h f x h h h R x

n
       ,        (3.1) 

where !n  denotes the factorial of n  and  n iR x  is a remainder term, denoting the difference 

between the Taylor polynomial of degree n  and the original function. 

The first step of the finite difference method is the discretization of the horizontal domain of 
the problem. In our case, the continuous horizontal domain of the problem  ,a b  is replaced 

by the discretized domain with a finite number of points    
1

,XN
i i

x a b


 , where 1x a , 

XNx b  and  , 1 , 2 ,... ,i Xx a x i i N    with 
1X

b ax
N







. Having done so, 

the fields   and   2

M
n n




 are substituted by their discretized counterparts that consist of 

their values at the (discretized) horizontal domain. The next step, is to replace the horizontal 
derivatives with their finite difference approximates. The algorithm we will construct and 
show, works for an arbitrary order of the FD scheme to be used. However, for the 
presentation to be more concise we will present the finite difference approximates for 4th 
order finite difference schemes. This order is chosen because, as will be shown in later 
sections, it seems to be the most efficient in terms of accuracy and computational cost for the 
problem. Throughout the domain, whenever possible we utilize central differences. The 
representation of the first and second horizontal derivatives for the modal amplitudes of the 
problem        * 2 * 2, , ,x m i x m i x m i x m ix t x x t x           

where 3 ,4 ,... , 2Xi N    by 4th order central differences can be calculated as follows, 
using a Taylor expansion: 

  
 

   
4

5
2

0

2
!

n
nx m i

m i
n

x
x x O x

n


  




                 (3.2a) 

  
 

   
4

5
1

0
!

n
nx m i

m i
n

x
x x O x

n


  




                 (3.2b) 

  
 

   
4

5
1

0
!

n
nx m i

m i
n

x
x x O x

n


  




                 (3.2c) 

  
 

   
4

5
2

0

2
!

n
nx m i

m i
n

x
x x O x

n


  




                (3.2d) 
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To calculate the representation of the first horizontal derivative we need to calculate a linear 
combination of Eqs. (3.2) that will eliminate higher order horizontal derivatives. One can 
easily find the linear combination: 

       
 

 

 
 

 
 

 
 

 

4

2 1 1 2
0

4 4 4

0 0 0

5

8 8 2
!

8 8 2
! ! !

n
nx m i

m i m i m i m i
n

n n n
n n nx m i x m i x m i

n n n

x
x x x x x

n

x x x
x x x

n n n

O x


   

  



  



   



  


    

  
   





  

which results to: 

  
       2 1 1 28 8

12
m i m i m i m i

x m i
x x x x

x
x

   



     

   

In a similar manner we can calculate the representation of the second horizontal derivative as: 

 
           2 2 1 12

2

16 30

12
m i m i m i m i m i

x n i

x x x x x
x

x

    



       

    

These formulas are used throughout the discretized domain in the case of periodic boundary 
conditions, where        1 1 2 2,

X Xm m N m m Nx x x x        . However, in the 

case of wall conditions, central differences cannot be used for 1, 2 , 1,X Xi N N  . For 
these cases we shall use asymmetric differences as well as forward and backward differences. 
For the case of the 4th order formulas in a similar manner as before we get: 

4th-order Forward finite difference scheme: 

 
         1 2 3 4 5

1

25 48 36 16 3

12
m m m m m

x n

x x x x x
x

x

    




    
    

 
       

   

1 2 3 42
1 2

5 6
2

45 154 214 156

12
61 10

12

m m m m
x n

m m

x x x x
x

x
x x

x

   


 




  
  




 

4th-order Asymmetric (1-4) finite difference scheme: 

 
         1 2 3 4 5

2

3 10 18 6

12
m m m m m

x n

x x x x x
x

x

    




    
    
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 
       

   

1 2 3 42
2 2

5 6
2

10 15 4 14

12
6

12

m m m m
x n

m m

x x x x
x

x
x x

x

   


 




  
  

 


  

4th-order Asymmetric (4-1) finite difference scheme: 

           1 2 3 4
1

3 10 18 6

12
X X X X X

X

m N m N m N m N m N
x n N

x x x x x
x

x

    



   



   
 
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4th-order Backward finite difference scheme: 

           1 2 3 425 48 36 16 3

12
X X X X X

X

m N m N m N m N m N
x n N
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x

x
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


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x
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 





  

 

  
  




We turn our attentions on constructing the new discretized substrate problem. The goal of a 
finite difference scheme is to replace a system of linear partial differential equations with a 
linear system of the form A X B   where X  consists of the discretized counterparts of the 
fields we want to find, A  is a square matrix with known elements and B  is a vector with 
known elements. Essential for the construction of the new system are the lateral conditions we 
will impose on it. The two cases we will showcase are the periodic lateral conditions and the 
case of two fully reflecting walls.

 
 

1. Periodic Lateral Conditions 

The discretization of the substrate problem that is complemented with periodic lateral 
conditions is easier compared to the substrate problem with other lateral conditions. This is 
because central finite differences can be used to approximate the first and second derivatives 

of the  *,n ix t  functions in the entirety of the discretized domain. The discretized model 

for this case is presented below: 
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    *

2

L [ , ] , ,
M

mn n i t m z h
n

h x t h Z 




     1

XN
i i

x x


              (3.3a) 

    *

2

, ( , )
M

n i iz
n

x t x t


 


 

     1

XN
i i

x x


               (3.3b) 

Substituting the formulas of the 4th-order central finite difference scheme give us: 

   

   

     

*
2

2 2

1 12 2

2 22 2

30L [ , ] , C A
12

8 16 8 16B A B A
12 1212 12

1 1 1 1B A B A
12 1212 12

M M

mn n i mn m n m i
n n

m n m n m i m n m n m i

m n m n m i m n m n m i t m z

h x t x
x

x x
x xx x

x x h Z
x xx x

  

 

 

 

 

  

     
   

            
                    

 

,h

As a result, the system is transformed into a linear system of the form A X B   where X  
consists of the discretized counterparts of the fields we want to find. The matrix of the system 
consists of    3 3M M    blocks. The last 3M   blocks correspond to the algebraic 

constraint and as a result are identity matrices. The other blocks correspond to the substrate 
equations and are of the form: 

1,3 1,4 1,5 1,1 1,2
, , , , ,

2,2 2,3 2,4 2,5 2,1
, , , , ,

3,1 3,2 3,3 3,4 3,5
, , , , ,

4,1 4,2 4,3 4,4 4,5
, , , , ,

5,1 5,2 5,3
, , ,

0 0 0 0 ... 0
0 0 0 ... 0 0

0 0 ... 0 0 0
0 0 ... 0 0 0
0 0

m n m n m n m n m n

m n m n m n m n m n

m n m n m n m n m n

m n m n m n m n m n

m n m n m n

mnX

    
    
    

    
   


4 4 4 4 4

3 3 3 3 3

2 2 2 2 2

5,4 5,5
, ,

N ,1 N ,2 N ,3 N ,4 N ,5
, , , , ,

N ,1 N ,2 N ,3 N ,4 N ,5
, , , , ,

N ,1 N ,2 N ,3 N ,4 N ,5
, , , , ,

,

... 0 0 0
...

0 0 0 ... 0 0
0 0 0 ... 0 0
0 0 0 ... 0 0
0

x x x x x

x x x x x

x x x x x

m n m n

m n m n m n m n m n

m n m n m n m n m n

m n m n m n m n m n

m

    

    

    



    
    

    
 1 1 1 1 1N ,5 N ,1 N ,2 N ,3 N ,4

, , , ,
N ,4 N ,5 N ,1 N ,2 N ,3

, , , , ,

0 ... 0 0 0
0 ... 0 0 0 0

x x x x x

x x x x x

n m n m n m n m n

m n m n m n m n m n

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
      

 where: 

 ,1
, 2

1 1B A
12 12

i
m n mn mnx x

  
 

,                (3.4a) 

 ,2
, 2

8 16B A
12 12

i
m n mn mnx x

   
 

,                (3.4b) 
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 ,3
, 2

30C A
12

i
m n mn mn x

  


,                 (3.4c) 

 ,4
, 2

8 16B A
12 12

i
m n mn mnx x

  
 

,                (3.4d) 

 ,5
, 2

1 1B A
12 12

i
m n m n mnx x

   
 

,                (3.4e) 

and the right hand side vector is of the form 

           2 1, ,..., ,t t t Mz h z h z hB h Z h Z h Z    
       

  

As we can see the resulting matrix of the system is sparse and its of the blocks described 
before are banded. This result is essential for the numerical efficiency of the method. The fact 
that the matrix is sparse and with an a priori known pattern (which can easily be calculated for 
every order of finite differences) allows as to store the data using sparse matrix representation 
i.e. storing only the nonzero elements and their global place on the matrix. Furthermore, the 
fact that the matrix is sparse and almost banded block-wise, allows us to utilize sparse matrix 
solvers which solve the linear system a lot faster than the normal methods used for full 
matrices. The biggest benefit of the sparse methods, is that the computational time required to 
solve the system raises linearly as the size of the square matrix raises. On the contrary 
methods used for full matrices usually follow a law of 3T c n  regarding the size of the size 
of the matrix n  and the computation time needed for the solution of the system T . 

 

2. Fully-reflecting Wall Lateral Conditions 

The construction of this discretized problem requires except of the use of central finite 
differences the use of asymmetric and forward and backward finite difference schemes. The 
discretized model in the case of fully-reflecting wall lateral conditions is presented below: 

     * ( ) * ( )

2
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In a similar fashion as before we can easily see that the matrix of the system consists of 
   3 3M M    blocks. The last 3M   correspond to the algebraic constraint and as a 

result are identity matrices. The other blocks correspond to the substrate equations and are of 
the form: 

1,1 1,2 1,3 1,4 1,5
, , , , ,

2,1 2,2 2,3 2,4 2,5 2,6
, , , , , ,

3,1 3,2 3,3 3,4 3,5
, , , , ,

4,1 4,2 4,3 4,4 4,5
, , , , ,
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, ,

0 0 ... 0 0 0
0 ... 0 0 0
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 
 
 
      
 
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Notice that due to the use of asymmetrical finite difference schemes at the points 2 1,
XNx x   

the second and 1XN   rows of each block has one more nonzero (in general) element than 
the other rows. This happens because for the asymmetrical finite differences to be of the same 
order as the central and forward and backward, use of more adjacent points is required.  

Finally we should mention that the same form have the blocks of the substrate problem if we 
use the lateral condition: 

  
1 11

( ) ( )

2

A B , 2a a
x n mn n mn mx ax a

n

g n 





                

which, as explained is Section 1.4, is a Neumann condition representing an excitation 
boundary. Hence, such a problem would be an incident wave problem and not an initial wave 
problem. This kind of conditions are not examined here in detail for two reasons. First the 
form of the linear system, concerning the pattern of the nonzero elements, is the same as the 
above case. Second, problems with excitation boundary require the use of incident layers and 
maybe even sponge layers. These kind of layers are artificial and hence effectively hinder the 
conservation properties of the model. As a result, and because they are utilized only for 
incident value problems, we will not delve into their implementation. Finally, we present the 
algorithm used to build the matrix of the system for the case of periodic lateral conditions (we 
don't present the blocks corresponding to the algebraic constraint since they are identity 
matrices): 
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for (int cpoint=0; cpoint<nx; cpoint++){ // Loop over all the horizontal points of the domain. 

 

hcmArray ind(order+1); // The positions of the nonzero elements at every block. 
hcmArray D1(order+1), D2(order+1); // The coefficients of the finite differences for the 1st & 2nd derivatives. 
temp_size = (order+1)*modes; 
 
// Calculate local column-positions of nonzero elements of iith row in the mth row of blocks. 
for(int kk=0; kk<order+1; kk++){ // index loop start. 
 
 ind[kk] = cpoint -order/2 +kk; 
 if (ind[kk] < 0) ind[kk] = ind[kk] +nx-1; // Check if index[ii] < 0. 
 else if (ind[kk] > nx-1) ind[kk] = ind[kk] -nx+1; // Check if index[ii] > nx-1. 
 
} // index loop end. 
 

for(int mm=0; mm<modes-1; mm++){ // Row-block loop start. 
 
 line_counter = cpoint +nx*mm; // Calculate global number of row to be calculated. 
 lines[mm] = line_counter; // Store the global number of the row to be calculated. 
 
 for(int nn=0; nn<modes; nn++){ // Column-block loop start. 
 
  for (int kk=0; kk<order+1; kk++){ // index loop start. 
 
   col_counter  = ind[kk] +nx*nn; // Calculate global column-position of the element to 
be calculated. 
   temp_counter = nn*(order+1) +kk; // Calculate number of non-zero element to be 
calculated mth row. 
   cols[temp_counter] = col_counter; // Store the global column-position of the element 
to be calculated. 
 
   / Store non-zero element. 
   if (kk == order/2) temp[temp_counter] = AA(mm,nn)*D2[kk] +BB(mm,nn)*D1[kk] 
+CC(mm,nn); 
   else temp[temp_counter] = AA(mm,nn)*D2[kk] +BB(mm,nn)*D1[kk]; 
 
  } // index loop end. 
 
 } // Column-block loop end. 
 
 MatSetValues(FCM1,1,&line_counter,temp_size,cols,temp,INSERT_VALUES); // Store the calculate 
row to the matrix. 
 
} // Row-block loop end. 
} // cpoint-loop end. 
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Time Discretization and time-stepping algorithm 

Having finished the discretization of the substrate problem and described the means to solve 
it, we now deal with the time discretization and the method used to advance the solution in the 
time domain. We introduce a time step dt  and the time grid , 0,1, 2, ...,n Tt n dt n N  . 

The time-stepping problem can be described as: given a fixed time value nt  for which we 

know the free-surface elevation  ; nx t  and the free-surface potential  ; nx t  and have 

calculated the Dirichlet to Neumann operator  ; nG x t  or more specifically the free-surface 

modal amplitude  2 ; nx t  , we need a way to calculate the free-surface elevation and free-

surface potential at the next time value 1n nt t t   , by means of the free-surface 
kinematic and dynamic equations: 

  2 1
0 2 0( ) ( ) ( | | 1)t h      

         x x x ,           (3.6a) 

   f22 2 1 sur
0 2 0

1 1( ) ( | | 1)
2 2t

pg h      



         x x ,         (3.6b) 

For the discretization of these equations, we search for a high order method (which would 
yield high accuracy solutions) that also preserves quantities such as the Hamiltonian and the 
total mass of the system. These traits are a necessity since we want the model to handle long-
time simulations. By means of testing we reach the conclusion that the explicit 4th-order 
Runge-Kutta numerical method is a good solution. Although, methods like the Adams-
Bashforth predictor-corrector method are 4th order and require almost half the computational 
time, they do not conserve the energy and the mass of the system. As a result these methods 
cannot be used for long time simulations. We should however mention that the Runge-Kutta 
method is a dissipative numerical method in the sense that it gradually decreases the total 
energy and mass of the system. On the other hand, the rate of said dissipation is very slow and 
doesn't actually hinders the effectiveness of the algorithm in long-time simulations. 
Furthermore, we should mention that the model developed is non-dissipative as a Hamiltonian 
system. All the dissipation the system experiences in long-time simulations is entirely 
artificial and has no physical interpretation since it does not constitute a trait of the model. 
This method is used as follows: 

Runge-Kutta methods are defined for initial value problem of the form: 

  ;d u f u t
dt

 ,  0 0u t u  

It is assumed that the first time derivative of the function y  is dependent only on time and the 

function .u  Notice that in our case  , Tu   . Then, picking a step size t , for the 
classical 4th order Runge-Kutta method we define: 
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  1 1 2 3 42 2
6n n
tu u k k k k

      ,              (3.7a) 

where: 

  i iu u t  and 0it t i t  ,               (3.7b) 

  1 ,n nk f t u ,                 (3.7c) 

 2 1,
2 2n n
t tk f t u k       

,               (3.7d) 

 3 2,
2 2n n
t tk f t u k       

,               (3.7e) 

  4 3,n nk f t t u t k    ,                (3.7f) 

This Runge-Kutta method is a 4th-order method, meaning that the local truncation error is on 
the order of  5O t  while the total accumulated error is of order  4O t . The algorithm of 

the problem is presented below: 

 

t_temp = t_current; 
 
parallel_system_constructor(..., uutemp, uutempdx,...); // Construct Initial linear system at time t = t_temp 
parallel_system_solver(..., uutemp, t_temp,...); // Solve initial linear system at time t = t_temp 
parallel_DtN_calculation(..., uutemp, t_temp,...); // Calculation of DtN. 
// Calculation of right hand side of evolutionary equations (k1 vector). 
parallel_rhs_calculation(..., uutemp, uutempdx, t_temp, k1,...); 
 
// Set uu for calculation of k2 
for(int ii=0; ii<2*nx; ii++) uutemp[ii] = uu[ii] +0.5*dt*k1[ii]; 
t_temp = t_current +dt/2.; 
 

parallel_system_constructor(..., uutemp, uutempdx,...); // Construct Initial linear system at time t = t_temp 
parallel_system_solver(..., uutemp, t_temp,...); // Solve initial linear system at time t = t_temp 
parallel_DtN_calculation(..., uutemp, t_temp,...); // Calculation of DtN. 
// Calculation of right hand side of evolutionary equations (k2 vector). 
parallel_rhs_calculation(..., uutemp, uutempdx, t_temp, k2,...); 
 

// Set uu for calculation of k3 
for(int ii=0; ii<2*nx; ii++) uutemp[ii] = uu[ii] +0.5*dt*k2[ii]; 
t_temp = t_current +dt/2.; 
 

parallel_system_constructor(..., uutemp, uutempdx,...); // Construct Initial linear system at time t = t_temp 
parallel_system_solver(..., uutemp, t_temp,...); // Solve initial linear system at time t = t_temp 
parallel_DtN_calculation(..., uutemp, t_temp,...); // Calculation of DtN. 
// Calculation of right hand side of evolutionary equations (k3 vector). 
parallel_rhs_calculation(..., uutemp, uutempdx, t_temp, k3,...); 
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// Set uu for calculation of k4 
for(int ii=0; ii<2*nx; ii++) uutemp[ii] = uu[ii] +dt*k3[ii]; 
t_temp = t_current +dt; 
 

parallel_system_constructor(..., uutemp, uutempdx,...); // Construct Initial linear system at time t = t_temp 
parallel_system_solver(..., uutemp, t_temp,...); // Solve initial linear system at time t = t_temp 
parallel_DtN_calculation(..., uutemp, t_temp,...); // Calculation of DtN. 
// Calculation of right hand side of evolutionary equations (k4 vector). 
parallel_rhs_calculation(..., uutemp, uutempdx, t_temp, k4,...); 
 

// Set solution of the next time-step. 
for(int ii=0; ii<2*nx; ii++) uutemp[ii] = uu[ii] + dt*(k1[ii] + 2.*k2[ii] + 2.*k3[ii] + k4[ii]); 
 

The function parallel_system_constructor() contains the construction of the matrix and the 
right hand side of the substrate problem. This function was analyzed in the before subsection. 
The function parallel_system_solver() contains the solver of the linear system created by the 
discretized substrate problem. This function does not contain some interesting aspect of the 
model but only technicalities concerning the solution of the linear system. The function 
parallel_DtN_calculation is responsible for the calculation of the Dirichlet to Neumann 
operator for at a specific time. It contains the following algorithm: 

 

for(int ii=0; ii<nx; ii++) DtN[ii] = -uudx[ii]*uudx[ii+nx] +(uudx[ii]*uudx[ii]  +1.)*(fullSolution[ii]/h0 
+m0*uu[ii+nx]); 
 

where fullSoution[1:nx-1] corresponds to the discretized mode 2 . 

The function parallel_rhs_calculation is responsible for the calculation of the right-hand side of the 
evolutionary free-surface equations at a specific time. The following algorithm is contained in the 
function: 

 

for(int ii=0; ii<nx; ii++){ 
// deta/dt = DtN equation 
RHS[ii] = DtN[ii] +layer[ii]*(uu_inc[ii] -uu[ii]); 
// dpot/dt = -g*eta -0.5*(dpot/dx)^2 -psurf/r +0.5*(DtN +deta/dx*dpot/dx)^2 /( (deta/dx)^2 +1 ) equation 
RHS[nx+ii] = -g*uu[ii] -pp[ii] -0.5*uudx[ii+nx]*uudx[ii+nx] + \ 
0.5*pow(DtN[ii]+uudx[ii]*uudx[ii+nx],2.)/(uudx[ii]*uudx[ii]+1.)  +layer[ii]*(uu_inc[ii+nx] -uu[ii+nx]); 
} 
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A note on the calculation of the eigenvalues ,0nk n N   

 To close this section we shed some light to the numerical calculation of the eigenvalues 
,0nk n M   (of the Sturm-Liouville problem) that are derived as roots of the 

transcendental equations: 

 0 0 0tanh[ ( ) ] 0k k h    ,               (3.8a) 

 0 tan[ ( ) ] 0 , 1n nk k h n     ,              (3.8b) 

The calculation of these eigenvalues is accomplished by using the Newton-Raphson 
numerical method. This iterative root-finding method is defined as follows: 

 Let  : ,f a b  be a differentiable function and *x  one of its roots. Furthermore, 

we assume that there exists an interval that includes *x  such that  ' 0f x   for all the 

values in this intervals. Let 0x  be an initial estimation of a root *x  of the function. We 
suppose that the initial estimation is close enough to the root, so the function can be 
approximated between these two values as: 

     0 0 0'y f x x x f x   ,                  (3.9) 

Then a better approximation for the root can be calculated by the formula: 

  
 

0
1 0

0

'f x
x x

f x
  ,               (3.10a) 

or for the nth step: 

  
 1
' n

n n
n

f x
x x

f x   ,              (3.10b) 

For the case of a root with multiplicity one, one can see that this method will converge at least 
quadratically, making it quite efficient.  

For initial estimation of these eigenvalues we use the values: 

 0 0k  , and  / , 1nk n H n   

The algorithm for the iterative Newton-Raphson is presented below for the case of the 
eigenvalue of the propagating mode: 
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// The approximation of the k0 that is to be return from the function. 
double k0_value = m0; // Initial estimation for propagating mode. 
// A variable that stores the value of the function f0=k0*tanh(k0*H)-m0, for every iteration. 
double ff0_value =m0 -k0_value*tanh(k0_value*bathymetry); 
// A variable that stores the value of the function df0 = d(f0)/dk0, for every iteration. 
double dff0_value = -( m0 + bathymetry*(k0_value*k0_value - m0*m0) )/k0_value; 
// A variable used for checking whether the wanted margin of error has been achieved or the maximum number // 
of iterations has been surpassed. While the conditions for the function to stop are not satisfied, checker = true, // 
otherwise checker = false. 
bool checker = true; 
// A variable used for counting the number of iterations we made at each step. 
int iter_counter = 0; 
 
// Check if the initial estimation satisfies the given margin of error for f0. 
if (fabs(ff0_value) < ff_marg) checker = false;  
 
while (checker){ 
 // Calculate the df0/dk0 function. 
 dff0_value = -( m0 + bathymetry*(k0_value*k0_value - m0*m0) )/k0_value; 
 // Use Newton-Raphson method to calculate the next estimation of k0. 
 k0_value = k0_value - ff0_value/dff0_value; 
 
 // Recalculate the f0 function for the new k0. 
 ff0_value =m0 -k0_value*tanh(k0_value*bathymetry); 
 
 // Check if the current k0-estimation satisfies the error-margin for the f0 function. 
 if (fabs(ff0_value) < ff_marg) checker = false; 
 
 iter_counter = iter_counter + 1; // Add the executed iteration to the iteration counter. 
 // Checking if we surpassed the maximum number of iterations. 
 if (iter_counter == max_iter) checker = false; 
} 
 
return k0_value; // Return final estimation of the k0 value. 
 

In a similar manner the method for the evanescent modes can be written. Since the function 
 f x  and it derivative can be calculated analytically this method does not suffer from 

implicit error estimates concerning numerical differentiation or approximation of the function 
itself. However, the major drawback of this method is the need to calculate the values of 
tanh[ ( ) ]nx h  and tan[ ( ) ]nx h  for every iteration. These functions are very costly 
computation-wise to be calculated numerically in a program. Yet the method was shown to 
converge fairly fast, in only a few iterations for up to accuracy of 1410 . In general the 
calculation of these eigenvalues only consumes a minor percentage of the total computational 
time of the program compared to that of solving the substrate problem. 
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3.2 Numerical Simulation of the HCM system using analytic solutions 

With the discussion on the numerical scheme used for the simulation completed, we now 
want to test the accuracy and efficiency of the created model. To make the examination of the 
system more concise, it is desirable to test each of the components of the problem separately. 
Since the model itself is decomposed to two coupled problems (the substrate problem and the 
free-surface evolution equations) we can first examine the efficiency of the substrate problem 
(i.e. the calculation of the DtN operator). Such a test case will only require the calculation of 
the DtN operator of the problem given a free-surface elevation and free-surface potential 
(Dirichlet data) at a fixed time. This way we can focus on the ability of the code to efficiently 
and accurately calculate the Neumann data of the problem (free-surface normal potential 
derivative) given the corresponding Dirichlet data. To do so, we shall use a problem that has 
an easy to find closed-form solution. It should be noted though that such a problem has no 
physical interpretation. The accuracy of the code will be tested by calculating the 2L error of 
the numerically computed Dirichlet to Neumann operator and the modal amplitudes 

  2
M

n n


 of the substrate problem, with their analytical counterparts. The error for the above 

fields will be calculated as  

  
   

 
2

2

2

numerical analytical

analytical

F x F x
E F

F x


 ,             (3.11) 

where 2.  is the 2L norm and  F x  is the field in discussion.  

The efficiency of the system concerns the number of modes and the number of horizontal 
points required to reach the accuracy threshold of the problem (or at least a satisfactory 
accuracy) concerning the DtN operator and the modal amplitudes   2

M
n n


. We will 

furthermore examine the effect of the order of the finite difference scheme to the accuracy of 
the results. The efficiency of the code is a crucial wanted trait, since otherwise long-time 
simulations of large (in the sense of the horizontal discretization) problems will be rendered 
practically impossible. For that purpose we shall showcase the results of the simulations for a 
large variety of the number of horizontal points, used modes and orders of finite difference 
schemes. It should be noted that the accuracy threshold that was mentioned above is not a trait 
of the system that is theoretically predicted. Most numerical schemes either exhibit a 
threshold of accuracy or, if the discretization grid becomes too fine, a blow-up of the relative 
error. This can easily be seen in the current model since the elements of the matrix, produced 

by the discretized substrate problem, contain the quantities 1 , 1 ,2i i
x

 , see Eqs. (3.4), 

and as a result approach infinity as 0x  . Therefore, it becomes obvious that there exist 
a constraint concerning the ability to refine the space discretization. Furthermore, adding 
additional modes raises the dimension of the linear system to be solved and subsequently its 
condition number. As a result, inclusion of more modes (and as a results more equations of 
the substrate problem) can only improve the accuracy of the method up to a point. These 
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effects can be schematically understood through a methodical study of a simple mathematical, 
in the sense that it has no direct physical counterpart, example.  

The case to be tested comprises of a laterally periodic initial value problem. The horizontal 
domain is the interval  0, 2 . The bottom is flat with depth   1h x  . The free-surface 

elevation is the periodic function    0 cosx e x   while the potential throughout the 

domain is: 

      , cosh cosEX x z z h x   ,              (3.12) 

This case has been presented in various papers, first introduced in  (Nicholls & Reitich, 2001) 
and further exploited in (Fazioli & Nicholls, 2010), where the efficiency of calculating DtN 
operators is tested. This function can be easily shown to comply with the Laplace equation, 
the impermeability condition and the periodicity of the domain:    0 , 2 ,EX EXz z 

. Given the above problem, we can now calculate the analytical formulae of the DtN operator 
and the HCM system's modes: 

a. The free-surface modal amplitude, as seen in Section 1.3 is defined from the following 
relation: 

 
   

     

2 0 0

0 0sinh cosh cos

EX EX
z z z

x h

h H H x
 

 

 

   
            

   

,            (3.13) 

b. For the case of a flat bottom domain, the sloping bottom modal amplitude is zero 
everywhere: 

  1 0x  ,                  (3.14) 

Since the sloping bottom amplitude is zero globally, we could neglect the sloping bottom 
mode from the equations and reduce the substrate system. This way we could also potentially 
raise the accuracy of the solution since the system's dimension would be decreased as well as 
the error produced by the sloping bottom amplitude (numerically it could never be zero) 
would be neglected. Yet, this approach does not seem desirable since we would be unaware of 
the error in the calculation of the sloping bottom amplitude, an error very important in cases 
where the bottom is not flat. As this case constitutes the first test of the numerical behavior of 
the substrate system it would not be wise to a priori demand the system to behave as its 
theoretical counterpart. Instead we should observe its efficiency in complying with said traits. 
As a result the sloping bottom amplitude is kept throughout the problem as a field to be found. 

c. From Section 1.3, we can easily get the following formula for the propagating modal 
amplitude of the system: 
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    0 2 2 0 0 2 2 0
00 00

1 1EX EX

h h h

x Z Z dz Z dz Z Z dz
A A

  

     
  

 
      

 
    

Separating the integral in two terms and calculating the first term of the right side gives us: 

      
 

0
0

0

cosh
cosh cos

cosh
EX

h h

k z h
Z dz z h x dz

k H

 

 

         

  
     0 0

0

cos
cosh cosh

cosh
EX

h h

x
Z dz z h k z h dz

k H

 

 

         

Making the substitution of variables: z hu dz du H
H


    within the integral, we have: 

  
     

1

0 0
0 0

cos
cosh cosh

cosh
EX

h

H x
Z dz H u k H u du

k H





      

  
 

   
1

0 0

0 0
0

0

0

sinh 1 sinh 1
cos 1 1

cosh 2

u
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h

u

Hu k Hu k
H x k kZ dz

k H H









       
 

    

Using the trigonometric formula:          sinh sinh cosh cosh sinhx y x y x y   , while 

also utilizing the dispersion relation 0 0 0tanh[ ( ) ] 0k k h     corresponding to the 

propagating eigenvalue and gathering the terms together we have; 

 
     0

0 2
0

sinh cosh cos
1

EX

h

H H x
Z dz

k

 



    
   

or utilizing the analytic expression of the free-surface mode of Eq. (2), we have: 

 
 

 
2

0 2
0 01

EX

h

x
Z dz

h k

 



 
 ,             (3.15a) 

Calculating the second term of the right side of the initial equation: 

    
 

2
0

2 2 0 2 2 2
0

cosh
1

coshh h

k z hz h
Z Z dz a a H dz

H k H

 

   
 

         
  

    

Similarly, substituting z hu dz du H
H


    and calculating the integrals: 
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Following the same steps described for the first term of Eq. (4) we arrive at the result: 

 0 2 02
2 2 0 2 4 2 2

0 0 0

2 2

h

a aZ Z dz
H k k k

  
   



 
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 
 ,            (3.15b) 

Finally replacing the above formulas to Eq. (4) and noting that 0 0
2

0

1
2
h

a
h

 
  , we have: 

    
 

2 0 2
0 42 4

00 00 0 0

21x ax
A H kh k k

 
 

 
  

  
,           (3.15c) 

d. Calculation for Evanescent modal amplitudes: 

    2 2
1 EX

n n
nn h

x Z Z dz
A



  


     

As before we calculate the two terms of the integral independently, utilizing the substitution 

of variables z hu dz du H
H


   , the dispersion relation 0 tan[ ( ) ] 0n nk k h     as 

well as the trigonometric formula:          sin sin cos cos sinx y x y x y   , we can 
easily derive the formulae: 
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 
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  ,         (3.16a) 

 2 2 02
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  
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 
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  ,             (3.16b) 
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0
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
 

 
  

  
,            (3.16c) 

Finally we can calculate the form of the Dirichlet to Neumann operator from the expression: 
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or utilizing Eq. (2) we have: 

  2 2
0

0
1x x xG

h


    
                

,             (3.17) 

We shall compare the numerical results with the analytical expression derived above. We will 
run multiple simulations for many values of the order of finite difference schemes, the 
number of modes used and the space discretization scheme. 

We start by presenting some results for 4th order finite differences: 

 

Figure 2: Relative 2L error of the DtN operator with regard to the number of horizontal points XN  

and total modes MN  used for the simulation. 

As can be seen from the above Figure, the numerical calculation of the DtN operator reaches a 
plateau of accuracy, as expected, that is near to 910 . It should be noted that for the 
simulation we used long double variables for the C++ program. The rate at which the 
simulation reaches this plateau seems to be more rapid while we increase the number of 
modes rather than while we refine the discretization. However, concerning the computational 
time of the simulation, raising these two parameters by the same percentage does not result in 
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the same raise of the computational cost. This assertion can easily be validated by simply 
examining the change in the matrix created by the substrate problem and presented in Section 
3.1. At a first glance we see that by raising either parameter by a factor of a  in both cases the 
dimension of the matrix will change from X MN N  to X Ma N N . The run-time required for a 
linear solver algorithm is dependent on the number of floating point operations needed. For 
the case of full matrices, this number has a 1 1  correlation with the size of the matrix, but for 
the case of sparse matrices, that is  not the case since we also need to know the raise of the 
number of nonzero elements. As can be seen in the books (Saad, 2003) and (Davis, 2006) 
most sparse algorithms have a run-time of the form  O N  or  logO N N , where N  is the 

number of nonzero elements of the matrix. Then, for the case of a refinement of the horizontal 
discretization, we have more horizontal points and as a result the equations of the system must 
be satisfied on all of them, while the total number of block matrices of the total matrix does 
not change. Hence, because the number of nonzero elements at every row of a block of the 
matrix depends only on the order of the finite difference scheme (and the lateral conditions) 
the nonzero elements at every row remain the same. As a result, for a refinement of the 
horizontal discretization by a factor of a  the number of nonzero elements is raised by a factor 
of a . In a more practical manner we can state that this happens because the number of rows of 
the matrix is increased by a , while the number of nonzero elements at every row remains the 
same. On the other hand, for the case of an increase in the number of modes, not only we 
increase the number of unknown fields (and as a result the size of the linear system) but we 
also increase the number of substrate problem equations (we take a higher truncation of the 
infinite system) for the discretization of the system. As a result this yields a total increase on 
the number of the nonzero elements of the matrix in the order of 2a , and as a result a similar 
increase in the computational time. Hence, it is expected a raise of modes to yield higher run-
times than a raise of the used horizontal points. We showcase  these observation at the Table 
below: 

Run-time calculations with a 4th-order FD scheme on 1 core of an Intel Core i5-4210U CPU 
Matrix dim = 5,120 Matrix dim = 10,240 Matrix dim = 20,480 Matrix dim = 40,960 

/X MN N  [sec]T  /X MN N  [sec]T  /X MN N  [sec]T  /X MN N  [sec]T  
256 / 20 1.055 256 / 40 4.550 256 / 80 22.434 256 / 160 104.608 
512 / 10 0.894 1024 / 10 1.313 2048 / 10 2.718 4096 / 10 6.014 

Table 1: Comparing run-time results for horizontal grid refinement and raising modes. 

 

Another important result of the Figure 1, is the fact that if too few horizontal points or modes 
are used the simulation cannot reach the optimal plateau of accuracy no matter how much we 
raise the other parameter. Such a result is also expected since no accurate results can arise 
from simulation that correspond to a very small truncation of the system or too little 
horizontal points (therefore, poor representation of the initial data). Finally, we should state 
that in simulations concerning large problems we are only interested in the results presented at 
the top corners of Figure 1. The horizontal domain of the problem presented here corresponds 
entirely to one wavelength (not in a literal sense since the free-surface elevation presented 
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does not correspond to a real wave) and as a result the entirety of the horizontal grid simulates 
just that. However, in a case that corresponds to a practical problem, the domain's length is 
tenths or hundreds if not thousands of wavelengths long (taking the wavelength of a wave 
present in the problem as a guide). Hence, it is not realistic to assume that we can represent a 
single wave with a few hundreds or even thousands of horizontal points. Furthermore, usage 
of as many as a few tens of modes will render the needed time of the simulation totally 
impractical for a simple computer to handle. However, we can see that even for 4 modes and 
16 horizontal points the total 2L error is approximately 410  and with a horizontal 
discretization of a few tens of points and 6-10 modes we can achieve results with satisfactory 
accuracy. Hence, these results will be taken into account for the choice of the parameters for 
simulations to follow.  

Moving forward we now present the 2L error of some modes of the problem. 

 

Figure 3: Relative 2L error of the modes 2 , 1 , 0 , 1  with regard to the number of horizontal 
points and total modes used for the simulation. 

The relative error of the free-surface mode 2  is similar to the error of the DtN operator, an 
expected result since the Dirichlet to Neumann operator is given by the Eq. (3.16). The 
relative error of the sloping bottom mode 1  displays a different behavior than the one of the 
free-surface mode. Here, the defining criterion for the error is the number of modes used, 
while the number of horizontal points does not seem to matter much in the relative error. This 
behavior is not assumed to be general for this mode but an exception for this case, since the 
bottom of the problem is flat. As a result, the bottom geometry is always described exactly by 
the approximation, no matter how many points are used, while the sloping bottom mode is 
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equal to  1 0x  . We also observe a slight increase of the relative error for raising 

control points while keep fixed number of modes for a case of large modes. This effect may 
be attributed to the raise of the condition number of the system while the control points are 
increasing. The relative error of the propagating mode 0  and the first evanescent mode 1  
behave similarly but with the error of the evanescent mode being bigger. This can be 
attributed to the fact that the absolute error of the two modes are approximately equal but, 
because the propagating mode takes much larger values, its relative error is smaller. The 
aforementioned note combined with the fact that the measure of the evanescent modes 
decreases by a value of  4O n , may lead us to assume that there is a specific number of 

modes we can actually calculate satisfactory and this could potentially lead to a breakdown of 
the method. The next Figure addresses this concern: 

 

Figure 4: 2L relative and absolute error of the first 29 modes of the system with regard to the number 
of total modes used, for 512 control points. 

From the left plot of Figure 3 it is clear that the modes we can calculate with the biggest 
relative accuracy is the free-surface mode 2  and the propagating mode 0 . The evanescent 

modes exhibit a steadily decreasing accuracy of the relative 2L error although this error 
drops as we refine the grid. However the right plot of Figure 3 showcases that the absolute 

2L  error of the evanescent modes actually decreases as n  rises. By absolute error we mean 
the quantity    

2numerical analyticalF x F x . Hence, no problem should arise from using many 

modes since the accuracy of the model is not hindered. The decrease of the relative error for 
the modal amplitudes of the evanescent modes is simply a result of the rapidly decaying field 
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strength. This observation combined with the results of Table 1, make us assume that the 
optimal number of modes to be used for simulations would be 6-12 modes in total.  

To observe this result from a different view we also present the norm of the modal 
amplitudes. For this case we use the 2C  norm since the substrate problem id dependent up to 
the second horizontal derivatives of the modal amplitudes. This norm is defined by the 
relation: 

 2
1 2 2

0 0n n x n x nC
h h    

  
     ,             (3.18) 

an expression that can be analytically calculated for all the modal amplitudes. The results are 
presented in the following figure: 

 

Figure 5: Presentation of the  2C X  norm of various modal amplitudes of the system 

From this figure we can deduce that evanescent modes of large number do note effect the 
equations of the substrate problem significantly. Hence, the increasing relative error for these 
modes is not important for the efficiency of the code. Furthermore, one can observe that in 
Figure 3 we did not show the 30th mode even though all simulations have at least 30 modes. 
This happened because in every simulation the last mode used is not calculated correctly since 
the substrate equation that it corresponds to is not included in the truncation of the problem. 
This behavior is visible in the following Figure: 
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Figure 6: Presentation of the 2L error of the last mode of a number of simulations. 

As it can be seen, this behavior is limited for the case where 10MN  ,and is more visible as 
the number of total modes increases. Of course, this diagram does not imply that the absolute 

error for the last mode increases as the number MN . Since we know that  4
n O n 


  as 

n  goes to infinity, it simply means that the magnitude of the absolute error, is one or more 
orders bigger than the measure of the mode. 

For now we only checked the spatial accuracy of the method for changing the total number of 
horizontal grid points. However, spatial accuracy of the model is also related to the order of 
the finite difference scheme we utilize. For this purpose, we now proceed to calculate the 
relative 2L  error of the DtN operator while implementing the finite difference scheme with a 
variety of orders. We  run a number of simulations for 2nd, 4th and up to 12th order schemes 
parametrized by the number of total used modes or the number of horizontal points (while 
keeping constant the other factor). We begin our examination with the case where we keep a 
constant number of horizontal points and raise the number of used modes within the interval 

 4, 70MN  . Even if our current study is limited to a domain of small horizontal length we 

want to be able to utilize the results here for larger cases. As a result, the number of horizontal 
grid points should not be too large since it would not be able to correspond to practical cases 
and also the problem would reach fast its plateau of accuracy for all the schemes. For this 
reason we choose to run the simulations with 64 horizontal points as a logical degree of detail. 
The results of these simulations concerning the 2L error of the DtN operator are displayed in 
the Figure below:  
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Figure 7a: Presentation of the 2L error of the DtN operator for 6 different orders of finite difference 
schemes with 64XN  . 

Firstly, we observe that each method reaches a different plateau of accuracy, logically, 
smaller as we raise the order. We also note that high order schemes reached, for the current 
horizontal discretization, a relative error so low that the 4th order scheme cannot reach no 
matter how many horizontal points or modes we use. This can be explained from the fact that 
high order schemes calculate the spatial derivatives of the problem with much higher 
precision than their lower-order counterparts. Hence, this results can act as another way of 
ensuring that the model has no errors in its implementation and the numerical threshold of the 
4th order is related to some kind of bug in the code or inherent error of the model. We should 
however mention that for practical applications, 4th order and 6th order schemes seem to be the 
best in balancing computational time and accuracy of results while higher order finite 
differences find little application. We could although utilize higher order schemes for cases 
where a wave will pass over a very abrupt change of bathymetry (only during these moments) 
in an attempt to better calculate the spatial derivatives of the model better during that time. 

We now run another series of simulations, for many orders of finite differences, where we 
change the number of horizontal points while keeping constant the number of used modes to 

12MN  . This number of modes again corresponds to a value that can be utilized for 
problems with time-evolution and large horizontal domains. The results of these simulations 
concerning the 2L   error of the DtN operator are displayed in the Figure below: 
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Figure 7b: Presentation of the 2L  error of the DtN operator for 4 different orders of finite difference 
schemes with 12MN   

In contrast with the case where we kept constant the number of horizontal points, we now 
observe that all the schemes converge (except for the 2nd order that has yet to converge) to the 
same accuracy threshold. This can easily be explained from the fact that both raising the order 
of the model as well as raising the number of horizontal points, only effect the spatial 
accuracy of the model. Hence, by keeping the number of used modes constant we always use 
the same truncated sets of partial differential equations for the substrate problem and this 
threshold corresponds to exactly that accuracy threshold of the truncated substrate problem. 

 

Finally, we study the effect of the amplitude 0e  of the free-surface elevation of the wave, with 
regard to the accuracy of the calculation of the DtN operator for the system. For this purpose, 
we multiple run simulations with the free-surface elevation given by the formula 

 0 cose x   and parameter values 0 0.1, 0.3, 0.5, 0.7, 0.9e  . A 4th order finite difference 

scheme will be utilized and a total of 256 horizontal points. The total number of modes will 
be from 4 to 50. The results are presented in the figure below: 
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Figure 8: Presentation of the 2L  error of the DtN operator for a variety of different amplitudes of 
free-surface elevations. 

As can be seen from Figure 7, all the cases reach a plateau of accuracy relatively fast with 
regard to the total number of used modes. As expected, the most linear case, where 0 0.1e  , 
admits the highest accuracy for the DtN operator, where the most nonlinear case with 

0 0.9e   has the worst relative error. Yet, the most linear case experiences a relative error of 
only an order of magnitude smaller than the worst case. This result showcases us that the 
present method’s accuracy is not highly dependent on the nonlinearity of the problem. Many 
other models experience high drops of accuracy by raising the nonlinearity of the problem, 
especially those that are based on a petrubation of the linearized problem. Hence, this result 
seems to be encouraging for the ability of the model to handle problem with high nonlinearity 
(always without breaking of the wave though). 

Note: In the previous paragraphs we stated that we wish to calculate the DtN operator (and 
furthermore the free-surface elevation and potential) with as much accuracy as we can. 
However, we should state that said accuracy was never meant to represent the accuracy of the 
problem compared with its physical counterpart in a long-time simulation. This low relative 
error is wanted for the purpose of the algorithm to be as stable as possible during long time 
simulations, so it will conserve energy and mass as best as it can during the simulation. It is 
well understood that the relative error of the method compared to a experimental solution or 
other fully nonlinear methods would be many magnitudes higher. 
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A remark regarding the value of the parameter 0  

Throughout the discussion presented above, we never mentioned anything regarding the 
choice of the parameter 0 . A theoretical justification regarding the optimal value of this 
parameter (for smaller relative error on the calculation of the DtN operator) will not be 
presented here. By trying different values we have found that for the case presented here the 

optimal value of this parameter is given by 
2

0 g


  , where   is the frequency of a wave 

with wavelength 2l  , characterized by the dispersion relation of the linear water wave 

problem:  0tanhg k k h  , with k  being the wavenumber of the wave, and 0 1h   is 

the depth of the domain. To showcase this result, we present the 2L  error of the DtN 
operator, for a variety of used 0  values. The horizontal discretization of the problem consists 

of 256  points and a 4th finite difference scheme is used. In the following figure * 2
0 / g 

: 

 

Figure 9: 2L   error fo the DtN operator for a various values of the parameter 0  
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3.3 Numerical Simulation of Solitary Waves in a closed wave tank 

In section 3.2 we investigated the accuracy and efficiency of the substrate problem using an 
analytical example. Knowing that the substrate problem is solved without problem, we can 
now examine time dependent problems and be able to test the efficiency of the free-surface 
evolution equations. The main purpose of this section is to test the efficiency of the 
Hamiltonian Coupled Mode System (HCMS) in solving highly demanding physical problems. 
By demanding we mean a problem that is both rich in physical phenomena as well as 
demanding in its domain size whether that is the space domain or the time of the simulation. 
For these two purposes, the study of solitary waves comes as a natural decision. In order to be 
able to easily check the results in time, we assume a flat bottom. This way, at every moment 
we can easily compare the numerical solution with its theoretical counterpart. Solitary waves 
are waves that are not easily simulated by linearized or physically reduced models, therefore 
they are a very interesting test case for the current code. Furthermore, the modeling of such 
waves and their concerning behavior requires a very demanding discretization both in the 
time and in the space domain. As a result, models based in Boundary Element Methods 
require excessive amounts of computational time, rendering them an expensive (time-wise) 
solution. Hence, it is of great importance to highlight this method's ability to solve such cases 
with high precision and much lower computational time.  

Solitary waves are defined as time-independent and periodic solutions of the water-wave 
problem, of infinite wavelength. As a result such waves propagate unchanged with a constant 
speed. The first documented encounter of a solitary wave is attributed to J. Scott Russell, who 
claimed to see such a wave in 1834 at the Edinburgh-Glasgow canal. Russell named the wave 
as "Wave of Translation" in the sense that there is significant net mass transport during the 
propagation of the wave. Russell's observations seemed to contradict the at the time 
established theories of hydrodynamics by Isaac Newton and Daniel Bernoulli. Since the 
existing models could not explain such a phenomenon many scientists of the era had trouble 
accepting Russell's observations. It would take till 1879 when Boussinesq and Lord Rayleigh 
published a theoretical treatment of solitons. Later, on 1895 D. Korteweg and C. de Vries will 
provide the known Korteweg-de Vries (KdV) equation, including solitary waves and periodic 
cnoidal wave solutions. The first simulation of solitary waves will come at 1965 by N. 
Zabusky and M. Kruskal who first documented the soliton behavior in media subject to KdV 
equations in a numerical investigation using a finite difference approach.  

For the case of linear equations, such as the classical wave equation 2 0tt xxu c u  , the 

solutions produced by such a constraint have the arbitrary form:      ,u x t f x ct f   

. On the other hand a nonlinear equation will usually determine a restricted class of profiles 
which often play an important role in the solution of the initial value problem as .t   As 
one can read in the book (Drazin & Johnson, 1989):  

"A travelling wave continually steepens and if allowed it will break and become multivalued. 
Similarly the effect of dispersion alone also produces a wave which forever changes its shape, 
but in the opposite sense (it spreads out). Perhaps these two effects many maintain a balance 
and produce a wave of permanent form." 
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Since no close form solutions exist for the classical water-wave problem, different solitary 
waves are produced from various simplified models where solitary wave solutions can be 
found analytically. Such known examples are the KdV equations and the Serre-Green-Naghdi 
(D Mitsotakis, Synolakis, & McGuiness, 2015) equations and other Boussinesq-type 
approximate models of the Euler equations. Our model as a non simplified one, cannot yield 
easily analytical solutions. Therefore, we must utilize numerically generated solutions of 
solitary waves. The method used here is the one presented in (Clamond & Dutykh, 2013), 
from which we will derive the initial free-surface elevation  0 x  and free-surface potential 

 0 x . In said paper, a fast method of numerically calculating gravity solitary surface waves 

of the full Euler equation in water of finite depth is developed. The method is based on 
Babenko's reformulation of the classical problem while for the numerical scheme it utilizes 
Petviashvili's iteration method. Their MATLAB code if freely provided.  

For the simulations to follow, we consider the initial value problem presented below: 

The nonlinear free-surface evolutionary equations: 

   2 1 ( )
0 0( ) 1 [ , ]M

x x xt h h               
,
         (3.19a) 

   22 2 1 ( )
0 0

1 1( ) ( ) 1 [ , ]
2 2

M
x xt g h h                ,   (3.19b) 

with initial values at 0t   : 

 0( ,0)x     0( ,0)x     x X  ,          (3.19c) 

where ( )
2[ , ]M h    is the first element (the free surface mode) of the solution 

  2
M

n n


 obtained from the boundary value problem on X  , which is referred to as the 
substrate problem: 

 2

2

A B C 0
M

m n x n m n x n m n n
m

  
 

      ,  2, 1, ...., 1m M    , x X ,          (3.20a) 

 
2

M

n
n

 
 

                    (3.20b) 

  
2

1A B 0
2

M

x n mn mn m n nz h
n x a

xh Z Z 


 

             
 , 2, ..., 1m M      (3.20c) 

  
2

1A B 0
2

M

x n mn mn n m n z h
n x b

xh Z Z 


 

             
 , 2, ..., 1m M   ,     (3.20d) 
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with 

 A mn n m
h

Z Z d z



                   (3.21a) 

  B 2mn x n m x m n z h
h

Z Z d z h Z Z





                  (3.21b) 

 2 2C ( ) ( , )mn x n z n m h x n z n m z hh
Z Z Z d z Z Z Z






          N            (3.21c) 

Eqs (3.19a)-(3.19c) & (3.20a)-(3.20d) comprise the classical coupled nonlinear free-surface 
evolution equations and the linear substrate problem as presented in Section 1.4. 

In this simulation we are mainly interested on whether the model retains the constant form of 
the solitary wave (its free-surface elevation and free-surface potential) as it propagates. Such 
error estimates shall be carried out using the following general formula: 

  
   

 
2

2
2

, ; ,

,
Initial

Initial

F x T t F x T
E F

F x T

 
  ,                (3.22) 

where 2.  : is the 2L  norm and  , ;F x t t : is the quantity in discussion. 

Another important aspect of the problem is the examination of the conservation of the total 
mass and Hamiltonian of the solitary wave over a long period of time. These quantities will 
be presented in the form: 

      
 

0

0

H t H t
ER H

H t


  ,       
 

0

0

M t M t
ER M

M t


           (3.23a,b) 

Where   21 ,
2 X

H G h g dx        is the Hamiltonian of the system  

while     ; ;
X

M x t h x t dx   is the Mass of the system 

We will display the aforementioned quantities in a systematic manner. We made a number of 
simulations changing a number of different parameters of the system. These parameters are 
the space and time steps: dx  and dt , the number of modes of the system and the order of the 
finite difference scheme. This way we can understand how fine discretization and the number 
of modes the system needs to present satisfactory convergence and what finite difference 
scheme is the most efficient computational wise. The domain of the simulations is of depth 

0 1h   and of length 0100h . The solitary wave is of amplitude 0/ 0.4a h   and initially is 

centered 025h  from the left lateral boundary. The length of the domain is not large enough for 
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the simulation to be thought as a long-time one. Yet, this case is only used for the purpose of 
deducting important conclusions for the accuracy of the method. The behavior that the error 
will exhibit for this domain will also be seen in bigger ones, hence in this step there is no need 
for a bigger domain. The modes used for these simulations will vary from 6 to 12. The 
horizontal and time spacing will also vary with the constraint that the Courant number of the 

system will always be equal to 0.5dtC c
dx

  , where  3.69056 / secc m , the 

propagation speed of the solitary wave. Results of these simulations are presented below 

Maximum Error of Conservation of Mass of every simulation 
 0.8dx    0.4dx    0.2dx    0.1dx    0.05dx    0.025dx    

4m    41.014 10   63.002 10   87.248 10   82.406 10   81.421 10   95.3108 10   
6m    59.257 10   62.392 10   83.312 10   82.312 10   81.578 10   91.8744 10   
8m    59.110 10   62.332 10   83.124 10   82.093 10   81.874 10   93.0459 10   
10m    59.064 10   62.314 10   83.686 10   82.124 10   81.515 10   94.6860 10   
12m    59.044 10   62.304 10   83.499 10   81.843 10   81.515 10   97.6538 10   

Table 1: Conservation of Mass error of all simulations for Courant number 0.5C   

Maximum Error of Conservation of Hamiltonian of every simulation 
 0.8dx    0.4dx    0.2dx    0.1dx    0.05dx    0.025dx    

4m    31.737 10   57.848 10   61.719 10   73.361 10   71.616 10   71.119 10   
6m    31.740 10   58.196 10   62.897 10   89.507 10   94.427 10   93.765 10   
8m    31.739 10   58.199 10   62.908 10   89.767 10   96.540 10   91.378 10   
10m    31.739 10   58.199 10   62.909 10   89.823 10   95.920 10   96.178 10   
12m    31.739 10   58.199 10   62.914 10   89.851 10   97.101 10   81.138 10   

Table 2: Conservation of Hamiltonian error of all simulations for Courant number 0.5C   

Amplitude Error of Solitary Wave at the end of every simulation 
 0.8dx    0.4dx    0.2dx    0.1dx    0.05dx    0.025dx    

4m    26.44 10    35.09 10    34.06 10    31.69 10    31.15 10    31.03 10    
6m    26.39 10    34.24 10    33.25 10    47.87 10    42.09 10    56.80 10    
8m    26.39 10    34.23 10    33.23 10    47.70 10    41.92 10    55.04 10    
10m    26.39 10    34.23 10    33.23 10    47.68 10    41.90 10    54.88 10    
12m    26.39 10    34.23 10    33.23 10    47.68 10    41.90 10    54.85 10    

Table 3: Amplitude error of solitary wave at the end of the simulations for Courant number 
0.5C   

The phase error of the solitary wave is smaller than the step of the horizontal discretization for 
every case. This means that the simulations did not last long enough for this error to have any 
physical meaning and as a result will not be presented here. From these results, we observe 
that the minimum error in the relative conservation of Mass and Hamiltonian is around 910 . 
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This threshold may be attributed to the nonlinearity of the problem. It should also be noted 
that the amplitude error is almost independent of the number of used modes. This error is 
mainly attributed to the low order representation of the free-surface elevation with the use of 
finite differences (first order polynomials between two consecutive horizontal points). Hence, 
it is logical when no horizontal point exists exactly where the center of the solitary wave 
should be, the wave to appear of lower amplitude. Since it is almost impossible for a 
horizontal control point to coincide with the center of the solitary wave, the solitary wave 
appears to have a slightly lower amplitude. This observation can be showcased from the fact 
that all measurements at Table 3 present smaller amplitudes than the theoretical amplitude of 
the wave.  

We now proceed to do long time simulations for a domain of depth 0 1h   and of length 

0600h . The amplitude of the solitary wave is chosen to be 0/ 0.4a h  . The wave is initially 

centered at 050h  from the left lateral boundary of the domain. The initial data of the problem 
are taken from the Matlab code of (Clamond & Duthykh, 2013). The lateral boundaries of the 
domain are assumed to be fully reflecting walls. A 4th order finite difference scheme is 
utilized and 8 total modes are used. The horizontal discretization of the problem has a step 

00.1dx h  while the time-step is 0.02dt  . We present the conservation of Mass, the 
conservation of Momentum  and Hamiltonian. 

 

Figure 10: Conservation of Mass, Momentum and Hamiltonian for the long-time simulation. 

As can be seen from the above results, the model can efficiently conserve the aforementioned 
quantities without for many modes. Only the solution for 4 modes appear to have a slightly 
different error for the conservation of the Momentum and the Hamiltionian, with all the other 
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cases been practically identical. We now move on to compare the free-surface elevation of 
these simulations for the last time-step. We also present the theoretical position for the 
solitary wave that can be calculated from the constant speed that is given by the code of 
(Clamond & Duthykh, 2013). The results are presented below: 

 

Figure 11: Comparison of free-surface elevation between simulations and the theoretical 
solution from the constant speed taken from (Clamond & Duthykh, 2013), at time 

 139.98 sect   

Once, again the results for the simulations are almost identical. This could mean that the 
spatial and time discretization that was used was very fine, resulting in early convergence 
(with regard to the number of modes) for the error of the method. Furthermore, we can also 
conclude that not many equations of the substrate problem are needed for such cases. 
Another, important trait of the model is the fact that no dispersive trail is developed as the 
solitary wave propagates. This result is presented in Figure 3 below for 4 different instants of 
the simulation. This trait is very positive and encouraging for the accuracy of the model, since 
many models exhibit the formation of a dispersive trail during the propagation of solitary 
waves, (i.e (Mitsotakis et al., 2014)).  
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Figure 12: Free-surface elevation at given time instants for the simulation with 8 modes in 
total. 

 

Figure 13: Comparison of the pressure and velocity field of a solitary wave for 0/ 0.4a h   at 
different instants, using 8 modes. 
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Reflection of solitary waves on a vertical wall 

We now proceed to present results for the case of reflection of solitary waves on a vertical 
wall. This case can be assumed equivalent to a head-on symmetric collision of two identical 
solitary wavers for the case of an irrotational, incompressible and inviscid flow. Such a 
problem will allow us to examine the validity and efficiency of the wall conditions we defined 
on the lateral boundaries of the domain. Also, it will test the behavior of the simulation to an 
abrupt rise in the nonlinearity of the problem. In papers like (Maxworthy, 1976) and (Chan & 
Street, 1970) experimental results we presented for the case of solitary symmetric collision 
and reflection on walls for a wide range of amplitudes. A comparison of the maximum run-up 
calculated by the simulation, for the various amplitudes, with these results is a way to 
evaluate whether the code can model effectively such highly nonlinear and sudden 
phenomena. These results can also be compared with simulations from other methods, such as 
the modified Serre-Green-Naghdi system presented in (D Mitsotakis et al., 2015), the series 
expansion of the Dirchlet to Neumann operator in (Craig, Guyenne, Hammack, Henderson, & 
Sulem, 2006), a KdV model presented in (Byatt-Smith, 1988), a Boundary Element method 
presented in (Cooker, Weidman, & Bale, 1997) and a Boundary Integral method presented in 
(Chambarel, Kharif, & Touboul, 2009). Furthermore, the conservation of mass and 
Hamiltonian throughout the simulations will be presented as a way to check the efficiency of 
the problem. Finally, the instantaneous wall-force from the collision will be presented as well 
as a comparison of results from the wall-reflection model and a symmetric collision since 
these two models are theoretically equivalent. An important note for these simulations can be 
found in the experimental report of Maxworthy, where for solitary waves of amplitudes larger 
than / 0.60a h   a jet like formation is observed during the collision which breaks into 
individual drops. Such a phenomenon leads to a multivalued free-surface elevation and as 
such, our simulations are expected to break for these values of amplitudes (otherwise the 
simulation would model the problem incorrectly).  

For the setup of this problem we assume a domain of depth 0 1h   and length 0100 h . For the 
lateral boundary conditions we use the Robin type boundary conditions: 

  
1 11
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n 





              ,            (3.24) 

The solitary wave is assumed to start from the middle of the domain and heading towards the 
right boundary of the domain. For the initial data of the problem we use once again the 
Matlab code of the method presented in (Clamond & Dutykh, 2013). Throughout all the 
simulations 4th order finite differences are used as well as 8 modes in total. The space and 
time discretization for amplitudes up to 0/ 0.35a h   are  0/ 0.05dx h   and 0.01,dt 

while for higher amplitudes we halve the above steps. Finally we should mention that for the 
wave amplitude of 0/ 0.60a h   the domain had a total length of 050h  with the initial wave 

be centered at a distance of 030h  measured from the left wall. We now compare the 
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maximum runup we calculated for the solitary waves at the wall with experimental results and 
other numerical models: 

 

Figure 14: Comparison of Maximum run-up for wave collision of different simulations and 
experimental results. 

From the above figure we can see that the experimental results deviate significantly from the 
numerical simulations, which are all based on the assumptions of irrotationality and inviscid 
flow. Furthermore, the experimental data show a significant difference for the maximum run-
up for the case of a symmetrical wave collision and a wall-reflection. These differences may 
be attributed to viscosity and the inability to generate identical waves in a wave tank. As a 
result we conclude that a safer way to estimate the accuracy of our calculations is their 
comparison with the results derived from the fully nonlienear BEM models presented above. 
The BEM and BIEM models presented above are on a very good agreement with our 
simulations for all the amplitudes we could run. On the other hand the methods of Craig and 
Mitsotakis agree with ours until the amplitude / 0.40a h   and deviate from ours after that. 
In addition, our assumption that we would be unable to simulate collisions for solitary waves 
of amplitude larger than / 0.60a h   (in contrast with the BEM models) is verified from the 
above Figure. This behavior shows us the robustness of the model since it was able to 
simulate all the required cases until the physical aspects of the problem forbade it. Therefore, 
it is safe to assume that the break-down of our simulations after the amplitude / 0.60a h   
were not due to numerical instabilities of the discretized model. From these results, we can 
also assume that for other simulations we may be able to assume when waves break or 
overturn from the failure of the code (and attribute the failure to purely numerical reasons). 
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We now present the conservation of mass and energy for the above simulations: 

 

Figure 15a: Conservation of Mass in our simulations for a variety of amplitudes. 

 

Figure 15b: Conservation of Hamiltonian in our simulations for a variety of amplitudes. 

From the above figures we can observe that the conservation of Mass and Hamiltonian 
showcases a significant raise in the relative error during the reflection at the wall. This 
observation can be attributed to the sudden rise of the nonlinearity of the problem during the 
reflection. Furthermore, the conservation of Mass and Hamiltonian are both at satisfactory 
levels for all simulations until amplitude 0/ 0.55a h  . For amplitude 0/ 0.60a h   the 
conservation of both quantities is severely hindered during the reflection at the wall and as a 
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result the simulation after the reflection at the wall cannot be deemed reliable. A relatively 
strange result is the accuracy at which we were able to calculate the maximum run-up for the 
case of 0/ 0.60a h   in comparison with the BEM results, despite the drastic drop of the 
conservation of Mass and Hamiltonian. Another interesting result that needs to be presented is 
the change of amplitude the waves experience after the reflection as well as the dispersive 
trail that may be formed behind them. The results of the simulations are presented in the 
Figure below: 

 

Figure 16: Comparing the resulted reflected wave (solid line) with the free-surface elevation 
of a perfect reflection (dashed line) at a given time. 

 

Note: All comparisons are done at time 20t  , except for the case where 0/ 0.60a h   and 

the results are presented for 10t   because for that case the length of the domain is 050h . 

While the amplitude of the solitary wave rises, we observe a larger dispersive trail behind the 
reflected solitary wave. As a result, the amplitude of the reflected wave becomes significantly 
lower than the initial wave. However, the results for the case of 0/ 0.60a h   cannot be 
perceived with much trust since the conservation of Mass and Hamiltonian were severely 
hindered during the reflection. Another quantity that is of great interest for practical 
applications is the force the solitary waves put upon the vertical wall. Such results can be used 
as extreme cases for coastal and offshore structures (due to the high amplitude and velocity of 
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the solitary waves). Below, we present results for the force applied on the wall due to the 
collision of the solitary wave: 

 

Figure 17: Comparison of instantaneous wall force during the collision from HCMS (solid 
line), and (Cooker et al., 1997) (BEM). 

In the above Figure the instantaneous wall force is calculated as W
h

F pdz




  , where p  is 

the pressure applied at the right wall and given by the formula: 

 21
2t

p g z


       ,                (3.25) 

with the time 0t  being the time of the maximum run-up for every case.  

From the above figure we can observe a very good agreement of our calculation with the 
numerical results derived by. We should also note that similar results were shown in 
(Chambarel, et al., 2009), with the results being in perfect agreement with those of (Cooker, 
et al., 1997). (with the exception that the paper of 2009, presents results for higher 
amplitudes). For solitary waves of amplitude 0/ 0.3a h  , the maximum wall force is 
observed during the maximum run-up. For solitary waves of higher amplitude the maximum 
wall force occurs before the maximum run-up of the collision occurs. Cooker observed that 
the upsurging wave forms a narrow jet before the maximum run-up and that could be the 
cause of this maximum force. This observation was also confirmed by (Chambarel, et al., 
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2009), while a sudden rise of the amplitude of the solitary wave can also be seen in our 
simulations. Furthermore, a second maximum of the pressure at the right wall is observed and 
as a result a second maximum of the wall force occurs. This behavior was able to be observed 
from our model as well. It should also be noted that the pressure of the fluid was calculated 

fairly simple, by differentiating the series expansion      
2

, ; ; ;
M

n n
n

x z t x t Z z t


    by 

terms. Many of these space and time derivatives can be calculated analytically helping as 
minimized the error of an numerical differentiation scheme. Hence, the procedure of 
calculating the pressure and velocities of the fluid is straightforward and requires little 
computational time with this model (while it is a much more time consuming task for BEM 
models). In the figures below, we calculate the pressure and kinetic energy density as well as 
the horizontal and vertical velocity distributions for the case 0/ 0.5a h   at the time of 
maximum runup: 

Figure 
18a: Pressure and kinetic energy density during maximum runup for 0/ 0.5a h   
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Figure 
18b: Horizontal and vertical velocity during maximum runup for 0/ 0.5a h   

As said in the beginning of this subsection, the problem presented of the reflection of a wave 
from a vertical wall, is physically equivalent to a symmetric collision of two identical waves. 
For us to test the above statement for our model we simulate a symmetric collision of two 
solitary waves of amplitude 0/ 0.4a h   and compare the history of the calculated free-
surface elevation for the two simulations. The results presented below are identical ensuring 
the physical  

 

Figure 19: Free-surface elevation at given time for symmetric collision (solid line) and 
reflection to wall (*). 
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Asymmetric collision of solitary waves 

We now simulate the case where two solitary waves of different amplitudes collide head-on. 
Such a problem cannot be modeled through a collision of a solitary wave with a fully 
reflecting wall since the problem is asymmetrical. We will present the cases for which 
numerical simulations are made in (Chambarel et al., 2009) and analytical results presented in 
(Su & Mirie, 1980). Four cases will be presented below for which we shall examine the 
maximum run-up and their conservation of Mass and Hamiltonian. The first case has a 
domain of depth 0 1h   and length 0160h . In this problem a wave of amplitude 

0/ 0.4la h   travelling from left to right, collides with a wave of amplitude 0/ 0.1ra h   

travelling from right to left. The two solitary waves at centered at positions 040rx h  and 

0120lx h  respectively (measured from the left lateral boundary). For the other cases the 

depth of the domain is 0 1h   and of length 0100h . The two solitary waves are centered at 

positions 025rx h  and 075lx h  respectively (measured from the left lateral boundary). 
A 4th order finite difference scheme is used from the calculations with 8 modes in total. The 
horizontal discretizations has a step 00.05dx h  while the time discretization of the problem 
has a time-step 0.01dt  . The initial data for these problems is again taken from the Matlab 
code of Clamond et al. The maximum run-up for the tested cases is presented below and 
compared with the papers mentioned above: 

 

Left-to-Right 
Solitary wave 

Right-to-Left 
Solitary wave 

Maximum Run-Up 
HCMS Chambarel et al. Su & Mirie 

0/ 0.4la h   0/ 0.1ra h   0.5234  0.5239  0.5275  

0/ 0.4la h   0/ 0.3ra h   0.7854  0.7867  0.7915  

0/ 0.5la h   0/ 0.25ra h   0.8411  0.8422  0.8477  

0/ 0.6la h   0/ 0.2ra h   0.8892  0.8903  0.8960  
Table 4: Comparison of maximum run-up between the three methods for a variety of cases. 

 

The results seem to be in good agreement with the ones presented in (Chambarel et al., 2009) 
and less with the results given by (Su & Mirie, 1980). The highest maximum run-up is given 
by Su & et al while the lowest maximum run-up is given by our method. Finally we present 
the conservation of Mass and Hamiltonian for all the above methods: 
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Figure 20a: Conservation of Mass for all the asymmetric collision cases. 

 

Figure 20b: Conservation of Hamiltonian for all the asymmetric collision cases. 
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3.4 Application on Variable Bottom Bathymetry 

In this section we test the code on cases with variable bathymetry. In more detail, we concern 
ourselves with the propagation of solitary waves over abrupt changes in the seabed geometry, 
as well as geometries that lead to the breaking (or overturning) of the initial wave. We can 
therefore check the ability of the code to simulate problems in near breaking conditions (to 
sustain the physical consistency of the problem before the wave breaks or overturns). We 
present results concerning the conservation of Mass and Hamiltonian during the simulations 
and compare our results with experimental data whenever possible. 

 

Solitary wave over a step 

The first case we examine is a sudden decrease of the depth in the form of a step. This case 
was studied experimentally and numerically by (Seabra-Santos et al., 1987) and results of our 
simulation will be compared with the corresponding experimental data presented in the 
aforementioned paper at certain stations. The domain of the problem has an initial depth of 

0 0.2[ ]h m  and a length of 80[ ]m . The step is located at position 40[ ]x m  (the center of 

the domain) with the depth changing to 1 0.1[ ]h m . In theory our model cannot simulate 
problems with discontinuities on the bottom bathymetry. In the paper (Seabra-Santos et al., 
1987) for the numerical simulations, the authors (facing the same problem) used a sinusoidal 
approximation for the seabed’s step with a total length of 0.60[ ]m . For our simulation will 
shall utilize the same seabed, that is described in more detail as: 
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 ,            (3.26) 

The initial solitary wave has an amplitude 0/ 0.1825a h   and is centered at the position 
37.5[ ]x m  (at the same position as in the numerical simulations of the paper mentioned 

above). The initial data is taken from the Matlab code of (Clamond & Duthykh, 2013). A 4th 
order finite difference scheme is used together with 8 modes in total. The step of the 
horizontal space discretization is taken to be 0.008[ ]dx m  and the time-step is taken as 

0.0035[sec]dt  . We now present the conservation of Mass and Hamiltonian throughout the 
simulation:  
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Figure 21a: Relative error of the Mass conservation for the simulation. 

 

Figure 21b: Relative error of the Hamiltonian conservation for the simulation 
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The relative error of conservation of mass and Hamiltonian of the system appear to within 
acceptable limits. In Figure 21 we also present the time-evolution of the free-surface elevation 
of the problem (these results are used here for the examination of the conservation relative 
errors). The first (smaller) rise in the Hamiltonian error takes place during the reflection of a 
part of the solitary wave due to the step. The second and much larger rise in the error of the 
conservation of the Hamiltonian happens when the leading solitary wave breaks into two 
separate solitary waves. This sudden phenomenon appears to be the reason for this drop of 
accuracy as after this phenomenon error does not rises significantly. We also observe that the 
above phenomena have an effect on the conservation of Mass yet the magnitude of the error is 
much smaller. The break of the solitary wave once it passes in the shallow region is attributed 
to the sudden rise of nonlinearity. The initial solitary wave grows in amplitude, then grows in 
wavelength and as a result decreases in amplitude finally breaking into two solitary waves. 
The leading formed solitary wave has an amplitude 1 1/ 0.624a h   and the following solitary 

wave has an amplitude 2 1/ 0.218a h   with a dispersive trail following it. Even though the 
amplitudes of these solitary waves are much smaller than the amplitude of the initial wave, 
their non-dimensional amplitudes are quite larger. This result accounts for the sudden rise in 
the nonlinearity of the problem which as a result leads to the separation of the initial wave 
into two. Finally, the reflected wave, propagating to the left of the domain, forms a dispersive 
trail as the simulation evolves. 

 

Figure 22: Evolution of the free-surface elevation as the solitary wave propagates. 
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In the paper (Seabra-Santos et al., 1987) experimental results were given for the case studied 
here, with the difference that the experiment lasts until 10.74[sec]t  . As a result we 
compare these results with our numerical data at given stations of the domain. From these 
figures we see that the experimental results produce waves that are slightly slower and of 
smaller amplitude, with these differences being more visible at the farthest stations. 
Furthermore, this difference is more visible in the case of the reflected wave train and much 
less for the case of the transmitted waves. As a result, the dissipation due to viscosity could 
explain this divergence between experimental and numerical results combined with the fact 
that solitary waves are much less affected by dissipation than regular periodic waves. 

 

Figure 23a: Comparison of experimental data presented by Seabra-Santos et al. with numerical data of 
our model for the reflected waves. 

 

Figure 23b: Comparison of experimental data presented by Seabra-Santos et al. with numerical data of 
our model for incident and transmitted waves . 
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Shoaling of solitary waves over a plane beach 

The propagation of a solitary wave (initially travelling over a flat bottom) over a plane beach 
that ends up to the shore line is called shoaling. It is obvious that in such a case, the solitary 
wave is bound to eventually break (and therefore end our simulation) before it reaches the 
shore line. The two aforementioned phenomena in nearshore areas are of great importance for 
the domain of coastal engineering. Especially the shoaling of solitary waves (granted their 
large energy and amplitudes) can act as an extreme design wave of coastal structures. In 
addition to the practical importance of shoaling, because before the breaking of the wave the 
problem experiences a rapid rise of its nonlinearity, such problems can be used to test the 
efficiency and accuracy of the simulation to approximate near breaking phenomena. To 
examine this problem, we shall simulate the experiments presented in (Grilli et al., 1994). 
Specifically, the first test case comprises of a domain of depth 0 1[ ]h m , length 95[ ]L m  

and a solitary wave of initial amplitude 0/ 0.20a h   and centered at 30[ ]x m  for 
0[sec]t  . The sloping bottom has a slope of 1: 35 , starts at 60[ ]x m  and ends at 
95[ ]x m  (ending to a shore line). However, since the current model requires the depth 

always be greater than zero everywhere, the bottom geometry is slightly different than the one 
presented in (Grilli et al., 1994). It was established that for the method presented here to be 
valid, the total bathymetry at every horizontal point must be strictly positive (otherwise the 
Sturm-Liouville problem presented in Section 1.3 cannot be defined). As a result we alter the 
right end of the domain to end to a flat bottom of very small bathymetry. This alteration 
should not affect the results we will present since the breaking of the wave takes place before 
it reaches this area. The geometry configuration of the problem is presented below: 

 

Figure 24: Initial free-surface elevation for the problem 
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For the simulations, a 4th order finite difference scheme is used, a horizontal step of 
0.05[ ]dx m  and a time-step of 0.01[sec]dt   The total number of modes used for the 

simulation is 8MN  . We compare our simulation with the free-surface elevation presented 
from the aforementioned experiment at certain stations. We shall also present numerical 
results from a BEM model presented in . The stations we will present are located at the 
positions: 

Station 1g   3g   5g   7g   9g   
[ ]x m   80.96 82.55 83.66 84.68 85.95 
Table 5: Positions of the stations for the measurement of the free-surface elevation. 

The comparison for these stations is presented below: 

 

Figure 25: Comparison of the time series of free-surface elevation between the experimental results of 
(Grilli et al., 1994) BEM numerical results from (Manolas, 2015) and our simulation, at certain 

stations. 

The results presented above, are in good agreement with the experimental data. At the stations 

5g , 7g  and 9g  we observe a gradually rising (but always small) deviation from the 
experimental measurements. Hence, we can assume that the modeling of solitary waves 
shoaling with HCM (before breaking) is satisfactory. From this figure we also observe that 
the amplitude of the wave becomes a lot bigger than its initial amplitude as the wave 
propagates over the plane beach. This phenomenon can be illustrated in a more detailed 
manner in the following Figure, where we compare for a range of horizontal positions of the 
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domain the relative waveheight  /H h x  where H  is the maximum free-surface elevation 

over a specific horizontal position and  h x  the bathymetry at the afore mentioned point. The 
comparison is done for 4 different cases, where the initial solitary wave amplitude is 

0/ 0.10, 0.15, 0.20, 0.25a h  . The results are presented below: 

 

Figure 26: Comparison between experimental data and simulation regarding the relative wave height, 
for solitary waves of initial wave amplitude (a) 0.10, (b) 0.15, (c) 0.20, (d) 0.25. 

The results of the simulation appear to be in good agreement with the experimental data. 
From this figure we also observe that the relative height for every initial wave amplitude, far 
exceeds the highest wave amplitude of 0.75  to 0.80  for symmetrical stable solitary waves 
over a constant depth. Hence, as it was mentioned also by the authors of the aforementioned 
paper, this result showcases that the stability limit of symmetrical solitary waves over a flat 
bottom cannot help as foresee the breaking limit for solitary waves that undergo asymmetrical 
deformation over a plane beach. Finally, for the case of 0/ 0.2a h   experimentally the 

breaking of the wave was measured at 86.27[ ]bx m  while for the simulation the breaking 

was measured at 86.60[ ]bx m . The error between the two results is small enough (also 
considering that the experimental data showcase a 1% deviation near the breaking region). As 
a result, we can assume that potential theory is adequate in simulating shoaling of solitary 
waves over a mild plane beach while phenomena like bottom friction do not seem to affect the 
results in any significant matter. 
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Solitary wave over a submerged dike 

We now examine a case where a solitary wave travels over a submerged dike. This problem is 
interesting for the fields of ocean and coastal engineering encompassing a variety of 
applications. Such cases are dike applications for preventing beach erosion as well as water 
waves propagating over coral reefs or continental shelf. Another use for these models is the 
simulation of water waves over a submerged breakwater. The goal of these structures is to 
reduce the transmitted wave energy by reflecting the waves and dissipating the incident wave 
energy by breaking up the waves. Such interactions of waves and submerged breakwaters has 
been studied extensively (see for example (Seabra-Santos et al., 1987), (Huang, Chang, & 
Hwung, 2003), (Lin, 2004)). The case we shall simulate is of depth 0 1.0h  , and has a 

length of 0200h . The submerged dike has a height of 1 0.5h   and is placed in the area 

 90,110x  . The lateral boundaries of the domain are assumed to be fully reflecting walls. 

We simulate the problem for the case of initial solitary wave for amplitudes 0/ 0.15a h   
which is centered at position 65[ ]x m . The initial data of the free-surface are taken by the 
Matlab code of Clamond et al. We use a 4th order finite difference scheme and 8 modes in 
total. The horizontal step is taken equal to 0.1[ ]dx m  and the time step is equal to 

0.02[sec]dt  . Our first test for this case is to examine how abrupt we can make the dike 
without hindering the effectiveness of the model. Note that even though the approximation of 
the bottom bathymetry with the finite difference scheme can never be discontinuous, a sudden 
change in the geometry of the bottom can result in a blow up of its first and second horizontal 
derivatives. Such effects can result in a raise of the condition number of the matrix of the 
discretized substrate problem and as a result drastically raise the numerical error inserted to 
the simulation due to the linear solver. We should note however that most direct linear solvers 
are not affected easily by the condition number of the system. In an attempt to simulate the 
model as close as to its physical counterpart as possible we present the case where we use the 
bottom bathymetry: 

      1.0 0.5 90 110h x H x H x      

but we set the horizontal derivatives of the bottom bathymetry equal to zero everywhere in the 
domain. We present the conservation of Mass and Hamiltonian for this case: 

 

Figure 27: Relative error of Mass and Hamiltonian for abrupt bathymetry 
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 The above results showcase that the abruptness of the geometry affects dramatically the 
accuracy of the model. It becomes therefore apparent that we need to simulate the problem 
with a more smooth geometry-approximation. For that reason we run the simulations for the 
bathymetries presented below: 

   

     

900.75 0.25 tanh( ) 80 (100 )

1100.25 tanh( ) 100 (120 ) 0.25 90 110

xh x H x H x
k

x H x H x H x H x
k


   


        

,      (3.2) 

where the simulations are done for 0.25, 0.50,1.0k  . 

The relative error of the conservation of mass and Hamiltonian are presented below: 

 

Figure 28: Relative conservation error for the case of 0/ 0.15a h   with the first row representing 

the case 1.0k  , the second row the case 0.5k   and the third row the case 0.25k  . 

We see that for smoother bathymetries the relative error of the aforementioned quantities is a 
few orders of magnitudes better than for the abrupt cases. On all cases we observe initially a 
rise in the total mass of the system when the incident wave travels over the submerged dike. 
Such a phenomenon is not expected from the numerical scheme itself (since the Runge-Kutta 
method is dissipative) but maybe can be explained from the sudden rise of the free-surface 
elevation due to the dike. Yet, as expected, this increase of mass becomes less significant the 
smoother the bottom bathymetry becomes. Also, for all cases the total mass drops below the 
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initial mass when the incident wave leaves the submerged dike. This phenomenon may be 
explained form the fact that the solitary wave experienced a sudden decrease in amplitude due 
to the sudden deepening of the domain. We also observe that for both cases 0.5k   and 

1.0k   the error of conservation of Hamiltonian is very similar while the respective error 
for the Mass is very different. This may be explained as a threshold for the accuracy of the 
error of the Hamiltonian due to the time and space discretization (perhaps the time-step is not 
small enough to capture the sudden decrease in amplitude effectively). 

Finally, we present the time evolution of the problem for the case where 0.5k  . 

 

Figure 29: Time evolution of the free-surface for a solitary wave of 0/ 0.15a h   with 
parameter 0.5k  . 

From this figure we can observe that while the solitary wave passes over the left edge of the 
shelf, a part of it is reflected to the left of the domain, while the incident solitary wave starts 
to increase in amplitude and decrease in wavelength. This behavior continues until the solitary 
wave reaches the right edge of the shelf where part of it is again reflected to left while the 
solitary wave decreases in amplitude and develops a transmitted trail. We should also not that 
while the reflected waves are propagating the develop trails. Finally, once the solitary wave 
passes the shelf it decreases in amplitude and increases in wavelength. 
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Solitary wave over a sinusoidal variable bottom patch 

We now investigate the effect of a rapidly variating bottom bathymetry on propagating 
solitary waves. For that purpose we utilize a sinusoidal bottom variation. Such bathymetries 
and their interaction with propagating regular periodic waves has been studied theoretically 
and experimentally in (Davies & Heathershaw, 1983) and (Davies & Heathershaw, 1984). In 
these papers it was observed that the reflection is strongest if the wavelength of the incident 
wave is equal to twice the wavelength of the periodic seabed variation. This phenomenon was 
characterized as the hydrodynamic equivalent of the so called Bragg scattering. Instead of 
using regular periodic waves as incident waves, we shall utilize a solitary wave to propagate 
over said bathymetry. In more detail, the domain of problem has a depth of 0 1.0[ ]h m  
except for varying bottom patch of the form (8 ripples in total): 

    0 0.3sin( 2 ( 580) /12.5) , 580, 680h x h x x      

The total length of the domain is 1200[ ]m . The lateral boundaries are assumed to be fully 
reflecting walls. The propagating solitary wave has an amplitude 0/ 0.4a h   and it is 
initially centered at the position 555[ ]x m . The initial data are taken again from the Matlab 
code of (Clamond & Duthykh, 2013). A 4th order finite scheme is used for this problem as 
well as 8 total modes. The horizontal space discretization is 0.1[ ]dx m  and the time 
discretization is 0.02[sec]dt  . As the solitary wave passes above the varying bottom 
irregular wave patterns are generated and propagate to both directions. These waves have a 
much smaller amplitude than the solitary wave. To the direction opposite to the propagation 
of the initial solitary wave, a reflected wave-train travels steadily. In the direction of the initial 
solitary wave’s movement, a leading solitary wave (with smaller amplitude than the initial) 
propagates steadily while a rapidly changing wave-train follows it. Even though no 
experiments or numerical simulations could be found regarding such a case, this simulation 
was implemented to showcase the ability of the code to solve large problems in space and 
time as well as its ability to simulate problems were highly demanding physical phenomena 
occur.  

The conservation of Mass and Hamiltonian of the simulation are presented in Figure: From 
this figure we can see that even though both quantities are conserved within acceptable limits, 
the conservation of mass experiences a much bigger error compared to the previous cases. 
This phenomenon can be attributed to the consecutive rapid changes in bathymetry during the 
propagation of the solitary wave (as the graph of the Mass conservation showcases). 
Furthermore, the very fast interaction of the wave and the bottom which results to sudden 
generation of reflected and trailing waves also accounts for this behavior. This rapid change 
in the geometry of the free-surface combined with the fact that the wavelength of these waves 
are a lot smaller than that of the solitary wave (and as a result are defined by less degrees of 
freedom) contribute to the raise of the error of the conservation of mass. Finally the time-
history of the free-surface is presented. 
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Figure 30: Conservation of Mass and Hamiltonian of the simulation. 

 

Figure 31: Time-clips of the propagation of a solitary wave of amplitude 0/ 0.3a h   over 8 sinusoid 

ripples of amplitude 0.3  and wavelength 12.5  each. 
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3.5 Numerical Simulation of moving bottom 

We now move on, to evaluate the efficiency of the HCMS in simulating problems that contain 
abrupt bottom movements. We begin by investigating the experiments presented in 
(Hammack, 1973). In this paper, Hammack addresses the generation and propagation of 
waves, in a rectangular tank of uniform depth, that were formed by an abruptly raised or 
lowered part of the bottom. Such an experiment constitutes a simplified model for the 
mechanisms of tsunami generation by means of an impulsive seafloor movement. For the first 
test-case we examine the raise of part of the bottom with an exponential movement. For the 
simulation, the domain of the problem is assumed 2D, with reference depth 0 1[ ]h m  and 

total horizontal length 2500[ ]L m . The lateral boundaries of the domain are represented 
by fully-reflecting walls and they are located at the horizontal positions 0/ 0x h  and 

0/ 2500x h  . The moving block of the seafloor is located in the interval  0/ 0 ,x h b  
while the bed displacement in discussion is defined by the formula below: 

      0 0, 1 ath x t h e H b x     ,   0/ 0 , 2500x h  , 0t            (3.27) 

where  H b x  represents the Heaviside step function. 

 
Figure 32: Geometric configuration of the moving part of the seafloor 

The values of the parameters of Eq. (3.26) of the geometric configuration used here are 
presented below: 

 0 0/ 0.1h  ,  0/ 12.2b h  , 1.11/ ca t     (3.28a,b,c) 

where 

 0.148 /c ot b g h               (3.28d) 

Except for the experimental data presented by Hammack, for the parameter values of Eqs. 
(3.27), simulations have been presented by (Fuhrman & Madsen, 2009) where they utilized a 
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high-order Boussinesq model, and by (Benoit, et al., 2014) where they used a fully-nonlinear 
expansion of the velocity-potential. Both these simulations run for a much larger total time in 
comparison with the experimental data of Hammack, which results in the separation of the 
leading part of the disturbance into two distinct solitary waves. This result is in accordance 
with the prediction presented in (Hammack & Segur, 1974) with the exception that the 
authors predicted the formation of three distinct solitary waves. 

The first step for the simulation is the inquiry needed to be done for the selection of space and 
time discretization that models the abrupt movement of the bottom without problem as well as 
the needed number of modes to be used (a parameter that determines the total nonlinearity 
and dispersion of the simulation). For that purpose, we start with what we think is the most 
important parameter of the current simulation, the time-step.  

The time and space discretization used in (Benoit, et al., 2014), is  

 0/ 0.2t g h  ,  and 0/ 0.2x h                      (3.29a,b)  

while, the corresponding parameters in (Fuhrman & Madsen, 2009) are: 

 0/ 0.05t g h    and 0/ 0.25x h                      (3.30a,b) 

From these values, we can deduce that the most crucial parameter for this simulation is the 
time-step of the method, due to the rapid bottom movement. For that purpose we begin with 
an investigation concerning the time-step needed for this simulation. Our main concern is 
whether the very abrupt dynamic phenomena that are observed during the movement of the 
bottom are efficiently captured. For that purpose we methodically decrease the time step used 
for the time interval that the movement of the bottom affects the free-surface. To define the 
end of this interval, we try to find the time in the previous simulations were the error of the 
Hamiltonian was less than 410 , or in more detail: 

 
   

 

*
* 4max 0 : 10final

final

H t H t
t t

H t


           

,             (3.31) 

We estimate the above time to be at *
0/ 20t g h  . Now, we run simulations for which the 

time step is choose to be 0/ 0.2 ,0.1 ,0.05 ,0.01,0.005t g h  , during the time interval 

 0/ 0 , 20t g h  , while using a time step 0/ 0.2t g h   for the rest of the simulation. 

The time step is chosen to be 0/ 0.2x h  , and the number of total modes is taken as 

6MN  . The results of said simulations are presented below for the first and last station that 
experimental results were shown in (Hammack, 1973): 
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Figure 33a: Comparison of simulations with different time-steps at station   0/ 0x b h   

 

Figure 33b: Comparison of simulations with different time-steps at station   0/ 400x b h   
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We can see that the simulations gradually converge to a solution while the time-step is 
decreasing and hence we utilize the time-discretization used in the last simulation. We shall 
now investigate the number of needed total modes for the simulation. For that purpose, we 
present results for the cases of 4, 6, 8MN  , with 0/ 0.2x h  , 4th order finite differences 

and a time-discretization as described above. We present the free-surface elevation at certain 
stations (the stations used by (Hammack, 1973)), in the following figure. 

 

Figure 34a: Comparing simulations with different total modes at specific stations. 

Significant differences are not observed between these simulations, leading us to believe that 
the time-step we shall use seems to be the most critical factor for the simulations. However, 
zooming in on the first station presented in Figure 21.a, we can observe the following 
difference between the simulations: 

 

Figure 34b. Comparison of simulations with different total modes at the first station. 
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As can be seen, the simulation with 4 modes is a lot more oscillatory than the other 2. 
However free-surface elevation differences at the other stations are insignificant. Hence, we 
can see that using more than 6 modes does not have a significant improvement in the solution 
and as a result we shall utilize 8 modes for our simulation. We now present the comparison of 
our results with the experimental data and other simulations, using a time-step 

0/ 0.005t g h   for 0/ 20t g h   and 0/ 0.2t g h   afterwards while using 8 

modes in total and a space discretization of 0/ 0.2x h  . The results of the experimental 

data, as well as the simulations of (Benoit, et al., 2014) and (Fuhrman & Madsen, 2009), are 
derived manually through a digitizer and as a result contain a relative error in their 
presentation. It is also noteworthy that the experimental data of Hammack, showcase waves 
with smaller amplitudes and as a result lower propagation velocities. Hence, as time 
progresses the simulations diverge from the experiment. Hammack also simulated the 
problem in discussion using the PBBM equation and measured significant differences with 
the experimental data which lead him to state: 

"A possible explanation of the differences between theory and experiment is the presence of 
viscous energy losses and boundary stresses in the experimental measurements;" 

The comparison is done in the 4 stations where measurements were taken from Hammack. 
results are presented below: 

 

Figure 35a: Comparison of various simulations with experimental data on first two stations. 
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Figure 35b: Comparison of various simulations with experimental data on last two stations. 

We can easily observe from the results that the leading waves of our simulation are slightly higher and 
as a result faster than the ones presented in the other two simulations. This divergence from the other 
results can be observed from the first station to the very last one. Furthermore, it is obvious that no 
simulation coincides with the experimental data at stations other than the first, an observation that 
showcases the dissipation present during the experiment. Trying to estimate the error of the 
measurements due to viscous losses, Hammack utilized Keulegan's theory (1948) (see 
(Keulegan, 1948)) for the viscous decay in amplitude of a single solitary wave propagating in 
the wave tank, he predicted that the amplitude of the leading wave should be around 57% 
larger than measured at station: 0 0/ ( ) / 400t g h x b h   . Measuring the highest crest 

for the Hammack measurements at said station as 0.052[ ]m , this theory predicts a wave with 
amplitude of 1.57 0.052 0.082[ ]m  , with our crest measuring at 0.0844[ ]m  and the crest 
given by Benoit & Yates being slightly under 0.080[ ]m . Our divergence hence is not very 
significant from the predicted free-surface elevation by Hammack. Althought the 
experimental results of Hammack stop at distance 0/ 400x h   from the raised bottom, 

continuing the propagation of the waves even further shows an interesting phenomenon, as 
the leading part of the disturbance separates into two solitary waves. This result was initially 
predicted by (Hammack & Segur, 1974) and verified numerically later by (Fuhrman & 
Madsen, 2009) and (Benoit & Yates, 2015). It should be noted though, that the asymptotic 
analysis by Hammack predicted the formation of 3 separate solitary waves, while numerical 
simulations of the aforementioned papers present exhibit only 2. 
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In the following figure we showcase the results taken from our simulation for long time 
propagation and compare it with the numerical results mentioned above: 

 

Figure 36: Comparison of the separated solitaries in long-time propagation, for our simulation (solid 
line), (Benoit, et al., 2014) (*)  

We should also mention that in (Benoit, et al., 2014) their leading solitary wave at this 
instance has a difference of 0/ 3.0x h   and 0/ 0.0266H h   compared with (Fuhrman & 
Madsen, 2009). As expected, the formed solitary waves of our simulation are higher (and 
therefore faster) than the ones measured by the other simulations, a result mainly due to the 
initially higher rise of the free-surface of our simulation at the beginning of the phenomenon. 
A factor that was not investigated in this example and could play a role in the accuracy of the 
simulations, is the appropriate value of the parameter 0 . For all the cases presented in the 
previous sections, we could always assume a wave of reference (usually the initial wave of 
each case) and choose the values of the parameter to be 2

0 / g  . Again, this result is not 
theoretically justified but it has been found numerically such a value to be efficient for the 
results of these simulations. However, in this case no initial or incident wave exists. For our 
simulations we chose the frequency of the solitary wave given in the far field by Benoit & 
Yates, for choosing the value of the parameter 0 . However, a systematic study of this case 
for different values of the aforementioned parameter could showcase a better value that allows 
for more accurate simulations. Furthermore, the use an approximate seabed that does not 
showcase a step discontinuity may increase the accuracy of the results. Finally, a rise of the 
order of the finite difference scheme may play a role in the accuracy of the model. Ending, the 
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investigation of the current case we present results for the conservation of Mass and 
Hamiltonian throughout the simulation, assuming as reference values the one derived at the 
final time-step of our simulation. Results are presented below: 

 

Figure 37a: Conservation of Mass of the system, for the duration of the simulation together 
with the moment of change for the time step (horizontal dashed line). 

 

Figure 37b: Conservation of Mass of the system, for the duration of the simulation together 
with the moment of change for the time step (horizontal dashed line). 
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Hammack’s downthrust experiment 

Keeping the same geometric configuration, as presented in Figure 20, we now proceed to 
simulate the downwards abrupt movement of the bottom, an experiment done also by 
(Hammack, 1973). The parameters used for this case are presented below: 

 0 0/ 0.1h   , 0/ 12.2b h  , 1.11/ ca t      (3.32a,b,c) 

 0.093 /c ot b g h                 (3.32d) 

For this case, we use exactly the same space and time discretization as used for the upthrust 
simulation before, where 0/ 0.2x h   and 0/ 0.005t g h   for the time interval 

 0/ 0 , 20t g h   and 0/ 0.2t g h   for the rest of the simulation. Additionally, 6 

modes are used (assuming that because the movement of the seabed is slower we don’t need 
as many modes) and a 4th-order finite difference scheme is utilized. Finally, because no 
solitary waves are formed during this simulation, the domain is chosen to have a length of 

0700L h . We compare the free-surface elevation of the simulations at certain stations with 
the experimental data provided by Hammack and the high-order Boussinesq simulation 
executed by (Fuhrman & Madsen, 2009): 

 

Figure 38a: Comparison of experimental data with various simulations at the first two stations 
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Figure 38b: Comparison of experimental data with various simulations at the last two stations 

Once again, the experimental results diverge significantly from the simulations due to viscous 
effects. The wave amplitudes derived from our simulation are once again higher than the 
corresponding results of (Fuhrman & Madsen, 2009), yet with we should mention that for the 
previous case also the results of (Benoit, et al., 2014) gave slightly higher waves than the ones 
of the high-order Boussinesq model. Once, again the abruptness of the bathymetry may have 
played a role in the numerical results of our simulation together with the choice of the value 
of the parameter 0 . Although these results showcase the potential of the model to simulate 
moving bottom problems more simulations need to be done to be able to better comprehend 
the accuracy of the method.  

We should also mention that most moving bottom simulations in the literature, concern 3D 
geometries and hence cannot be modeled by the current code. However, the construction of a 
code able to solve 3D problems by utilizing the Finite Element method (and therefore the 
weak formulation of the problem) is in progress and results concerning more advanced 
moving bottom cases will be presented in the future.  

Finally, we present the conservation of Mass and Hamiltonian during the simulation together 
with the seabed descend  1 / finalh t h : 
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Figure 39a: Conservation of Mass during the simulation 

 

Figure 39b: Conservation of Hamiltonian during the simulation 
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Appendix A: Proof of Proposition 1, Section 2.1  

Proposition 1, Section 2.1: For 0n   the first and second derivatives of ( )nk H  are given 
by the following equations: 

2 2
0 0 0

2 2
0 0 0

2 2
0

2 2
0 0

( )
, 0

( )

( )
, 1
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n h n H n
n n

n
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k k
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H k
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

 

              

  

 2
0 02 1 2 , 0H n H n

H n H n
n n

k k
k k H H n

k k
 

                      
  

 

n H nk k H   x x  ,   22
n H n H nk k H k H      x x x , 

Proof: The wave numbers  , 0,1,2,...nk n  are implicitly dependent on the free-surface 

elevation  , t x  and the bottom bathymetry  , .h tx  An observation that shall simplify the 
calculus that is to follow, can be derived from the dispersion relations: 

    0 0 0 0 0, , tanh ( ) 0 ,f h k k k h                   (A.1a) 

    0, , tan ( ) 0 , 0 ,n n n nf h k k k h n                  (A.1b) 

By setting      ; ; ; ,H t t h t x x x to symbolize the total bathymetry, one can easily 
verify that: 

  , 0,1,2,... ,H n n h nf f f n                    (A.2a) 

and as a result: 

  , 0,1, 2,... ,H n n h nk k k n                   (A.2b) 

or in regard of the horizontal partial derivative: 

  , 0,1,2,... ,n H nk k H n    x x               (A.2c) 

Therefore, we will only calculate the partial derivatives 2, .H n H nk k    
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Calculation of first horizontal derivatives  , , 0,1, 2,...H n nk k n  x  

The first step to such a calculation is the determination of the partial derivatives 
 , 0,1, 2,... .H nk n   By applying the chain rule, to the functions  , 0,1,2,... ,nf n  

defined by Eqs. (A.1a) & (A.1b) we get 

  , 0,1, 2,... ,
nH n H n k n H nd f f f k n                   (A.3a) 

By also taking into account that 0nf const  , we get 

  0 , 0,1, 2,... ,H nd f n                 (A.3b) 

Combining Eqs. (A.3a) & (A.3b), we derive the formula: 

  
0

, 0,1,2,... ,H n
H n

k n

fk n
f


   


                (A.4) 

The calculation of Eqs. (A.4) will be derived separately for the wavenumber corresponding to 
the propagating mode 0Z  and for the wavenumbers corresponding to the evanescent modes

, 0.nZ n   

Calculation of partial derivative 0H k   

By straightforward differentiation of Eq. (A.1a) one easily finds 

  2 2 2
0 0 0 0 0[1 tanh ] ( ) ,H f k k H k                    (A.5a) 

    
0

2
0 0 0 0tanh [1 tanh ]k f k H k H k H        

 
0

2 2
0 0 0

0
0

( ) ,k
H kf

k
  

                 (A.5b) 

Therefore, using Eqs. (A.5a)-(A.5b) & (A.4) we get 

 
2 2 2 2
0 0 0 0 0
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   
  

    
   


            (A.6) 

Calculation of partial derivatives  , 1, 2,...H nk n    

By straightforward differentiation of Eq. (A.1b) one easily finds: 

  2 2 2
0[1 tan ]H n n n nf k k H k                    (A.7a) 
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    2tan [1 tan ]
nk n n n nf k H k H k H       

 
2 2

0 0( )
n

n
k n

n

H kf
k

  
                  (A.7b) 

Therefore, using Eqs. (A.7a)-(A.7b) & (A.4) we get: 

 
2 2 2 2

0 0
2 2 2 2

0 0 0 0

( )
( ) ( )

n n n
H n

n n

n

k k kk
H k H k

k

 
   

 
   

   


             (A.8) 

Calculation of horizontal partial derivatives  , 0,1, 2,...nk n x   

Finally, we arrive to the formulas: 

 
2 2

0 0 0
0 0 2 2

0 0 0

( )
( )H

k kk k H H
H k


 


      

 
x x x             (A.9a) 

 
2 2

0
2 2

0 0

( ) , 0
( )

n n
n H n

n

k kk k H H n
H k


 


      

 
x x x            (A.9b) 

 

Calculation of second horizontal derivatives  2 2, , 0,1, 2,...H n nk k n  x  

The first step for said calculation is the derivation of the partial derivatives 
 2 , 0,1,2,... .H nk n   Again, by applying the chain rule, to the functions  , 0,1, 2,... ,nf n  

for their second derivatve we get: 

22 ( ) ,
n n n nHH n HH n Hk n H n k k n H n HH n k nd f f f k f k k f                   (A.10a) 

By also taking into account that 0 ,nf const   we get: 

  2 0 , 0,1, 2,... ,H nd f n               (A.10b) 

Combining Eqs. (A.10a) & (A.10b), we derive the formula: 

  
2 2 2

2 2 ( )
, 0,1,2,... ,n n

n

H n Hk n H n k n H n
H n

k n

f f k f k
k n

f
      

   


        (A.11) 

The calculation of Eq. (11) will be derived separately for the wavenumber corresponding to 
the propagating mode 0Z  and for the wavenumbers corresponding to the evanescent modes 

, 0.nZ n    
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Calculation of partial derivative 2
0H k   

By straightforward differentiation of Eq. (A.1a) one easily finds: 

    2 3 2 2 2
0 0 0 0 0 0 02 tanh [1 tanh ] 2 ( )H f k k H k H k               (A.12a) 

      
0

2 2 2
0 0 0 0 0 02 [1 tanh ] 2 tanh [1 tanh ]Hk f k k H k H k H k H         

 
0

2
2 0

0 0 0 0 0 0 2
0

2 [1 tanh ](1 ) 2 (1 ) 1Hk f k k H H k H
k


 
             

       (A.12b) 

      
0

2 2 2 2
0 0 0 0 02 [1 tanh ] 2 tanh [1 tanh ]k f H k H k H k H k H         

 
0

2
2 2 0

0 0 0 0 2
0

2 [1 tanh ](1 ) 2 (1 ) 1k f H k H H H H
k


 
 

         
 

        (A.12c) 

 

Using Eqs. (A.12a)-(A.12c) we calculate the following quantities: 

0

2 2 2 2 2
0 0 0 0 0 0 0 0

0 02 2 2 2
0 0 0 0 0 0 0

0

2 ( ) 2 ( ) 2
( ) ( )

H
H

k

f k k k k
f H k H k

k

   


   
  

      
    


,       (A.13a) 
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0 0 0 0 0 0 0

0
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H
Hk H H

k

k H kf k k H k k
f H k H k

k


 

   

    
    

     
    
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0
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2 2
0 0 0 0 0 0 0

0 02 2
0 00 0 0

2 4(1 )( ) 4(1 )
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Hk H H H
H

k

f k H k k kH k
f kH k

 


 

     
     

  
,   (A.13b) 
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 0

0

2 2
0 0 20

0 0
0 0

( )
2 (1 ) ( )k H H

H
k

f k kH H k
f k


  

   


          (A.13c) 

Finally we arrive at the formula: 

 
2 20 0

0 0 0 0 0 0 0
0 0

2 20 0
0 0 0 0 0

0 0

2 4(1 ) 2 (1 ) ( )

2 [ 2(1 ) (1 ) ( ) ]

H H
H H H H

H H
H H

k kk k H k H H k
k k

k kk k H H H
k k

  

  

 
          

 
        

  

 2 0 0
0 0 0 0

0 0
2 { (1 ) [ 2 ]}H H

H H
k kk k H H

k k
 

 
                 (A.14) 

Calculation of partial derivatives  2 , 0,1, 2,...H nk n    

By straightforward differentiation of Eq. (A.1b) one easily finds: 

    2 3 2 2 2
0 02 tan [1 tan ] 2 ( )H n n n n nf k k H k H k                (A.15a) 

      2 2 22 [1 tan ] 2 tan [1 tan ]
nHk n n n n n nf k k H k H k H k H        

 
2

2 0
0 0 2

0

2 [1 tan ](1 ) 2 (1 ) (1 )
nHk n n n nf k k H H k H

k


                 (A.15b) 

      2 2 2 22 [1 tan ] 2 tan [1 tan ]
nk n n n n nf H k H k H k H k H        

 
2

2 2 0
0 0 2

0

2 [1 tan ] (1 ) 2 (1 H )(1 )
nk n nf H k H H H

k


                  (A.15c) 

Using Eqs (A.15a)-(A.15c) we calculate the following quantities: 

2 2 2 2 2
0 0 0 0

02 2 2 2
0 0 0 0

2 ( ) 2 ( ) 2
( ) ( )

n

H n n n n
H n

k n n n

n

f k k k k
f H k H k

k

   


   
  

       
    

        (A.16a) 
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2
4(1 )n
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Hk n H n H n
H n

k n n

f k kH k
f k


  

   
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          (A.16b) 
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k n H n H n
H n
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f k kH H k
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
  

   


          (A.16c) 

Finally we arrive at the formula: 

2 2
0 0 0

2 2
0 0 0

2 4(1 ) 2 (1 ) ( )

2 [ 2 (1 ) (1 ) ( ) ]

H n H n
H n H n H n H n

n n
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n n

k kk k H k H H k
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k kk k H H H
k k

  

  

 
          

 
        

  

 2
0 02 { (1 ) [ 2 ]}H n H n

H n H n
n n

k kk k H H
k k

 
 

                 (A.17) 

Finally by direct differentiation of the horizontal gradient nkx , we have 

    
22 2 2 , 0,1, 2,...n H n H nk k H k H n       x x x            (A.18) 

Thus the proof is complete.                
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Appendix B: Spatial derivatives of the vertical functions 

Abstract: The purpose of this note is the calculation of the nZ  first and second space 
derivatives. These calculations are essential for the analytical computation of the integral 
coefficients that arise in the substrate problem.  

 

Introduction - needed formulas: 

We begin by writing the formulas for the additional modes: 

The free-surface mode: 

2 2
0 0 0 0

2 2 2
0 0

1 1( ) ( )1 1 ,
2 2
h hz h z hZ H a a H

h H h H
 


  

                (B.1a) 

and the sloping-bottom mode: 

2

1 1 2
0

( ) 1 ,z h z hZ a a H
H h
 

                   (B.1b) 

where:  

 0 0
1

0

1 ,
2
ha

h
 

   0 0
2

0

1
2
ha

h
 

   

Then, the formulas of the 2L   basis modes are presented again 

 
 
 

0
0

0

cosh
,

cosh
k z h

Z
k H

                   (B.1c) 

 
 
 

cos
, 1,2,... ,

cos
n

n
n

k z h
Z n

k H

                  (B.1d) 

where, the parameters , 0nk n   are calculated through the formulas: 

 0 0 0tanh[ ] 0k k H     and 0 tan[ ] 0n nk k H     

Note: The nk  parameters are functions of the free-surface elevation and the bottom 

bathymetry. Therefore, they are better written as  , ; , ,n nk k t h x  a representation that is 
omitted for simplification of the formulas. 

Next, we rewrite the nW  functions, that will be used for the formulas to follow: 
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 
 

0
0

0

sinh
,

cosh
k z h

W
k H

                   (A.2a) 

 
 
 

sin
, 1, 2,... ,
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n

n
n

k z h
W n

k H
                 (A.2b) 

Finally, we present the partial derivatives of the nk  parameters with respect to the total 

bathymetry  ; .H tx  
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( ) , 0
( )

( ) , 1, 2,...
( )

H n
n n

n

k k n
H k

k
k k n

H k


 


 

           

                (B.3) 

 

First horizontal derivatives of the additional modes. 

The gradient of the sloping-bottom mode is easily obtained through straightforward 
differentiation: 
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( )( 1)z h z hZ a a H
H h
 
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0
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x

hz h z hZ a h a H a H
H hH

 
        x x x   

 21 1
1 2 2

0

21 ( ) ( ) ,a aZ h a H h z h H z h
h H H          x x x x x           (B.4a) 

Again, the gradient of the free-surface mode is easily calculated: 
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( )( 1)z hZ a a H

H
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First horizontal derivatives of the vertical  2 ,L h    basis. 

The calculation of the gradient of the propagating and evanescent modes requires taking into 
account their implicit x  dependence from the free-surface  ;t x  , the bottom bathymetry 

 h ,tx  and the parameter .nk  Therefore, such a calculation is better done by utilizing the 
chain rule. Specifically, we can write: 

 ( Z Z ) ( Z Z )
n nn n k n H n h n k n H nZ k k h             x x x             (B.5) 

Hence, for the calculation of the horizontal gradient of the  2 ,L h    modes, one needs 
to calculate the partial derivatives shown at the right hand side of formula (B.5). 

For the propagating mode 0,n  we obtain: 

  
 

0 0 0
0 0 02

0

cosh[ ( ) ]sinh
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k k z h k H

Z Z
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k


                     (B.6c) 

Replacing formulas (B.6a), (B.6b) & (B.6c) to formula (B.5), we get 

for the first term of the right side of equation (B.5) 
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for the second term of the right side of equation (B.5): 
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Therefore we have: 
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0
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[1 ] ( ) ,H
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kZ H H Z k H z h W k hW

k



          x x x x               (B.8) 

Finally, we can write the gradient of 0Z  in the following form: 

 (1) (2) (3)
0 0 0 0 0 0 0( )Z Z W z h W    x F F F                (B.9) 

For 0n  , we have: 
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Replacing formulas (B.10a), (B.10b) & (B.10c) to formula (B.5), we obtain: 

for the first term of the right side of equation (B.5): 
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for the second term of the right side of equation (B.5): 

 0 0Z Z ( )
n

H n
h n k n H n n n n H n n n

n

kk k W Z k z h W H Z
k

 


              

0Z Z [1 ] ( ) ,
n

H n
h n k n H n n n n H n n

n

kk H Z k W k z h W
k




                   (B.11b) 

Therefore we have: 

[1 ] ( ) ,H n
n n n H n n n n

n

kZ H H Z k H z h W k hW
k




          x x x x           (B.12) 

Finally we can write the gradient of nZ  in the following form: 
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 (1) (2) (3) ( ) ,x n n n n n n nZ Z W z h W    F F F              (B.13) 

The coefficients of the formulas (B.13) and (B.9) are 

 (1)
0 [1 ] , 0 ,1,2 ,... ,H n

n
n

kH H n
k




    xF            (B.14a) 

 (2) , 0 ,1, 2,... ,n nk h n  xF              (B.14b) 

 (3) , 0 ,1, 2 ,... ,n H nk H n   xF              (B.14c) 

 

First horizontal derivatives of the nW  functions. 

This part acts as proof for Proposition 2, Section 2.1. As stated before, our main objective in 
this section is to write the horizontal space derivatives of the nZ   functions in a way that 
will enhance the computational efficiency of an implementation of the HCM method, to a 
parallel program. In the case of the space derivatives, our main concern, with respect to 
computational efficiency, is the fast computation of the analytical formulas of the integral 
coefficients. The representation used in this section has the following desirable attributes that 
render our computations both efficient and easily checkable. Firstly, this representation 
visibly separates the x and z dependency of said derivatives making the analytical 
integrations easier. Secondly, In both the second and first horizontal derivatives the z-
dependent terms (the terms to be integrated) are the same. This fact will later allow us to 
calculate separately these basic integrals and use them for the calculation of the integral 
coefficients. Such a process greatly enhances the performance of the code since it prohibits us 
from calculating more than once quantities that appear in many formulas. 

From chain rule we get: 

 ( ) ( )
n nn n k n H n h n k n H nW W W k W W k h             x x x            (B.15) 

Calculating the partial derivatives of the right side of the formula (B.15) we have: 

For 0n   

  
 

0 0 0
0 0 02

0

sinh[ ( ) ]sinh
cosh

k k z h k H
W W

k H 


     ,         (B.16a) 

 
 

 
0 0 00 0

0 0 0 0 02
0 0

sinh[ ( ) ]sinhcosh[ ( ) ]
cosh coshh

k k z h k Hk k z hW k Z W
k H k H




     ,  (B.16b) 

 
 

 
 0

0 00
0 2

0 0

sinh[ ( ) ]sinh( ) cosh[ ( ) ]
cosh coshk

H k z h k Hz h k z hW
k H k H

 
      
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0

0
0 0 0

0
( )k

HW z h Z W
k


    ,            (B.16c) 

Replacing formulas (B.16a), (B.16b) & (B.16c) to formula (B.15), we get 

for the first term of the right side of equation (B.5) 

 
0

0
0 0 0 0 0 0 0 0 0

0

( ) H
k H H

kW W k W k z h Z H W
k  


             

 
0

0
0 0 0 0 0 0 0

0

[1 ] ( )H
k H H

kW W k H W k z h Z
k 


          ,        (B.17a) 

for the second term of the right side of equation (B.5): 

 
0

0
0 0 0 0 0 0 0 0 0 0 0

0
( ) H

h k H H
kW W k k Z W k z h Z H W

k
 


             

0

0
0 0 0 0 0 0 0 0 0

0
[1 ] ( )H

h k H H
kW W k H W k Z k z h Z

k



           ,       (B.17b) 

Therefore we have 

0
0 0 0 0 0 0 0

0
[1 ] ( )H

H
kW H H W k H z h Z k h Z

k



          x x x x ,         (B.18) 

Finally, we can write the gradient of the 0W  in the following form: 

 (1) (2) (3)
0 0 0 0 0 0 0( )W W Z z h Z    x F F F             (B.19) 

 

For 0 :n   

 
 

  02

(sin[ ( ) ]) ( sin )
tan ,

cos
n n n

n n n n n
n

k k z h k H
W k k H W W

k H 
 

         (B.20a) 

 
 

  02

(sin[ ( ) ]) sincos[ ( ) ]
cos cos

n n nn n
h n n n n

n n

k k z h k Hk k z hW k Z W
k H k H




     ,    (B.20b) 

 
 

 
 2

(sin[ ( )]) ( sin )( )cos[ ( )]
cos cosn
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H k z h k Hz h k z hW
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  
       

 0( )
nk n n n

n

HW z h Z W
k


                 (B.20c) 
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Replacing formulas (B.20a), (B.20b) & (B.20c) to formula (B.15), we get: 

for the first term of the right side of equation (B.5): 

 0 0( )
n

H n
n k n H n n H n n n

n

kW W k W k z h Z H W
k  


             

0 [1 ] ( )
n

H n
n k n H n n H n n

n

kW W k H W k z h Z
k 


                   (B.21a) 

for the second term of the right side of equation (B.5): 

 0 0( )
n

H n
h n k n H n n n n H n n n

n

kW W k k Z W k z h Z H W
k

 

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n

kW W k H W k Z k z h Z
k




           ,       (B.21b) 

Therefore we have: 

[1 ] ( )H n
n n n H n n n n

n

kW H H W k H z h Z k h Z
k




          x x x x ,         (B.22) 

Finally, we can write the gradient of the nW  in the following form: 

 (1) (2) (3) ( ) ,n n n n n n nW W Z z h Z    x F F F              (B.23) 

 

Second horizontal derivatives of the additional modes. 

As with the first horizontal derivatives of the sloping bottom mode, one can easily obtain the 
second with straightforward differentiation: 

 1 1( )Z Z     x x x   
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2
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1 2
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2
1 1
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3 2
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2 ( )( ) ( )

x

x

h a hZ a H
h H

a h a h H z h
H H

a H a H z h
H H


 

     

  
   

 
  

x x
x x
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x

           (B.24) 

 

Similarly, the second horizontal derivatives of the free-surface mode are calculated by the 
same method: 

 2 2( )Z Z     x x x   

 22 2
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x x x x
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,         (B.25) 

 

Second horizontal derivatives of the  2 ,L h    basis modes. 

To obtain the Laplacian of the propagating and evanescent modes, we take the gradient of 

nZx . The gradient of these modes is, as was the case with the modes themselves, implicitly 

x  dependent through its dependence on the free-surface  ;t x  , bottom bathymetry 

 h ;tx   and the parameter nk  . Therefore, as with the first derivatives in section 2.2, we will 
use the chain rule: 

For 0 :n   

Applying the chain rule we get: 

 (1) (2) (3)
0 0 0 0 0 0 0 0( Z ) ( ( ) )Z Z W z h W          x x x x F F F   
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Equation (B.26) can be written as: 

 
(1) (2) (3) 2

0 0 0 0 0 0 0
(4) (5)
0 0 0 0

( ) ( )
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Z G Z G z h Z G z h Z

G W G z h W
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where: 

 
2 2(1) (1) (2) (1)

0 0 0 0G     xF F F ,          (B.28a) 

 (2) (2) (3)
0 0 02G  F F ,             (B.28b) 

 
2(3) (3)

0 0G  F ,             (B.28c) 

 (4) (2) (1) (2) (3)
0 0 0 0 02G h      x xF F F F ,         (B.28d) 

 (5) (3) (1) (3)
0 0 0 02G     xF F F ,           (B.28e) 

For 0:n   
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Again, applying the chain rule we get: 
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Equation (B.26) can be written as: 
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where: 

 
2 2(1) (1) (2) (1)

n n n nG     xF F F ,          (B.31a) 

 (2) (2) (3)2n n nG   F F ,            (B.31b) 

 
2(3) (3)

n nG   F ,             (B.31c) 

 (4) (2) (1) (2) (3)2n n n n nG h       x xF F F F           (B.31d) 
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 (5) (3) (1) (3)2n n n nG      xF F F             (B.31e) 

 

First & Second vertical derivatives of the additional modes. 

As with the horizontal derivatives of the free-surface mode, one can easily obtain the vertical 
ones with straightforward differentiation: 
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Equivalently, the horizontal derivatives of the sloping bottom mode, one can easily obtain the 
vertical ones with straightforward differentiation: 
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First & second vertical derivatives of the vertical  2 ,L h    basis 

The calculation of the vertical derivatives of the propagating mode can be seen below: 
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Similarly, the calculation of the vertical derivatives of the evanescent modes can be seen 
below: 
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Appendix C: A Detailed calculation of basic integrals 

Calculation of basic integrals ( ; )nJ s Z  and ( ; )nJ s W  

The calculation of said integrals will be done in the following way:  

For the integrals 2( ; )J s Z  and 1( ; )J s Z  we will derive general analytical expressions. For 
the remaining integrals, we will first calculate the formulae with zero polynomial part. Then, 
we will derive recursive formulae, with respect to the polynomial degree. 

For the vertical function corresponding to the free-surface additional mode: 
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, (C.1a) 

For the vertical function corresponding to the sloping-bottom additional mode: 
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 ,                         (C.1b) 

Now we calculate the remaining basic integrals for zero polynomial degree: 

For the integral corresponding to the propagating mode and its conjugate function: 
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For the integrals corresponding to the evanescent modes and their conjugate functions: 
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Finally we derive the following recursive formulae: 

For the basic integrals of the form 0( ; )J s Z , we have: 
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For the basic integrals of the form ( ; ) , 1nJ s Z n  , we have: 
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For the basic integrals of the form 0( ; )J s W , we have: 
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For the basic integrals of the form ( ; ) , 1nJ s W n  , we have: 
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The calculation of the basic integrals of the form ( ; )m nJ s Z Z , ( ; )n mJ s W Z  and 

( ; )n mJ s W W  will be done in the following way: First we will derive the formulae of said 
basic integrals for 0s   and then we will derive recursive relations for the integrals with 
non-zero polynomial degree. 
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Calculation of basic integrals (0; )m nJ Z Z  

For 2 , 2 & 2 , 2 :m n m n          
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For 1 , 2 & 2 , 1:m n m n          
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For 0 , 0 :m n    
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For 0 :m n    
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For , 0 :m n m n     

Because the vertical functions 0nZ n   are the eigenfunctions of a Sturm-Liouville problem, 

we know from the theory of such problems that they form an orthogonal base on  2 ,L h  . 
As a result we have the formula:  

(0; , ) 0n mJ Z Z  ,                  (C.6e) 

 

Calculation of basic integrals ( 0; )n mJ W Z  

For 2 , 0 :m n     
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For 1 , 0 :m n     
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For 0 :m n    
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For 0 , 1:n m    
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For 1 , 0 :n m    
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For , 1 :m n m n     
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Calculation of basic integrals ( 0; )n mJ W W  
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Having derived the above formulas we can now conclude the calculation of the basic integrals 
using the following recursive formulae: 
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Calculation of basic integrals ( ; ) , s 1m nJ s Z Z   
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Calculation of basic integrals ( ; ) , s 1n mJ s W Z   
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For 0 :m n    
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Calculation of basic integrals ( ; ) , s 1n mJ s W W   

For 0 :m n    
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For , 1 :m n m n     

 

 

1

(s; , ) ( ) ( )

( )( )
(s; , ) ( )

tan (s 1; , Z )(s; , ) ( )

z ms s
n m n m n

mh h

szs n m
n m sz h n h

n m n m
m m mh

s
n sn z m n m

n m n
m m m mh

Z
J W W z h W W dz z h W dz

k

s z h W Z dzz h W Z kJ W W z h Z Z dz
k k k

H k H k W s J WJ W W z h Z dz
k k k k

 








 



 






    

       

 
     

 






  

 

2
0

2 2

2

2
0

2 2

2

2 2

(s; , ) ( ) ( )

(s 1; , Z ) (s 1; , )

tan
(s; , ) (s; , )

(s 1; , Z ) (s 1; , )

(

s zs sn n
n m n m n mz h

m n m m h

m n m n n m

m
ss

n m n
n m n m

m n m m

m n m n n m

m

m n

H k kJ W W z h Z W z h W W dz
k k k k

k J W k J Z Ws
k

k H k HH kJ W W J W W
k k k k

k J W k J Z Ws
k

k k
k











       

  
 

   

  
 





2 2
0 0

2 3 3

2

2 2
0

2 2 2 2

) (s; , )

(s 1; , Z ) (s 1; , )

( ) (s 1; , Z ) (s 1; , )(s; , )
( )

s s
m n

n m
m m n m n

m n m n n m

m
s

m n m n m n n m
n m

m n m n m n

H k k HJ W W
k k k k

k J W k J Z Ws
k

H k k k J W k J Z WJ W W s
k k k k k k

 



  

  
 

   
  

 

  

0
2 2

( 1; , ) ( 1; , )( ; , )
s

m n m n n m
n m

m nm n

k J s W Z k J s Z W HJ s W W s
k kk k

  
 


 ,        (C.11c) 

 



Part II: Appendix C. A detailed calculation of the basic integrals 
 

169 
 

For 0 :m n    
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Appendix D: Detailed asymptotics of matrix coefficients 

In this Section, we calculate in detail the asymptotic behavior of the matrix coefficients 
presented in Chapter 2. This appendix supplements the results presented in Section 2.3 with 
detailed derivations. As a result, the asymptotic behavior of the functions ( ) , 1i

n n F  and
( ) , 1i

nG n   as well as that of the basic integrals will be presented in order to calculate the 
asymptotic formulae of the matrix coefficients. 

Before we calculate said asymptotics, we prove Proposition 2 from Section 2.3 

Proposition 2: The asymptotic behavior of the partial derivatives H nk  and 2
H nk  are given 

by the following relations: 

 
2

20
2 ( )H n

Hnk O n
H n




     ,               (D.1a) 

 2 1
32 ( )H n

nk O n
H
    ,               (D.1b) 

The following limits are also true: 
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Proof: For the first partial derivative H nk  we utilize Eq (4a) of Proposition 1, Section 2.1: 
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From this relation we can also prove (B.1c) as 
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To prove now Eq (B.1b) we implore Eq (4b) of Proposition 1, Section 2.1: 
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From this relation we can also prove B(1.d) as: 
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which finishes the proof.               

Then we proceed to calculate the asymptotic behavior of the functions ( ) , 1i
n n F  and 

( ) , 1i
nG n  .  
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Asymptotics of ( ) , 1i
n n F  and ( ) , 1i

nG n   

For the functions ( ) , 1i
n n F  making use of the Propositions of Chapter 2, will make use of 

Proposition 1 & 2,  of Section 2.3. In more detail: 
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k H n


 




                             
x xF   

 
3 3

(1) 40
2 2n

H H O n
n




  xF                 (D.2a) 

( 2) 20 ( )n n
Hnk h h h O n

H n



      x x xF             (D.2b) 

2
(3) 20

2 ( )n H n
Hnk H H H O n
nH



        x x xF             (D.2c) 

For the functions ( ) , 1i
nG n  , defined by Eqs. (2.22) of Chapter 2, we again utilize the 

Propositions stated above and the asymptotic behavior of Eqs. (D.2) derived for the 
( ) , 1i

n n F . Furthermore, we need to calculate some spatial derivatives of the functions 
( ) , 1i

n n F  which can be computed by means of direct differentiation of Eqs (2.22), Section 
2.1. 
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F F F F F
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
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For 2i  , utilizing Eqs. (B.2b) & (B.2c) we have: 
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2 2
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nG H h O
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

      x xF F ,           (D.3b) 

For 3i  , utilizing Eq. (B.2c) we have: 

2 22 2(3) (3)
4 (1)n n

nG H O
H


     xF ,             (D.3c) 

For 4i  , utilizing Eqs (B.2a), (B.2b) & (19b) of Section 2.1, we have: 
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xx x ,            (D.3d) 

For 5i   utilizing Eqs. (B.2a), (B.2c) & (19c) of Section 2.1, we have: 

2(5) (3) (1) ( 3) (3) (1)2 2n n n n n n HH n H nG k H k H           x x xF F F F F   
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2(5 )
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         x x ,             (D.3e) 

 

Asymptotics of basic integrals ( ; )nJ s Z  and ( ; )nJ s W  

Utilizing Eqs (??) of Section 2.2 we have: 

2
30 0

2 2 2( 0; ) ( )n
n

HJ Z O n
k n
 


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(D.4b) 

To state the asymptotic behavior of all the other such basic integrals we state the following 
Lemma that provides general formulae for the calculation of their leading term. 

Lemma 1: The asymptotic behavior of basic integrals ( ; )nJ s Z  and ( ; )nJ s W  with 1s   is 
given by the following formulae: 
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Proof: We first prove these formulae for 1s  . 

Utilizing the recursive relations (33b) of Section 2.2 and Eqs. (B.4), we have 
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             (D.6a) 

and using Eq. (34b) and Eqs (B.4): 
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(D.6b) 

Now let us assume that Eqs. (D.5) hold for 1s . Then from the recursive relation (2.33b) of 
Chapter 2, we have: 
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which proves Eq. (D.5a). 

Now, from the recursive relation (2.34b) of Chapter 2, we have: 
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which proves Eq. (D.5b) and thus concludes the proof.            

 

Asymptotic behavior of ( 0; , )n mJ Z Z  integrals 

In this case we note that the basic integrals are symmetric with respect to the indexes ,n m . 
As a result the asymptotic behavior of the limit lim ( 0; , )m nm

J Z Z


 is the same as the limit 
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, and therefore only the calculation of one of the in needed. 
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Asymptotic behavior of ( 0; , )n mJ W Z  integrals 
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Now we can proceed on the asymptotics of the matrix coefficients ,m nA , ,m nB , ,m nC . For that 

purpose we will use the Eqs (2.26) and (2.27) of Chapter 2, Section 2. It should also be noted 
that the asymptotic behavior of the coefficients ,m nA  can readily be found in Eqs (D.6) and so 

their formulae will not be explicitly written. For the other coefficients we will exploit the 
aforementioned relations (2.26) and (2.27), the asymptotic behavior of the basic integrals and 
the functions ( ) , 1i

n n F  and ( ) , 1i
nG n  , calculated in this Appendix, as well as the 

asymptotic behavior of the wave numbers nk  as was presented in Proposition 2 of Section 
2.3. 
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For ,m n c n     we have: 
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For ,m n c n     we have: 
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Conclusions & Future Work 

The main goal of this thesis was the implementation of the HCM method to a parallel C++ 
code enabling the efficient simulation of problems defined on large domains. For that 
purpose, new analytical formulae for the matrix coefficients , ,mn mn mnA CB  were derived 
allowing for a more efficient (computation-wise) method of their calculation. Furthermore, 
use of arbitrary order of finite differences was actualized and results regarding their error 
estimates were presented for 2nd order up to 12th order. This step comes as an expansion to the 
4th order (and serial) Matlab code that existed before this work. In addition, the parallelization 
of the code was implemented allowing for fast simulations regarding large problems not 
possible to be simulated before. Regarding the expansion of the HCM method to a wider 
range of problems, the equations of the system were derived for a moving seabed, with 
numerical results being to close proximity with simulations of other models. Also, the 
effectiveness of the method in calculating forces acted on a vertical wall, caused by a solitary 
wave, was presented with the numerical results being in very good agreement with those of 
BEM codes. Finally, asymptotic estimates concerning the matrix coefficients , ,mn mn mnA CB , 
with regard to indexes ,m n , were also calculated, a step necessary for future studies 
concerning the behavior of the substrate problem. 

Regarding future work on the Hamiltonian Coupled Mode method, we begin by stating that 
the development of a 3D code is already in progress. The aforementioned code implements 
the Finite Elements Method, allowing us to also study the problem through a high-order 
representation of the fields. Furthermore, practice of symplectic time-integration methods 
appears as an interesting addition to the numerical study of the problem. Concerning a more 
theoretical aspect, usage of the asymptotic behavior of the matrix coefficients , ,mn mn mnA CB  
is a necessary and appealing step towards the theoretical justification of the truncated model 
in use. In addition, systematic study of other truncated models may give rise to approaches 
with better error estimate and behavior. Finally, a study concerning the optimal value of the 
parameter 0  for an arbitrary simulation may lead to better numerical results as well as 
decrease the (already low) total number of modes or horizontal points for satisfactory results. 

Except for advancements regarding the model described in this work, the HCM method can 
be expanded to problems with richer physics. This could either mean trivial physical 
expansions, like the introduction of surface tension, or much more interesting cases like 
wave-current interactions. To go even further, introduction of vorticity to the problem could 
allow for more interesting cases to be modeled. Finally, wave-body interactions (a highly 
practical set of problems) could also be explored, although hybrid methods, incorporating for 
example BEM near the bodies, may be required for such problems. 
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