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The onset of convection in the form of inertial waves in a rotating fluid sphere is
studied through a perturbation analysis in an extension of earlier work by Zhang
(1994). Explicit expressions for the dependence of the Rayleigh number on the
azimuthal wavenumber are derived and new results for the case of a nearly thermally
insulating boundary are obtained.

1. Introduction
Convection in the form of slightly modified inertial waves is a well-known

phenomenon in geophysical fluid dynamics. The analysis of the onset of convection
in a horizontal fluid layer heated from below and rotating about a vertical axis
was first done by Chandrasekhar more than 50 years ago. For an account of this
early work we refer to his famous monograph (Chandrasekhar 1961). He found that
convection sets in at high rotation rates in the form of modified inertial waves when
the Prandtl number is less than about 0.6 depending on the boundary conditions.
Another important case in which convection in the form of modified inertial waves
occurs is the rotating fluid sphere heated from within and subject to a spherically
symmetric gravity field. The transition from convection in the form of columns
aligned with the axis of rotation to inertial convection in the form of equatorially
attached modes has been demonstrated by Zhang & Busse (1987). In a later series
of papers Zhang (1993, 1994, 1995) developed an analytical theory for the critical
parameter values for the onset of convection based on a perturbation approach. The
buoyancy term and viscous dissipation are introduced in the equation of motion as
small perturbations of inviscid inertial waves and the balance of the two terms is then
used for the determination of the critical value of the Rayleigh number. In this paper
we extend this approach to case of a spherical boundary of low thermal conductivity
on the one hand and to an alternative method of analysis on the other hand which
will allow us to obtain explicit expressions for the dependence of the Rayleigh number
on the azimuthal wavenumber.

2. Mathematical formulation of the problem
We consider a homogeneously heated, self-gravitating fluid sphere rotating with the

constant angular velocity Ω about an axis fixed in space. A static state thus exists
with the temperature distribution TS = T0 − βr2

0 r
2/2 and the gravity field given by

g = −γ r0r where r is the position vector with respect to the centre of the sphere
and r is its length measured in fractions of the radius r0 of the sphere. In addition to
the length r0, the time r2

0/ν and the temperature ν2/γ αr4
0 are used as scales for the

dimensionless description of the problem where ν denotes the kinematic viscosity of
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the fluid and κ is its thermal diffusivity. The density is assumed to be constant except
in the gravity term where its temperature dependence given by α ≡ (d�/dT )/� =
const. is taken into account. The basic equations of motion and the heat equation for
the deviation Θ from the static temperature distribution are thus given by

∂t u + τ k × u + ∇π = Θ r + ∇2u, (2.1a)

∇ · u = 0, (2.1b)

Rr · u + ∇2Θ − P∂tΘ = 0, (2.1c)

where the Rayleigh number R, the Coriolis parameter τ and the Prandtl number P

are defined by

R =
αγβr6

0

νκ
, τ =

2Ωr2
0

ν
, P =

ν

κ
. (2.2)

We have neglected the nonlinear terms u · ∇u and u · ∇Θ in equations (2.1) since
we restrict the attention to the problem of the onset of convection in the form of
small disturbances. In the limit of high τ the right-hand side of equation (2.1a) can
be neglected and the equation for inertial waves is obtained. For the description of
inertial wave solutions u0 we use the general representation in terms of poloidal and
toroidal components for the solenoidal field u0,

u0 = ∇ × (∇v × r) + ∇w × r. (2.3)

By multiplying the (curl)2 and the curl of the inertial wave equation by r we obtain
two equations for v and w,

[∂tL2 − τ∂ϕ]∇2v − τQw = 0, (2.4a)

[∂tL2 − τ∂ϕ]w + τQv = 0, (2.4b)

where ∂t and ∂ϕ denote the partial derivatives with respect to time t and with respect
to the angle ϕ of a spherical system of coordinates r, θ, ϕ and where the operators
L2 and Q are defined by

L2 ≡ −r2∇2 + ∂r (r
2∂r ), (2.5a)

Q ≡ r cos θ∇2 − (L2 + r∂r )(cos θ∂r − r−1 sin θ∂θ ). (2.5b)

General solutions in explicit form for inertial waves in rotating spheres have recently
been obtained by Zhang et al. (2001). Here only solutions of equations (2.4) for which
v is symmetric with respect to the equatorial plane and does not possess a zero in its
θ-dependence are of interest since only those are connected with the preferred modes
for the onset of convection (Zhang 1994). These modes are given by

v0 = P m
m (cos θ) exp{imϕ +iωτt}f (r), w0 = P m

m+1(cos θ) exp{imϕ +iωτt}g(r), (2.6)

with

f (r) = rm − rm+2, g(r) = rm+1 2im(m + 2)

(2m + 1)(ω0(m2 + 3m + 2) − m)
, (2.7a)

ω0 =
1

m + 2
(1 ± (1 + m(m + 2)(2m + 3)−1)1/2). (2.7b)

Before considering the full problem (2.1) we have to specify the boundary conditions.
We shall assume a stress-free boundary with either a fixed temperature (case A) or a
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thermally insulating boundary (case B),

r · u = r · ∇(r × u)/r2 = 0 and
Θ = 0 (case A)
∂rΘ = 0 (case B)

}
at r = 1. (2.8)

Following Zhang (1994) we use a perturbation approach for solving equations (2.1),

u = u0 + u1 + . . . , ω = ω0 + ω1 + . . . . (2.9)

The perturbation u1 consists of two parts, u1 = ui + ub, where ui denotes the
perturbation of the interior flow, while ub is the Ekman boundary flow which is
required since u0 satisfies the first of conditions (2.8), but not the second.

After the ansatz (2.9) has been inserted into equations (2.1a) and (2.1b) we obtain
the solvability condition for equation (2.1a) for u1 by multiplying it with u∗

0 and
averaging it over the fluid sphere,

iω1〈|u0|2〉 = 〈Θ r · u∗
0〉 + 〈u∗

0 · ∇2(u0 + ub)〉, (2.10)

where the brackets 〈. . .〉 indicate the average over the fluid sphere and ∗ indicates
the complex conjugate. The evaluation of the second term on the right-hand side of
(2.10) yields

〈u∗
0 · ∇2(u0 + ub)〉 = 〈(∇ × u∗

0) · (∇ × ub))〉 +
3

4π

∮
[u∗

0 · ∇ub − u∗
0 · (r · ∇)ub] d2S, (2.11)

since ∇2u0 vanishes (Zhang 1994). Since ub is of the order τ−1/2 and vanishes outside
a boundary layer of thickness τ−1/2, only the term involving a radial derivative of
ub makes a contribution of order one on the right-hand side of equation (2.11). This
term can easily be evaluated because of the condition r · ∇r × (u0 + ub)/r2 = 0 at the
surface of the sphere. Using expressions (2.6) and (2.7a) we thus obtain

〈u∗
0 · ∇2ub〉 =

3

2

∫ 1

−1

∣∣P m
m

∣∣2d(cos θ) m(m + 1)(2m + 1)

[
4 + (m + 2)

(2m + 1)

2m + 3

]

×
∣∣∣∣ 2(m + 1)2 − 2

(2m + 1)(ω0(m + 1)(m + 2) − m)

∣∣∣∣
2

, (2.12)

where the relationship∫ 1

−1

∣∣P m+1
m

∣∣2d cos θ =
(2m + 1)2

2m + 3

∫ 1

−1

∣∣P m
m

∣∣2 d cos θ (2.13)

has been used.

3. Explicit expressions in the limit Pτ � 1

The equation (2.1c) for Θ can most easily be solved in the limit of vanishing τPω0.
In this limit we obtain for Θ ,

Θ = P m
m (cos θ) exp{imϕ + iωτt}h(r), (3.1)

with

h(r) = m(m + 1)R

(
rm+4

(m + 5)(m + 4) − (m + 1)m
− rm+2

(m + 3)(m + 2) − (m + 1)m
− crm

)
,

(3.2)
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where the coefficient c is given by

c =




1

(m + 5)(m + 4) − (m + 1)m
− 1

(m + 3)(m + 2) − (m + 1)m
(case A),

(m + 4)/m

(m + 5)(m + 4) − (m + 1)m
− (m + 2)/m

(m + 3)(m + 2) − (m + 1)m
(case B).

(3.3)

Since Θ is real ω1 must vanish according to the solvability condition (2.10) and we
obtain for R the final result

R± =

(
m2(m + 2)3

(2m + 3)[(m + 1)(1 ±
√

(m2 + 4m + 3)/(2m + 3)) − m]2
+ 2m + 1

)

× (2m + 9)(2m + 7)(2m + 5)2(2m + 3)2/b, (3.4)

where the two possibilities for the sign originate from the two possibilities for the
sign in the expression (2.7b) for ω0. The coefficient b takes the values

b =

{
(m + 1)m(10m + 27) (case A),

(m + 1)(14m2 + 59m + 63) (case B).
(3.5)

Obviously, the lowest value of R is reached for m = 1 and the value R+ for convection
waves travelling in the retrograde direction is always lower than the value R− for the
prograde waves. Expression (3.4) is also of interest, however, in the case of spherical
fluid shells when the (m = 1)-mode is affected most strongly by the presence of the
inner boundary. Convection modes corresponding to higher values of m may then
become preferred at onset since their r-dependence decays more rapidly with distance
from the outer boundary according to relationships (2.7).

4. Solution of the heat equation in the general case
For the solution of equation (2.1c) in the general case it is convenient to use the

Green’s function method. The Green’s function G(r, a) is obtained as solution of the
equation

[∂rr
2∂r + (−iω0τP r2 − m(m + 1))]G(r, a) = δ(r − a), (4.1)

which can be solved in terms of the spherical Bessel functions jm(µr) and ym(µr),

G(r, a) =

{
G1(r, a) = A1jm(µr) for 0 � r < a,

G2(r, a) = Ajm(µr) + Bym(µr) for a < r � 1,
(4.2)

where

µ ≡
√

−iω0τP , A1 = µ

(
ym(µa) − jm(µa)

jm(µ)

ym(µ)

)
, (4.3a, b)

A = −µjm(µa)
ym(µ)

jm(µ)
, B = µjm(µa). (4.3c, d )

A solution of equation (2.1c) can be obtained in the form

h(r) = −
∫ 1

0

G(r, a)m(m + 1)(am − am+2)a2 da

= −
∫ r

0

G2(r, a)m(m + 1)(am − am+2)a2 da −
∫ 1

r

G1(r, a)m(m + 1)(am − am+2)a2 da.

(4.4)
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Evaluation of these integrals for m = 1 yields the expressions

h(r) =




2R

(ω0τP )2

(
r(µ2 + 10) − µ2r3 − 10(µr cos(µr) − sin(µr))

r2(µ cos µ − sinµ)

)
(case A),

2R

(ω0τP )2

(
r(µ2 + 10) − µ2r3 − (µ2 − 10)(µr cos(µr) − sin(µr))

r2(2µ cos µ − (2 − µ2) sin µ)

)
(case B).

(4.5)

Slightly more complex expressions are obtained for m > 1. Expressions (4.5) can now
be used to calculate R and ω1 on the basis of equation (2.1). In the case m = 1 we
obtain

R = 21(ω0τP )2
(

1 +
9

5(6ω0 − 1)2

)

×




[
2 − 1050µ−4 − Re

{
350µ−2 sinµ

µ cosµ − sinµ

}]−1

(case A),

[
9 + 525µ−4 − Re

{
(7µ2 − 70 + 175µ−2) sinµ

2µ cos µ + (µ2 − 2) sin µ

}]−1

(case B),

(4.6)

where Re{} indicates the real part of the term enclosed by {}. Expressions (4.6)
have been plotted together with the expressions obtained for higher values of m in
figures 1(a) and 1(b) for the cases A and B, respectively. We also show by broken lines
numerical values which have been obtained through the use of a modified version
of the Galerkin method of Ardes, Busse & Wicht (1997). Because the numerical
computations have been done for the finite value 105 of τ the results differ slightly
from those of the analytical theory. Since there are two values of ω0 for each m,
two functions R(τP ) have been plotted for each m. For values τP of order unity or
lower, expressions (3.4) are approached well and the retrograde mode corresponding
to the positive sign in (2.7b) yields always the lower value of R. But the prograde
mode corresponding to the negative sign in (2.7b) becomes the preferred mode as τP

becomes of order 10 or larger depending on the particular value of m. This transition
can be understood on the basis of the increasing difference in phase between Θ and ur

with increasing τP . While the mode with the largest absolute value of ω0 is preferred
as long as Θ and ur are in phase, the mode with the minimum absolute value of ω

becomes preferred as the phase difference increases since the latter is detrimental to
the work done by the buoyancy force. The frequency perturbation ω1 usually makes
only a small contribution to ω, which tends to decrease the absolute value of ω.

For very large values of τP the Rayleigh number R increases in proportion to
(τP )2 for fixed m. In spite of this strong increase Θ remains of order τP on the
right-hand side of equation (2.1a). The perturbation approach thus continues to be
valid for τ −→ ∞ as long as P � 1 can be assumed. For any fixed low Prandtl
number, however, with increasing τ the onset of convection in the form of prograde
inertial modes will be replaced at some point by onset in the form of columnar
convection because the latter obeys an approximate asymptotic relationship for R of
the form (τP )4/3 (see, for example, Busse 1970). This second transition depends on
the value of P and will occur at higher values of τ and R for lower values of P .
There is little chance that inertial convection occurs in the Earth’s core, for instance,
since P is of the order 0.03 while the usual estimate for τ is 1015.
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Figure 1. The Rayleigh number R as a function of τP for m = 1, 2, 3, 4, 6 and 8. Results
based on explicit expressions such as (4.6) in the case of m = 1 (solid lines) are shown in
comparison with the results obtained with a Galerkin numerical scheme (dotted lines for
retrograde mode, dashed lines for prograde mode). (a) Case A, fixed temperature boundary
conditions. (b) Case B, insulating thermal boundary conditions.

5. Discussion
Since the curves R(τP, m) intersect at values of τP of order 103 in figures 1(a)

and 1(b), a different way of plotting the results has been adopted in figure 2. Here
the preferred value of m has been indicated by a filled circle in the case of the
prograde inertial mode. The results of figure 2(a) agree well with those of figure 4
of Zhang (1994) even though only an approximate method had been used for the
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Figure 2. The Rayleigh number R as a function of m for 2 × 103 � τP � 104 (from bottom
to top). The lines are equidistant with a step of �(τP ) = 400. The filled circles indicate the
preferred values of m. The open circles correspond to the preferred value of m in the case when
m = 1 is not included in the competition. (a) Case A, fixed temperature boundary conditions.
(b) Case B, insulating thermal boundary conditions.

determination of the Rayleigh number. Zhang neglected the (m = 1)-mode and thus
arrived at a different criterion for the preferred mode. His preferred values of m are
indicated by open circles in figure 2. The (m = 1)-mode could indeed be suppressed
by the presence of an inner concentric spherical boundary. A rough estimate indicates
that inertial convection with azimuthal wavenumber m will be affected significantly
when the radius η of the inner boundary exceeds a value of the order (1 − m−1).
Unfortunately, an analytical theory of inertial waves in rotating spherical fluid shells
does not exist and it is thus not possible to extend the analysis of this paper to the case
when an inner boundary is present. For a numerical study of inertial convection in
rotating spherical fluid shells and its finite-amplitude properties we refer to Simitev &
Busse (2003).

The two transitions between modes of different types mentioned in the preceding
section illuminate some of the puzzling findings of Zhang & Busse (1987) and Ardes
et al. (1997). The transition labeled I in figure 17 of Zhang & Busse (1987) can
now be clearly identified with the transition from retrograde to prograde inertial
convection. The main result of our analysis is that this transition depends primarily
on the parameter combination τP with only a minor dependence on the wavenumber
m. The second transition (1997). The second transition from inertial to columnar
convection cannot be pinned down equally well because of the lack of a sufficiently
accurate analytical theory for thermal Rossby waves in the low Prandtl number
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regime. According to the numerical results of Ardes et al. (1997) (see their figures 4
and 5) there exists a broad transition range involving perhaps several transitions where
the onset of convection occurs in the form of multi-cellular modes. An illumination
of this regime should be the goal of future research.

The research reported in this paper has been performed in parts by the authors
during their stay at the Woods Hole Summer Program in Geophysical Fluid Dynamics
2002. The research has also been supported by the Deutsche Forschungsgemeinschaft
under Grant Bu589/10-2.
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