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Abstract 
Experimental and theoretical studies have shown the 
importance of stochastic processes in genetic regulatory 
networks and cellular processes. Cellular networks and 
genetic circuits often involve small numbers of key 
proteins such as transcriptional factors and signaling 
proteins. In recent years stochastic models have been 
used successfully for studying noise in biological 
pathways, and stochastic modelling of biological systems 
has become a very important research field in 
computational biology. One of the challenge problems in 
this field is the reduction of the huge computing time in 
stochastic simulations. Based on the system of the 
mitogen-activated protein kinase cascade that is activated 
by epidermal growth factor, this work give a parallel 
implementation by using OpenMP and parallelism across 
the simulation. Special attention is paid to the 
independence of the generated random numbers in 
parallel computing, that is a key criterion for the success 
of stochastic simulations. Numerical results indicate that 
parallel computers can be used as an efficient tool for 
simulating the dynamics of large-scale genetic regulatory 
networks and cellular processes. 

1. Introduction 

       Stochastic modelling of biological systems has 
become a very important research field in computational 
biology in recent years. Experimental and theoretical 
studies have shown the importance of stochastic 
processes in genetic regulatory networks and cellular 
processes [7]. Cellular networks and genetic circuits often 
involve small numbers of key proteins such as 
transcriptional factors and signaling proteins. It is not 
appropriate to use deterministic models such as ordinary 
differential equations to describe the dynamics of the 
systems with small molecular numbers. Instead of 
studying the variation of concentrations in deterministic 
models based on the population of a large number of 
cells, stochastic models concentrate on the system 
dynamics in each cell by tracking the molecular number 

of each species in the system. The stochastic simulation 
algorithm (SSA) is an essentially exact procedure for 
studying noise in biochemical reaction systems [9]. The 
SSA numerically simulates the time evolution of a well-
stirred chemically reacting system by taking proper 
account of the randomness inherent in such a system. 
This method takes time steps of variable length based on 
the rate constants and population size of each chemical 
species. The tremendous success of the SSA in recent 
years has been encouraging scientists to study more and 
more complicated biological systems. However, the 
bottleneck in the application of the SSA is the huge 
computing time because of the possibility of having very 
small stepsizes.  
       There are two major approaches for reducing the 
computational time of the SSA. The first approach is the 
tau-leap methods [10, 18]. Instead of considering only 
one reaction in a very small step in the SSA, a number of 
reactions are allowed to fire in a relative larger time 
interval. The binomial tau-leap method can restrict the 
possible reaction number in a time interval, and 
significant improvement in the efficiency has been 
reported by using this method [18, 5]. More work is 
needed to design general-purposed sampling techniques if 
reactant species undergo a number of reaction channels in 
order to simulate complicated biological systems. The 
second approach is through the use of multi-scale 
methods [4, 12, 15]. These methods partition a chemical 
reaction system into subsets of slow and fast reactions 
and then apply different simulation methods to each 
subset. The complicated partition processes erode part of 
the efficiency gain and more sophisticated partition 
processes are needed in order to improve the efficiency. 
       In this work we use parallel computer as an efficient 
tool to improve the efficiency of the SSA. Because a large 
number of independent simulations are needed in 
stochastic simulations in order to obtain statistic 
properties of the system, parallel computing can be used 
straightforwardly in stochastic simulation by letting each 
processor simulate a trajectory independently. However, 
the challenge is to guarantee the property of independence 
for the generated random numbers in different processes. 
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Here we study the parallel implementation of the SSA by 
using OpenMP in order to keep the independence of the 
generated random numbers, and report the efficiency of 
the parallel implementation by simulating a system of the 
mitogen-activated protein (MAP) kinase cascade that is 
activated by epidermal growth factor (EGF).  

2. Simulation Method 

       We first give a brief description of the SSA for 
biochemical reaction systems. It is assumed that we have 
a well-stirred mixture at constant temperature in a fixed 
volume Ω . This mixture consists of 1≥N  molecular 
species },,{ 1 NSS   that chemically interact through 

1≥M  reaction channels },,{ 1 MRR  . The restriction 
that Ω  is fixed can be relaxed by using reaction rates that 
are dependent on the volume Ω , but we do not discuss it 
here. 
       The dynamical state of this system is denoted as 

Τ≡ ))(,),(()( 1 tXtXtX N , where )(tX i  is the 

molecular number of iS  in the system at time t . For 

each Mjj ,,1,  = , we define a propensity function 

)(Xai  such that dtXai )(  is the probability that given 

XtX =)( , one reaction jR  will occur inside Ω  in the 

next infinitesimal time interval ),[ dttt + . When that 
reaction occurs, )(tX  changes its state. The amount by 

which iX  changes is given by ijν  that represents the 

change in the molecular number of iS  produced by one 

jR  reaction. The MN × matrix ν  with elements ijν  is 
called the stoichiometric matrix. In particular, if just the 
jth reaction occurs in the time interval ),[ τ+tt , the jth 

vector jν  of the stoichiometric matrix is used to update 

the state of the system by .)()( jtXtX ντ +=+ We 
see that the propensity functions and state-change vectors 
completely characterize the chemical reaction system.  
       The SSA is an exact and direct representation of the 
evolution of )(tX . There are several forms of this 
algorithm. The direct method and the first reaction 
method are widely use and work in the following manner. 

The direct method: With two independent samples 

1r  and 2r  of the uniformly distributed random variable 
)1,0(U , the length of the time interval ),[ τ+tt  for the 

next reaction is determined by  
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The update of the system is then given by  
.)()( jtXtX ντ +=+

The first reaction method: For each reaction 
channel jR , generate a tentative reaction time by 

,,,1,1ln
)(

1 Mj
rXa jj

j  ==τ

where Mrr ,,1   are M  statistically independent 
samples of )1,0(U , and let 

=τ  the smallest of },,,{ 1 Mττ  
=j the index of the smallest of },,{ 1 Mττ  .

The update of the system is then given by  
.)()( jtXtX ντ +=+

       The direct method requires less computing time for 
calculating the reaction time and has been widely used in 
stochastic simulations on sequential computers. On the 
other hand, the first reaction method has a relatively 
simpler process for determining the index of the next 
reaction and thus is more appropriate to be used in 
parallel computing. In addition, the computation of the 
tentative reaction time of each reaction channel in the first 
reaction method can be implemented in parallel if the 
number of reactions is large. 
       In order to represent large-scale stochastic models in 
a simple and concise way, we use a general formula for 
representing propensity functions of different types of 
biochemical reactions. This general formula can 
significantly simplify the programming process and may 
lead to a general-purpose computer program for 
stochastic simulation. Here we are interested in biological 
systems modeled by three types of elementary reactions, 
namely the first order reaction, the second order reaction 
and the homodimer formation. Third and high order 
reactions are not studied as they can be reasonably 
estimated by the combination of second order reactions 
[13]. The propensity functions of these three types of 
elementary reactions are written in the following way: 

(1) the first order reaction 
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(2) the second order reaction 
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       The propensity functions of these three types of 
reactions can be written as [2] 

MjXkXXkXa jjjjjj ,,1,)( 12211  =−=
that can be defined by a ( 2×M ) rate matrix with 
elements 1jk  and 2jk in the j-th row, and a ( 2×M )

index matrix with elements 1j  and 2j  in the j-th row. 

For the first and second order reactions, ij ck =1  and 

02 =jk , while 2/321 ckk jj ==  for the homodimer 
formation. Note that this representation is also designed 
for parallel simulations of biochemical reaction systems. 

3. Large-scale cellular signaling processes 

       EGF receptor belongs to the tyrosine kinase family of 
receptors and is expressed in virtually all organs of 
mammals. The EGF receptor is activated by a variety of 
ligands that are crucial in the formation and propagation 
of many tumors through their effect on cell signaling 
pathway, cellular proliferation, control of apoptosis, and 
angio-genesis. The importance of the EGF receptor in 
tumorigenesis and tumor progression makes it an 
attractive target for the development of anticancer 
therapies. Over the past two decades, much effort has 
been directed at developing anticancer agents that can 
interfere with the EGF receptor activity. A variety of 
targeting strategies to exploit the role of the EGF receptor 
in tumors have been employed and clinical evaluations 
have yielded some promising results [14]. 
       The EGF receptor is probably the best-known 
receptor system that has allowed the development of 
mathematical models [1, 16]. Although the principal 
hierarchy of the EGF receptor signal pathway and its 
activation sequence is well known, recent experimental 
discoveries provide more and more information for the 
protein-protein interactions and positive/negative 
regulatory loops in this signal pathway. The kinetic 
network of the EGF receptor pathway is much more 
complicated than previously thought. In addition, we still 
have a poor understanding of critical signaling events that 
control divergent cellular responses such as cell growth, 
survival or differentiation. Based on the biochemical 
properties of cellular components, sophisticated 

mathematical models can provide a tool to manage, 
interpret and understand the complexity of large-scale 
cellular signaling processes [8]. 

Figure 1 The MAP kinase cascade activated by surface and 
internalized EGF receptors.

       This work studies the parallel simulation of a 
stochastic model that is derived from the mathematical 
model in the form of ordinary differential equations [16]. 
The network of the MAP kinase cascade that is activated 
by EGF can be divided into four modules (see Figure 1). 
The first module describes the reception of EGF and EGF 
receptor autophosphorylation that results from the 
dimerization of pairs of ligand-occupied receptors. The 
second module begins with the binding of a GTPase 
activating protein (GAP). Downstream of GAP binding is 
the formation of signaling complexes by the interaction of 
several signaling proteins such as Sos, Grb2 and Shc. 
There are two principal pathways in the second module, 
namely Shc-dependent and Shc-independent. Both 
principal pathways lead to the activation of Ras protein in 
the third module. The signaling complexes formed in the 
second module stimulate the conversion of RasGDP to 
RasGTP. Activated Ras in the form of RasGTP has a high 
affinity for the binding of Raf that leads to the activation 
of the MAP kinase cascade in the last module of this 
network. The MAP kinase cascade contains three types of 
proteins, namely Raf, MEK and ERK-1/2, and is a highly 
conserved module in cell signaling pathways. At each of 
3 levels, a kinase must be phosphorylated at 2 sites before 
it can act as a catalyst for the next level. Further more, 
this network also includes the internalization processes, 
hence duplicating all the steps described above and 
increasing the complexity of the system. Unoccupied 
receptors, single ligand-receptor complexes and 
dimerized receptors are all subject to endocytosis but at 
different rates. Endocytosis may lead to receptors 
reforming at the cell surface. In either case, signalling 
downstream of the EGF receptor may continue as the 
internalized complex travels through the cytoplasm in a 
vesicle [11].
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       Schoeberl et al. [16] has developed a mathematical 
model for the signal transduction pathway of the EGF 
receptor. This model contains 94 compounds (variables) 
and is in the form of ordinary differential equations. 
Based on this deterministic model, Chatterjee et al. [5] 
has developed a corresponding stochastic model for 
testing the efficiency of the binomial tau-leap method.  
However, Gillespie has commented that this 
implementation of the binomial tau-leap method in [5] 
may generate bias because all the reactions are not treated 
equally in stochastic simulations. Indeed it is not easy to 
write a sophisticated computer program by using the tau-
leap methods to simulate this complicated stochastic 
system. In addition, there is not any reported simulation 
result of the stochastic model because the published paper 
is an applications note [5]. Thus we use parallel 
computing to simulate this system in order to reduce the 
huge computing time of the SSA. Due to space limits, we 
do not list all of the 226 reactions here and readers can 
find the detailed information in Schoeberl et al. [16] for 
biochemical reactions, kinetic rates and initial conditions. 

Figure 2 Simulations of four protein complexes in the MAP 
kinase cascade activated by the EGF receptor. (A) (EGF-

EGFRi)2, internalized dimer of EGF-EGFR; (B) Shc*-Grb2, the 
complex of the activated Shc and Grb2; (C) Raf*, activated Raf; 
(D) ppERK, activated ERK.

      Figure 2 gives a simulation of four protein complexes 
in the time interval [0, 60] minutes. This is the first 
reported simulation result for the stochastic properties of 
the MAP kinase cascade activated by the EGF receptor. 
The numbers of these protein complexes differ from very 
small numbers of the internalized dimer of the ligand-
occupied receptors (EGF-EGFRi)2 to very large numbers 
of ppERR, the activated form of ERK that is dually 
phosphorylated. A very interesting result is that the 
signaling output of this network (ppERK) is not very 
noisy although the dynamics of quite a few protein 
complexes is very noisy. Although deterministic models 
in the form of differential equations are widely used in 
describing the kinetics of the cell signaling transduction 
pathways, stochastic models should be developed to study 
the importance of small molecular numbers in the system 
dynamics, especially when the concentrations (activities) 
of the signal input such as EGF are small (low). In this 
case stochastic properties of certain signal proteins may 
have profound impact on the study of inhibitors for the 
anticancer therapies.  

4. Parallel implementation 

       There are four types of implementation techniques 
for stochastic simulations on parallel computers [3]. 
These include “parallelism across the method” and 
“parallelism across the simulation”. The first type of 
parallelism involves domain decomposition, either at a 
functional level or at a data level. This can be 
programmed using, for example, OpenMP, which is an 
application programmer’s interface for shared memory 
parallelism. OpenMP uses a single master thread, with a 
team of slaves (processors) executing code in parallel. 
Parallel implementation of the first reaction method can 
be considered in the computation of the propensity 
functions and in the system update, if the number of 
reactions in a system is very large. In addition we can 
parallelise the process for determining the reaction time 
of the next reaction. 
        The second approach is based on the fact that a large 
number of independent simulations (of the order of 1000 
or more) needs to be performed in order to calculate 
statistics about the nature of the solution – such as the 
mean, variance and probability density function at a 
number of time points. It is a straightforward 
parallelization technique to run a number of different 
simulations on separate processes (for example, on a 
multi-processor supercomputer), as these simulations are 
independent of each other. This approach can be 
implemented in the OpenMP or MPI/PVM environments. 
In either case, communication between the processors is 
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required only at the end of the simulations in order to 
generate statistics. Such an implementation is referred to 
as coarse-grain parallelism (in contrast to fine-grained 
parallelism where only small amount of computation can 
be carried out between processor synchronization). 
       A challenge problem in the parallel implementation 
of stochastic simulations is the quality of the random 
number generator. Although Monte-Carlo computations 
are considered easy to parallelize, simulation results can 
be adversely affected by defects in the parallel 
pseudorandom number generator used [17]. The 
independence of the generated random numbers and the 
subsequent independence of simulations on different 
processes are the primary requirement for the success of 
stochastic simulations. However, finding a good parallel 
random number generator has proven to be a very 
challenge problem, and is still the subject of much 
research and debate [6].  Based on recent empirical tests 
for a number of parallel random number generators, it 
was still suggested to use a number of different generators 
to run the application in order to increase our confidence 
on simulation results [17]. In our previous attempts, we 
tried to use different random seeds in different processors 
in the MPI environment, and obtained very good speed-
up and efficiency that is close to 1 [2]. However, 
theoretical analysis and empirical tests are needed to 
study the selection process of random seeds in order that 
different simulations generated from different processors 
are independent from each other. 
       In order to avoid the difficult issue of the 
independence properties of random number generators, 
we consider another parallel implementation of the SSA 
by using OpenMP. Although we still consider parallelism 
across the simulation, the current technique considers the 
parallel implementation at each step rather than in the 
whole simulation that we have studied before. We 
guarantee independence by using the master thread at 
each step to generate random numbers required in this 
step for all simulations. The major structure of this 
implementation of the SSA is given in FORTRAN as 
follows. 
           DO WHILE (min_t .LT. L) 
                    Generate random numbers 
                   !$OMP PARALLEL DO 
                   DO I = 1, Num_simu 
                               One step of the SSA  
                               (or a number of steps of the SSA) 
                   END DO 
                   !$OMP END PARALLEL DO 
                   min_t  = min{t(1), …, t(Num_simu)} 
          END DO 
       At each DO WHILE (min_t .LT. L) loop, we first 
generate a matrix of random numbers with dimension  

 (Num_simu) ×  (Num_perstep) ×  (Num_steps), 

where Num_simu is the number of stochastic simulations, 
Num_perstep is the number of random samples required 
at each step of the SSA, and Num_steps is the number of 
steps of the SSA implemented in each PARALLEL DO 
loop. Then this matrix is defined as a shared variable in 
the following PARALLEL DO loop. As two random 
numbers are required in the direct method, namely 
Num_perstep = 2, we can generate two matrices of 
random numbers with dimension (Num_simu) ×
(Num_steps). 
       The advantage of this implementation is that all 
random numbers are generated from the master thread. 
Thus we can ensure the independent properties of 
different stochastic simulations. However, the cost is the 
communication time because a number of shared 
variables should be used at each step. We can consider a 
number of techniques for improving the efficiency of this 
parallel implementation. For example, we can use 
detailed formulas for the propensity functions in order to 
avoid communication of the index matrices for variables 
and reaction rates, although this is not recommended in a 
general-purposed computer program, or run a number of 
steps of the SSA in each OpenMP PARALLEL DO loop. 
It is expected the efficiency of the parallel computation 
can be improved by the employment of these techniques. 
       Numerical results in this paper are obtained from a 
parallel implementation carried out on an SGI Altix 3700 
scalable-shared memory parallel computer at the 
University of Queensland. The command in Fortran 90 
ETIME is used to measure the program’s elapsed time. 
The timings were calculated from 5 runs, discarding the 
slowest and fastest and then averaging the remaining 
times. Based on 1000 simulations (Num_simu=1000) in 
the time interval [0, 5] minutes, Figure 3 gives the speed-
up and efficiency of the parallel implementation of the 
SSA. We can achieve significant improvement on the 
efficiency if each PARALLEL DO loop contains 100 
steps of the SSA over one step of the SSA. In addition, 
the parallel simulation time is more stable if a number of 
steps of the SSA are included in one PARALLEL DO 
loop than that if only one step of the SSA is considered.  

5. Conclusions 

       In this work we have focused on the application of 
parallel computing to the system of the mitogen-activated 
protein kinase cascade that is activated by epidermal 
growth factor. This is currently a very important topic in 
computational biology – namely the use of stochastic 
chemistry for the understanding of genetic regulatory 
networks and large-scale cellular processes. Based on this 
system with 96 species and 224 reactions, we studied the 
parallel implementation of the SSA by using OpenMP 
through parallelism across the simulation. Special 
attention has been paid to the dependence of the 
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generated random numbers. Numerical results indicate 
that parallel computers can be used as an efficient tool for 
improving the efficiency of stochastic simulations. Recent 
research in stochastic modelling of biological networks 
has provided larger and larger systems. Future work 
includes the development of parallel algorithms through 
the parallelism across the method for simulating large-
scale genetic regulatory networks and cellular processes. 

Figure 3 Speed-up and efficiency of parallel computing. (dot-
line: one step of the SSA in each parallel do loop; dash-line: 100 
steps of the SSA in each parallel do loop).
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