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Abstract- 
Recent advances in gene-expression profiling tech- 

nologies provide large amounts of gene expression data. 
This raises the possibility for a functional understand- 
ing of genome dynamics by means of mathematical 
modelling. As gene expression involves intrinsic noise, 
stochastic models are essential for better descriptions 
of gene regulatory networks. However, stochastic mod- 
elling for large scale gene expression da ta  sets is still in 
the very early developmental stage. In this paper we 
present some stochastic models by introducing stochas- 
tic processes into neural network models tha t  c a n  de- 
scribe intermediate regulation for large scale gene net- 
works. Poisson random variables a re  used to represent 
chance events in the processes of synthesis a n d  degra- 
dation. For expression data with normalized concentra- 
tions, exponential o r  normal random variables are used 
to realize fluctuations. Using a network with three  genes, 
we show how to use stochastic simulations for studying 
robustness and stability properties of gene expression 
patterns under the influence of noise, and how to use 
stochastic models to predict statistical distributions of 
expression levels in a population of cells. The discussion 
suggests that  stochastic neural network models can give 
better descriptions of gene regulatory networks and pro- 
vide criteria for measuring the reasonableness of math-  
ematical models. 

1 Introduction 

Recent advances in gene-expression profiling technologies 
have been providing simultaneous measurements of gene 
expression levels from different tissue types and different 
organisms at a rapid rate. The driving force behind this data 
collection effort is the hope that we might he able to recon- 
struct the underlying gene regulation networks. Progress 
in this field could have deep implications in bioengineering 
and therapeutic target discovery. 

The existence of time-series data raises the possibility 
of determining regulatory interactions between genes. Re- 
cently, there have been many efforts for modelling gene 
regulatory networks using different classes of mathematical 
models ([HastyOl]; [de JongOZ]). Mathematical models can 
he classified into fine-grained or coarse-grained approaches. 
Fine-grained approaches are based on detailed biochemical 

knowledge and complex networks of biochemical reactions. 
The complexity of these networks restricts applications 
of fine-grained approaches to very small systems such as 
stochastic mechanisms in gene expression ((McAdams971) 
and histahility and genetic switching ([HastyOO]) in the gene 
network of Bacteriophage A. 

However.'data availability usually cannot provide a com- 
prehensive picture of biological regulation. It is essential to 
he able to construct coarse-grained descriptions of  gene net- 
works for studying large scale gene networks with uncertain 
properties. Instead of going down to the exact biochemi- 
cal reactions. coarse-grained approaches analyse large gene 
networks at some intermediate levels by using macroscopic 
variables in  a global fashion. Boolean network models and 
neural network models are two of the major coarse-grained 
approaches. For a very good survey of the application of  
network models to the problem of reverse engineering we 
refer to ([D'haeseleerOO]). A more comprehensive compar- 
ative study of continuous network models can be found in 
([WesselsOl]). 

A Boolean network model interprets gene interactions 
as connections between genes. The state of genz expression 
is simplified as being either completely ON or completely 
OFF. The Boolean expression state converges to a termi- 
nal state via a series of state transitions that is determined 
by the designed Boolean rules. Due to the nature of the 
finite transitive states, the terminal state is either a "point 
attractor" (steady state) if it is a single unchanged state or 
a "dynamic attractor" (limit cycle) if i t  is a series of states 
([Liang98]). Recently noisy Boolean models ([AkutsuOO]: 
[ShmulevichOZI) have been proposed in order to cope with 
uncertainty in data and model selection. 

In  the case of multiple copies of the circuit. reactions in 
the system depend not only on the state of genes (ONIOFF) 
hut also on the concentration of each compound controlling 
the process. In  neural network models i t  is proposed that 
the expression of each gene is regulated by gene expression 
products in the network. Genes and regulatory interactions 
are represented in a network scheme by nodes and wirings 
between nodes, cespectively. This network scheme is identi- 
cal to that i n  a Boolean model in  structure hut is realized by 
a weight matrix that can interpret intermediate regulations. 

There is considerable experimental evidence that in- 
dicates the presence of significant stochasticity in tran- 
scriptional regulation in both eukaryotes and prokaryotes 
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([KeplerOll). In general, the amount of protein produced 
by a particular gene varies from cell to cell. Random fluc- 
tuation (noise) in biological systems can be classified into 
external noise due to the random variation of external con- 
trol parameters and internal noise due to chance events in 
biochemical reactions ([HastyOO]). As living systems are 
optimized to function in the presenc; of stochastic fluctua- 
tions ([ThattaiOll). i t  is expected that mathematical models 
that attempt to explain these systems should also he robust. 
Stochastic models can not only give more realistic simula- 
tions of biological systems but also he used as a criterion for 
measuring the robustness of mathematical models against 
stochastic noise. 

Compared with recent progress in fine-grained ap- 
proaches, stochastic modelling via a coarse-grained ap- 
proach is still in the very early developmental stage. In 
this paper we introduce stochastic neural network models 
for studying noise in gene expression. Our aim is to provide 
a platform for exploring whether currently assumed mech- 
anisms can meet the experimental requirements for rohust- 
ness against stochastic noise. Random variables are intro- 
duced to model synthesis and degradation processes. By 
using a network with three genes we measure the robust- 
ness and stability of gene expression patterns and predict 
distributions of expression le\'els. 

2 Neural network models 

Neural network architecture is uniquely determined by the 
numher of nodes and wirings between nodes. Normally the 
numher of nodes is defined as the numher of genes although 
it  may also be defined by other factors involved in the reg- 
ulatory network. Let a Wdimensional vector u(t) be the 
expression state of a gene network containing A' genes. El- 
ement u j ( t )  is the expression state of gene j at time t .  The 
wirings define regulatory interactions between genes, which 
are represented hy a weight matrix w. A wirine from gene 
j to gene i means a non-zero weight w i j .  A positive weight 
implies a stimulating effect (positive feedhack) while a neg- 
ative weight implies repression (negative feedhack). A zero 
weight wi; means no regulatory interaction. The control 
strength is the multiplication of weight 'wij and state value 
uj.  The total regulatory input to gene i i s  the sum of regu- 
latory streniths of all genes in the network. namely 

I. 

r i ( t )  = wijuj ( t )  + ai, i = 1 ~ 2, . . . ~ N, ( I 
;=I 

where ai is a parameter to represent the influence of exter- 
nal inputs ([WesselsOl]) or reaction delay ([VohradskyOlJ). 
The notation i = 1 , .  . . , N will he omitted hereafter. 

A "squashing" function then transfers the regulatory in- 
put r , ( t )  into a normalized transcriptional response. The 

commonly used squashing function is the sigmoidal trans- 
fer function. with the form 

Other squashing functions. such as the arctan function. have 
also been used. This transcriptional response is a value be- 
tween 0 and l .  where 0 represents complete repression and 
1 represents maximal expression. By multiplying by a max- 
imal expression rate s i ,  we get the "real" expression output 

Neural network models are constructed by the accumu- 
lation of gene expression products that is the difference 
hetween synthesis and deeradation. It can he either in 
differential equation form or in difference equation form. 
([WesselsOll). Based on the accumulation rate, a djfferen- 
tial equation model takes the form 

s ia i ( t ) .  

(3)  

whrre di is the degradation rate of gene i. The basal tran- 
scription is included in the parameter ai. 

Neural network models can also he represented in differ- 
ence equation form hased on the accumulation of expression 
products. The updated gene expression levels are given by 

U q n + l )  = U < ,  + hn[sigi(t,) - diUi,], (4) 

where uirl = uj ( tn)  and h, = t,+l - t ,  is the stepsize. 
This discrete model.is convenient for us to study noise in 
biological systems. especially for internal noise. Model (3) 
can he ohtained from (4) if h, --f 0 and model (4) in fact is 
the Euler approximation of (3). 

Gene network reconstruction requires the determination 
of the weight matrix from experimental data. Rate param- 
eters si and di may he measured or estimated from ex- 
perimental data directly ([VohradskyOl]) or determined in 
network reconstruction hy a reverse engineering approach 
([WahdeO I ] ) .  

More detailed models can also be constructed by includ- 
ing hoth transcription and translation if expression levels 
and protein concentrations are available. Trdnscripiion and 
translation are considered as being controlled in two sepa- 
rated stages. The expression of mRNAs with concentrations 
r = (Q:. . . . r ~ )  is controlled by regulatory proteins with 
concentrations p = (p,. . . . , p ~ ) .  The rate of protein for- 
mation in  the process of translation is controlled by mRNA 
concentrations. Based on the same assumption of model ( 3 ) .  
the rates of mRNA and protein accumulation are given hy 
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where sl; and s2i  are maximal synthesis rates, d l ;  and dzi 
arc degradation rates. functions fl  and fi are sigmoidal 
transfer functions 'squashing' the influence o f  proteins and 
niRNAs using weight matrices w1 and w2. respectively: 
while b,  and b2 are delay vectors. 

The rate o f  protein accumulation may be determined 
only hy the amount o f  mRNA and then f Z i  = ri. In  this 
cdse the time series of  the amount o f  proteins are similar 
to those o f  mRNAs ([VohradskyOl]). In  fact the one-stage 
model (3) uses this assumption and then the regulation of  
proteins i s  realized hy that of the expression products. The 
diflerence hetwecn the time series of mRNA and protein is 
included in the weight matrix. However. as the rate of  pro- 
tein accuniulation may be determined by one or more pro- 
cesses in translation. experimental evidence has indicated 
that the time series of  mRNA and proteins can he different 
([VohradskyOl]). 

3 Stochastic neural network models 

Recently researchers have investigated the effect of 
noise in gene regulation hy experiments ([Ozbudak02]: 
[ElowitzOZ]), theoreticaLresearch ([ThattaiOl 1; [Kepled'l]) 
and numerical: simulations ([HastyOO]: [Arkin98]). The 
stochastic,simulation algorithm ([ Gillespie771) and stochas- 
tic differential equations are two major approaches for 
studying stochastic phenomena numerically in gene regu- 
latory networks. The former is an exact method for simulat- 
ing biochemical reaction systems. especially for well stirred 
systems with small'numbers o f  reactants. Both approaches 
are based on detailed biochemical knowledge and rich data 
sources. 

In  this paper we introduce stochastic neural network 
models in the framework of a coke-gra ined approach. We 
wi l l  concentrate on stochastic models based on one-slage' 
models (3) or(4). Two-stage stochastic models can he de- 
rived similarly hy introducing random variables into two- 
stage models (5). For experimental data wi th expression 
levels. we use Poisson processes to describe the synthesis 
and degradation, of expression products. Corresponding to 
the difference model (4). stochastic models based on Pois- 
son random variables take the form 

"<(,,+I) = U;" + P(s;gi(tn)h,) P(di&h")> ( 6 )  

where P(A) i s  a Poisson random variable with mean A, 
whose distribution is . . . . 

Am 
Prob{P(X) =,m} = -e-': m = 0 , l : .  . . . m! 

For expression data obtained by  clustering techniques. 
sene expression levels are normalized within a range of 
unity in order to represent expression levels of a group of  

genes ([Wen98], [WahdeOl]). and so gene expression and 
degradation should also he within that range. To this end 
exponential random variables are used for realizing Ructua- 
tions. Stochastic models with exponential random variables 
are given by 

%("+I) = U i n  + F ( a g i ( t n ) h , , )  - E(diUi,,h"L (7) 

where B(A) is an exponential random variahle with mean 
A. Using A 1  = 1/X. the distribution o f  ??(A) i s  

Prob{F(X) < z} = X1eC"'"dz. z > 0. I' 
Similar to Poisson random variables. the distribution of 

an exponential random variable is determined hy the mean. 
However. the variance o f  these random variahles are dif- 
ferent as var[P(X)] = X while var[E(X)] = A * .  In  order 
to march the variance. stochastic models can also be con- 
structed with normal random variables. given h!. 

%("+I) = uin+Sigi(tn)(h,+N;l)--di~i,(h"+.~i*): ( 8 )  

where N;n - hr(O:h,u~k) .  The advantage of model ( 8 )  i s  
that u:k is an adjustable parameter. I t  can also be written in 
the differential equation form 

dui = [s;gc(t )  - dizlildt +uilSlgj(t)dwiiil -u;2d;"idW;*: 
(9) 

where the W f i k  are Wiener processes whose increments 
AW;, = Wik(t  + At)  - W j k ( t )  are normal random vari- 
ables N(O1 At). Model (9) can be regarded as a stochastic 
analogue o f  the continuous model (3). however. i t  i s  used 
just i n  the normalized concenlration case. 

For stochastic models introduced i n  this section, the fol- 
lowing aspects are discussed for validating the approach. 

( 1 )  The Poisson random variable has been used for rep- 
resenting chance events of gene expression in prokaryotes 
in a fine-grained approach ([ThattaiOll). I t  has also been 
used i n  the r- leap method ([GillespieOl]). arecent approach 
for approximating the stochastic simulation algorithm with 
greater efficiency. For a chemical reaction system with N 
molecular species and Y reaction channels. a propensity 
function a j  (A'(t)) is defined for the j - t h  reaction channel at 
current state A' and timet. According to the r-leap method. 
the numher o f  times that the j - t h  reaction channel occurs in 
the time interval [t,t + T) is a Poisson P ( a j ( X ( t ) ) r ) .  

Motivated by these successful applications. we assume 
that gene expression i s  a process o f  two major reactions: 
synthesis and degradation, and that the numhers of gene 
products i n  both synthesis and degradation are Poisson in  
each time interval. This is the basis of model (6). 

(2) A Poisson random variable wi th large mean can 
be approximated by a normal random variable. namely 
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Figure I: A network with three genes 
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P(A) z N ( X : A ) .  Thus i t  is appropriate to use a Pois- 
son random variahle with large mean to represent the syn- 
thesis process that is supposed to he normally distributed 
([HumeOO]). On the other hand. for a Poisson random vari- 
ahle with small mean. the generated numbers have two pos- 
sihle values 0 or 1 in most cases. This is a unique property 
of the Poisson random variable that is critical to hiochem- 
ical reactions with small numbers of reactants and can he 
used to present the binary expression states for transcrip- 
tional reactions with small prohahility. In this way we can 
simulate the "all-or-none" phenomena stochastically. 

(3) The stepsize is a key element in  numerical simula- 
tions of these stochastic.models. A restriction on the stcp- 
size comes not only from the requirement of accuracy hut 
also from biological reactions and stability. For differen- 
tial equation models with large noise components. implicit 
methods such as the implicit Taylor methods should he used 
to ensure stability ([TianOl]). 

4 Results 

In this section we use a gene network to demonstrate the 
impact of noise on  expression patterns. The network in Fip- 
ure I has been studied by the Boolean model ([SomogyiYh]) 
and the neural network model ([VohradskyOl]). In this net- 
work. the product of gene A controls the expression of gene 
B. which initiates the expression of gene C .  Gene B induces 
the exprcssion of gene A forming a positive feedback. Gene 
C in turn negatively controls the expression ol'gene A. form- 
ing a negative feedback. The regulation in this network is 
characterized by the weight matrix ([VohradskyOl]) 

0 10 -10 

- = [  7 yo ; 1 .  (10) 

According to the analysis based on  the Boolean model, 
this network can predict two expression patterns: a point at- 
tractor (sleady state) and a limit cycle (oscillation). which 
are determined hy different initial states ([Somogyi96l). 
Vohradsky ((VohradskyOll) has realized these patterns.hy 
usingthe neural network model with the weight matrix ( I O )  

,,me 1 

Figure 2: Simulations of the expression level case with 
data ( I  I 1 and (12). (A) deterministic model, (B) stochas- 
tic model with Poisson random variables. The determinis- 
tic model gives sustainahle oscillatory simulations. For the 
stochastic model. oscillations can also he observed hut with 
periods and amplitudes that fluctuate, widely in time. ~ U I .  
solid; UZ. dotted; UQ. dashed). 

and different other model parameters. It secms that oscilla- 
tory simulations can he realized only hy limited parameter 
sets while i t  is quite easy to simulate steady state patterns. 

We first discuss the oscillatory expression pattern. In or- 
der to use the stochastic model with Poisson random vari- 
ables (6j, the weight matrix 

o 0.01 -0.01 
= [ 0.01 n . "  1 ;  ( 1 1 )  

. o  0.01 0 

and parameters 

s = (450> 100: loo), d = (O.G,l, l),  b = - (3 .3,3)  

are used to simulate the pene network with expression ley- 
els. Simulations of the deterministic and stochastic models 
are presented in Figure 2. For the deterministic model (4). 
different initial conditions will alulays lead simulations to 
the oscillatory state. Stochastic simulations suggest that this 
network is not robust enough to sustain oscillatory expres- 
sion patterns under the influence of internal noise. 

The discussion ahove may he questionahle hecause of 
very small elements in the weight matrix. Due to the lim- 
ited parameter sets for realizing oscillatory patterns. ele- 
ments i n  thc weight matrix have 11) hc small'in order to use 

(12) 
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large synthesis rates. However. the discussion based on the 
weight matrix ( I O )  in the normalized concentration cnsc wi l l  
confirm that the oscillatory pattern i s  not robust to internal 
noise. In  this case. hoth deterministic and stochastic models 
are hased on the weight matrix i IO)  and parameters 

s =  ( 4 . L l : l ) :  d = ( 0 . 6 , 1 ! 1 ) !  b = - ( 3 : 3 . 3 ) .  (13) 

Simulations are presented in Figure 3. Two deterministic 
simulations in Figure 2 (A)  and 3 (A)  have similar oscilla- 
tory pattern as values o f  squashing functions are nearly the 
same. The main difference i s  synthesis rates. The determin- 
istic simulation in Figure 3 (A)  is similar to that presented 
hy ([VohradskyOI]) in Figure 3 (h). 

For stochastic models with normal random variahles. 
even a quite small noise resource (c& = 0.01) will alter the 
oscillatory pattern significantly (Figure 3 ( C ) ) .  If the vari- 
ance i s  larger, for example U$ = 0.04. i t  i s  difficult to see 
any oscillatory phenomena. 

For the gene network with steady expression states. Fig- 
ure 4 gives simulations of  the deterministic model and the 
stochastic model, with Poisson random variables hased on 
the weight matrix i 10) and parameters 

s = ( 3 , 2 , 8 , . 6 ) ,  d=(O.2 ,0 .2 ,0 .2 ) , 'b=- ( l , l , l ) .  '(14) 

The deterministic simulation approache; the steady State 
U = (16>40,30) .  The steady state of u1 i s  determined hy 
the balance between the positive feedback from u p  and the 
negative feedhack from ug. This state then determines the 
state o f  up and subsequently that o f  u 3  by positive feed- 
backs. Stochastic simulations in Figure 3 (B) show that any 
fluctuation in up or UQ wi l l  cause a corresponding fluctua- 
tion in U I ,  which then adjust the system to the steady state. 

We calculate means and variances ofthis stochastic sim- 
ulation based on expression levels when t E [lo, 1001, given 
by 

ii = (13.4,40.6.29.7), .'(U) = (11.4.33.5.11.4) 

The Fano factors o f  this simulation are 

U. = < 1, z = 1.2.3. 
ut 

As the Fano factor ofthe Poisson random variable i s  always 
I. the Fano factor i s  a sensitive measure of  stochastic sys- 
tems compared with the Poisson behaviour ([ThattaiOl]).. 
Analysis indicates that the stochastic model (6) can give 
quite robust'simulations for steady expression states with 
the given data. 

Based on 5000 simulations we calculate numerical dis- 
tributions of expression levels at t = 26. Numerical distri- 
butions o f  U I .  up and u3 can he approximated hy distrihu- 
tions of normal random variables N (  14> 20.26). N(40,40) 

Figure 3: Simulations of the normalized concentration case 
with data ( I O )  and (13). (A)  deterministic model. (B) 
stochastic model with exponential random variables. ( C )  
stochastic model with normal random variables (U& = 
0.01). The deterministic model gives sustainable oscillatory 
simulations. Oscillations can be observed in these stochas- 
tic simulations but again with periods and amplitudes that 
fluctuate widely in  time. (ul,,solid: up. dotted: 7 4 .  dashed). 

and N(30,30), respectively. I t  should he noticed that distri- 
hutions o f  up and u3 are also Poisson. namely N(40,40)  &z 
P(40) and N(30:30) o -P(30). Figure 5 (A) indicates that 
numerical distributions of up  can he approximated by the 
distribution o f  N(40,40) quite well. The distribution of 
P(40) i s  not shown as,it i s  very close to that of N(40,40). 

Figure 6 gives simulations for the normalized concentra- 
tion case with the weight matrix (10) and parameters 

' s = d = ( l > l : I ) :  b = - s .  (15) 

The deterministic simulation is similar to that presented 
by ([VohradskyOl]) in  Fipre 3 (c) and reaches the steady 
state U = (0.0012,0.271 0.85). For stochastic simulations, 
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Figure 4: Simulations of the expression level case with 
data ( I  I )  and (14). (A) deterministic model. (B) stochas- 
tic model with Poisson random variables. (u1. solid: u?. 
dotted: 213. dashed) 

means and variances are calculated based on numerical con- 
centrations when t € [lo, 1001, given by . 

i l~=(0.0016,0.27, O.X4), 
0&=(5. IE-7. 8.2E-4.5.4E-33. 
E~=(0.0043.0.2Y,0.X4), 
U;.=( I .6E-5.3.6E-3.0.021). 

where subscripts E and JV represent simulation results 
from the stochastic model with exponential and normal ran- 
dom variables, respectively. Similar to the Fano factor, 
other factors can also he defined to measure the sensitivity 
of  stochastic systems based on exponential or normal be- 
haviour. For example. for the exponential random variable 
E(X) with mean A, we have that 
- 

E'[E(x)] = v a r [ E ( ~ ) ]  = A'. 

and so the following factor 

- 
vi = u ~ ( u ~ ) / & ( u , ) ,  i = 1 , 2 , 3  

can be defined for stochastic models with exponential ran- 
dom variables. Analysis indicates that both stochastic mod- 
els give robust simulations with the given data. 

We also use the stochastic model with exponential ran- 
dom variahles to calculate numerical distributions of con- 
centrations at t = 25 based on 5000 simulations. Numer- 
ical distributions of u1, u2 and u3 can he approximated 
hy the distributions of normal random variables N(0.0018, 

i r  

0- 
0,s 

~ 

Figure 5 :  Distributions of numerical simulations and ran- 
dom variables. (A) For the stochastic model with Poisson 
random variables (6). numerical distrihution of u.2 and dis- 
tribution of normal random variable N(40.40). (B) for the 
stochastic model with exponential random variables (7). nu- 
merical distribution of U? and distribution of normal random 
variable A'(0.2il 6.iE-4). (numerical. solid: random vari- 
ahlc. dashed). 

4.YE-7). N(0.27. 6.7E-4) and N(0.84,0.0072). respec- 
tively. Specifically. Figure 5 (B) gives distributions of u2 
and iV(0.27.6.7E-4). Similar numerical distribution results 
can also he ohtained from the stochastic model with normal 
random variables. 

5 Discussion 

A Boolean network model gives a description of the "all- 
or-none" phenomena in gene expression process. 'However. 
over-simplification when using just two states cannot de- 
scribe the intermediate regulation of gene products. Based 
on the same regulation structure. neural network models 
solve this problem hy using a weight matrix that can repre- 
sent intermediate regulation. However. the continuous na- 
ture of neural network models is an obstacle for describing 
chance events in hiochemical reactions with small numb& 
of reactants. Motivated hy recent success i n  fine-grained,ap- 
proacheS. Poisson random variables are 'introduced to neural 
network models in the synthesis and degradation processes. 
For biochemical reactions with small probabilities. the gen- 
erated numhers of Poisson random variables may he 0 or I 
in most cases. Thus'hochastic neural network model can 
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C 

Figure 6: Simulations o f  the nornializtd concentration case 
with data (IO) and (13). (A)  deterministic model, (B) 
stochastic model .with exponential random variables, (C) 
stochastic model with normal random variahles ( u ; ~  = 
0.04). (ul. solid; 212, dotted; US. dashed). 

represent not only intermediate regulation but also chance 
events in gene expression. , 

Robustness and stability are important properties o f  
mathematical models. For gene network models, these 
properties have been discussed for deterministic simulations 
and for noise in gene express'ion data ([WesselsOl]). The 
sensitivity o f  a model to d experimental errors can he, te'sted 
by simulations wi th perturbed input data. Here we empha- 
size that the discussion o f  these properties should include 
both internal noise and external noise by means of stochas- 
tic simulations. A full test should study a series o f  simi- 
lar stochastic models using perturbed input,data within the 
known standard derivation for each measurement. 

Using a network with three genes we have discussed 
these properties for internal noise. For two expression pat- 
terns predicted hy  'the deterministic model, the steady ex- 

pression state is rohust while the oscillatory pattern is not 
stable. Noise alters the oscillatory expression pattern sig- 
nificantly. This raises doubt for the possihle "limit cycle" 
slate predicted by Boolean models. This oscillatory pat- 
tern may be determined hy the gene network or by the finite 
state nature of  Boolean models. I n  the latter case the oscil- 
latory pattern may not exist in the gene network. A simi- 
lar question for plausible oscillatory expression profiles i n  
Boolean models can he found in ([WesselsOl]). and i t  has 
been ohserved that negative feedhack in Boolean models 
wi l l  always cause oscillations rather than increase stability 
([D'haeseleerOO]). Thus it i s  suggested that oscillation phe- 
nomena observed in Boolean models should he restudied. 

A similar study occurs for circadian oscillations where 
oscillatory simulations are altered by internal noise. In or- 
der to realize rohust circadian rhythms. a hysteresis-based 
oscillation mechanism has heen used. and i t  has been pro- 
posed that the ability to resist biochemical noise imposcs 
strict constraints on the oscillation mechanism ([Barkai99] ). 
For the gene network discussed in this paper. i t  is clear that 
other regulatory mechanisms are needed for generating ro- 
bust oscillatory expression patterns. 

Another feature of stochastic models i s  that they. give 
probabilistic distributions o f  expression levels. This prop- 
erty can he used for describing the variation of  expression 
products from cell to cell. Numerical distributions gener- 
ated from stochastic models can he approximated by dis- 
trihutions of Poisson or normal random variables. These 
distribution properties give another possihle means to inves- 
tigate the so-called "random error" in gene exprcssion data. 
especially for prohes with low intensity levels (INadon021). 
The resource o f  random error includes the internal noise dis- 
cussed in this paper. The reliability o f  data mining results 
can be assessed by comparing random errors estimated from 
observed data i n  replication with the variation predicted by  
stochastic models. 

Theoretical analysis and numerical simulations have in-  
dicated that stochastic models can provide better descrip- 
tions of biological systems and can be used to measure the 
reasonableness o f  mathematical models. Reliable function- 
ing of the cell may require genetic networks that are robust 
to fluctuations ([Elowitz02]; [Alon99]). and so this property 
should he realized by mathematical models that are robust 
to hoth internal noise and external noise. This principle is 
useful tor the reverse engineering approach for predicting 
gene regulatory structures. Robustness and stability can he 
additional criteria in order to select candidate weight matri- 
ces obtained by optimization methods such as genetic algo- 
rithms. We can f i l ter out candidate models i f  they generate 
unstable simulations. However, this assumption wi l l  he jus- 
tified by applications o f  stochastic neural network models 
to experimental gene expression profiles: This is certainly a 
direction for future work. 
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