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Abstract  

This paper introduces a new paradigm for establishing a framework that enables interoperability 

between process models and datasets using ontology engineering. Semantics are used to model the 

knowledge in the domain of biorefining including both tacit and explicit knowledge, which supports 

registration and instantiation of the models and datasets. Semantic algorithms allow the formation of 

model integration through input/output matching based on semantic relevance between the models 

and datasets. In addition, partial matching is employed to facilitate flexibility to broaden the horizon 

to find opportunities in identifying an appropriate model and/or dataset. The proposed algorithm is 

implemented as a web service and demonstrated using a case study. 
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1. Introduction 
In computer aided process engineering (CAPE) community, increased availability of mainstream 

commercial and free simulation software, as well as data from laboratory experiments or pilots to 

near commercial scale plants, has facilitated the development of a large number of custom-made 

models. As, historically, most of the models were developed to represent petrochemical processes, 

modelling and simulation for biorefining processes are still facing challenges due to lack of biochemical 

property data, complexity of feedstock characterisation, as well as a constant influx of new processes 

and technologies or adaptation to new environments. To develop an understanding of biochemical 

processes or to provide suitable design, development of a database system to support modelling and 

analysis of biochemical processes is vital. The development of these models, as practice has 

demonstrated, goes along the development of new models, integration and/or adaptation of existing 

models, or most commonly the combination of the two.  

To increase reusability of existing models that are developed in disparate software tools and process 

simulators, CAPE-OPEN was initiated to conceptualise and develop a set of interface specifications as 

a method pertaining interoperability standard (Braunschweig et al. 2004; Morales-Rodríguez et al. 

2008; Pons 2010). As such, CAPE-OPEN is a widely recognised standard which defines the 

interconnection representation of interfaces facilitated by a middleware service as a communication 

hub across heterogeneous software environments (Braunschweig et al. 2000; Bogusch et al. 2000). To 

take full advantage of reusability of existing models, the task of identifying the most sufficient model 

from the libraries is heavily dependent on the user’s intuition and experience and remains as a manual 

process (Braunschweig et al. 2004). Yang et al. (2008) acknowledges that inadequate assessment for 
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the suitability of models may lead to potential misuse of the models, which has the risk of insufficient 

or even wrong solution to the engineering problems. To better address the shortcoming associated 

with user intervention in CAPE-OPEN, ontology engineering is recognised as a viable solution to reduce 

the chance of these error occurring and to minimise the impact of any errors that do occur. Ontology 

has an ability to address the problem of automated support for the configuration of process models 

and data in a structured and proactive manner (Yang & Marquardt 2004; Yang et al. 2008) by 

accounting for complex relations, such as systematic knowledge of model as well as tacit knowledge 

extracted from user intuition. A large scale ontology, the OntoCAPE, has as a result been introduced 

to support various process engineering applications, mainly addressing two aspects: i) characterisation 

of models stored in the libraries and ii) description of the specific requirements of the models to be 

identified as potential candidates. To address the reconciliation of interoperability between process 

modelling components, COGents was developed to perform the registration and integration of the 

models stored in the libraries. This method was the first attempt to integrate process modelling 

components from heterogeneous sources using ontologies as a tool in the field of process engineering. 

As indicated by Yang et al. (2008), the integration of the models they used was based on the full-scale 

matching. Partial matching which extends the search scope was first introduced by the eSymbiosis 

project to enable and hence to support processing technologies participation in Industrial Symbiosis 

(IS) and concomitant integration (Raafat et al. 2012; Raafat et al. 2013; Cecelja et al. 2015). The 

framework employed semantic technologies to automate widely used manual procedure of synergy 

identification of IS by finding the semantic relevance of participant’s profile based on practical 

experience in the form of tacit knowledge and explicit knowledge acquired from users. The measure 

of semantic relevance requires obtaining appropriate description of processing technology to further 

use in the discovery process. To support these processes, the process of IS was semantically 

formulated in an IS domain ontology (Trokanas et al. 2012). Recently, a number of ontologies have 

been developed in the domain of biorefining, which focuses on the knowledge representation of 

biomass and bioprocessing technologies (Trokanas, Bussemaker, et al. 2015) and process systems 

design and optimisation of biorefining processes (Siougkrou & Kokossis 2016; Magioglou et al. 2015). 

These ontologies, however, although in the domain of biorefining do not address the process of model 

and data integration, and, to the best of our knowledge, they are not yet available in public domain 

for reuse.  

Following on previous developments and use of ontology to address challenges of identifying most 

suitable model or data to achieve the best solution for a particular engineering problem, ontology 

engineering is employed to describe them in a comprehensive manner to distinguish between them 

(Koo & Cecelja 2015; Koo et al. 2016). It has been demonstrated that the differences of models and 

data can be addressed by explicit descriptions using defined terms to further improve consistency as 

well as understanding of the heterogeneity and concomitant consequences. The semantically 

enriched and reconciled process models and data are then applicable to facilitate semantic 

interoperability between them. The semantic interoperability is achieved by employing different 

matchmaking algorithms to benefit from partial matching to measure a meaningful similarity between 

models that are not identical. We argue that this approach allows to improve the decision making 

process and broaden the horizon to find opportunities in identifying appropriate models and/or 

datasets whilst increasing awareness of existing models.  

This paper proposes a new paradigm for model and data integration with focus on biorefining and 

which is built around the ontology to i) model tacit knowledge in the domain of biorefining including 

the advances in biorefining process, biomaterial and technologies classifications, and ii) model explicit 

knowledge which includes a complete set of model input, output and auxiliary parameter properties, 

as well as known and otherwise identified potential model and data integration solutions. Tacit 



knowledge is built in the ontology structure (Cecelja et al. 2015), i.e. subsumption and object 

properties with respective and domain dictated restrictions. Explicit knowledge is captured during the 

instantiation process from data collected on model/data entities presented as ontology instances and 

characterised by input, output and auxiliary parameter properties. The proposed ontology enables 

instance matching with the view of model integration, expanding knowledge base, generating new 

knowledge in the process of model integration for biorefining, and knowledge sharing. Designed 

ontology is open to further development in response to advances in the domain of biorefining. The 

proposed matching algorithm is tuned to match models and data based on i) tacit knowledge 

formulation to observe process synthesis logic by employing semantic distance measurements 

between the two or more instances of the ontology, and ii) explicit knowledge formulation by 

employing similarity calculation between input/output parameters of candidate models/data 

identified suitable for integration. In addition, matching process allows for recursive matching towards 

complex model/data integration solutions, matching for integration of models developed in 

heterogeneous software environments to generate a meaningful solution for particular engineering 

tasks, as well as for partial matching to broaden the search domain and to find comparable 

replacement model rather than focusing only on an exact match. This paper explicitly formulates 

theoretical concept of knowledge model and design of ontology and matching algorithm, as well as 

auxiliary conditions used in the process of model/data integration. The usefulness and operation of 

the proposed formalism is demonstrated by a case study to guide the user to make an informed 

decision by taking into consideration of users’ intuition and their experience in modelling.  

 

2. Theoretical Concepts of Model and Data Integration 

2.1. Model and Data Representation  
A process model represents a part of the actual system in which physical and chemical processes are 

taking place and describes the behaviour of a process system within well-defined boundaries together 

with inputs and outputs and under certain environmental conditions as a requirement (Hangos & 

Cameron 2001). The process models used to address process modelling, simulation and optimisation 

problems are arguably classified into two distinct types i) sequential modular models, and ii) equation 

based models. Sequential modular models represent individual units as a pre-configured block model 

where modelling equations are grouped to represent a particular process equipment. The sequence 

of calculation is initiated from one unit to the next in the process flowsheet through the process 

streams that connect the units using thermodynamics and physical property calculations. Equation 

based models are considered as custom modelling packages which have a set of equations from the 

various units in the process into a single large set to be solved.  

Each model is semantically described by its type, i.e. its functionality in terms of the process and/or 

unit it represents. In addition, each model is (semantically) described by requirements and other 

characteristics that form a comprehensive knowledge model (Koo et al. (2016)) which includes model 

input(s), output(s), precondition(s), and the environment in which each process model operates 

(Trokanas et al. 2014; Trokanas, Cecelja, et al. 2015). The inputs and outputs are not limited to physical 

properties and can be extended to additional data or other properties. The number of output variables 

can be purposely adjusted or extended to include additional data or parameters to consider the 

dynamic nature of models. Contrary to the models, data is semantically annotated with regards to 

output(s), functionality, and precondition(s) required to process data (Koo et al. 2016). 



2.2. Concept of Model Integration 
The integration of model and data is a process of assembling heterogeneous tools and methods to 

generate new knowledge that is meaningful and useful for particular engineering tasks. The CAPE-

OPEN interface specification (Belaud & Pons 2002) is developed as a standard requirement for the 

unit operation components (such as process unit operation, thermodynamics, and numerical solvers 

packages) to be compliant with any simulator without modification, compiling, or linking. The standard 

mainly provides the details for the interface specifications of sequential modular simulators and the 

granularity of the interface design was restricted to the unit operation level (CAPE-OPEN Project team 

2000; van Baten & Pons 2014). 

The structure of unit is configured by a coupling through the different inlet and outlet ports where a 

unit can be connected to another unit, which is separated from the functional behaviour of the unit 

model (Figure 1). To achieve consistency across simulation platforms, the unit operation components 

are represented as a template that allows access to the stream and provides unit operation data of a 

flowsheet in a conceptual manner. A set of data to be exchanged from one unit to another is 

distinguished by three different types: material, energy, and information streams. In addition, the 

stream properties are characterised by thermodynamics and physical properties, e.g. composition, 

temperature, pressure, flow, etc., with associated variables describing quantitative properties, e.g. 

physical dimension, value, unit, etc. 

 

Figure 1 Conceptual representation of unit configuration via ports and internal connection of 

material stream 

The internal connection between unit operations is further characterised by the association of physical 

and/or thermodynamic properties with streams. The CAPE-OPEN has established the specification for 

the thermodynamic and physical properties of materials that are processed in a unit operation to 

encapsulate interchangeable concepts. The physical objects are represented as abstract material 

properties for both mixture and pure components, together with state of the physical object, e.g. 

temperature, pressure, enthalpy, volume, vapour fraction etc., and phase for which the property 

calculation is required. The CAPE-OPEN additionally provides lists for constant and non-constant 

properties and lists of single and multi-phase properties including units and its conversion factor to SI 

units. 

We argue that model interoperability could be assessed and established in more flexible manner and 

hence propose the conceptual representation of model interoperability established by CAPE-OPEN to 

be translated into ontology. In turn and with the focus on biorefining, such an approach enables the 
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development of a knowledge based platform for model and data integration through input/output 

matching. A higher degree of flexibility is achieved by introduction of a partial matching technique 

where the ‘equality requirements’ between input/output set of exchanged data is replaced by the 

‘similarity requirements’. In consequence, we propose a framework where models are considered at 

a superstructure level and hence assumed to be a piece of software representing a (biorefining) unit 

or a process and which, using mathematical or otherwise algorithms, converts its input parameter(s) 

into one or more output parameters, all within certain environment. The inputs to the model are not 

necessarily limited to physical parameters associated with the inputs to the process or unit they 

represent; the number and type of inputs to the model is normally extended to additional data and/or 

parameters the model needs to perform properly. By the same token, the number and type of model 

outputs could be deliberately or accidently extended to additional data or parameters the model 

provides and which could be useful to other models or purposes. Models are normally described and 

identified by their functionality of the processes or units they represent, but also further provide the 

association to respective synthesis problem.  Also, to run a model, it requires certain preconditions, 

i.e. particular application such as MatLab, GAMS, MS Excel, or synchronisation with other models. 

Both of these two aspects form the environment in which a model runs and by which it is also 

distinguished from other models (Figure 2a). 

 

a) Models                                                        b) Data 

Figure 2 Representation of models and data 

In contrast to models, data are contained in datasets external to models, and in relation to the 

execution of a model represent static values of process or unit parameters, characterised again as 

outputs. Dynamic aspects of data associated with its generation, modification and/or deletion will not 

be considered here. Data are also described by their ‘functionality’ and normally stored in datasets 

(databases) for which certain conditions should be provided to access and retrieve hence forming 

environmental conditions (Figure 2b). 

For the reason of consistency and uniformity, the model inputs and the model and data outputs and 

preconditions are characterised by respective input properties 𝑝𝑖,𝑗
𝑖 , output properties 𝑝𝑖,𝑗

𝑜 , as well as 

precondition or environment properties 𝑝𝑖,𝑗
𝑒 , as shown in Figure 2. For the reason of clarity and the 

demonstration of the framework, the structure of the properties 𝑝𝑖,𝑗
𝑖 , 𝑝𝑖,𝑗

𝑜  and 𝑝𝑖,𝑗
𝑒  is assumed to be in 

the form of a single numerical or descriptive property. Later in this paper, this will be extended to 

composite format(s) with properties forming property-subproperty subsumption relation, as 

explained in Section 2.4. 

The key to model (and data) integration is the model/data semantic annotation, discovery of 

candidate models and data which fully or partially satisfy matching conditions and ranking them by 

the level of match. To this end, the model and data matching process refers to the process of 

comparing requesting model inputs with other model or data outputs. Practice suggests that a full 

matching between models is rare and hence some adaptations and/or compromises are needed, a 



process we term as partial matching process.  In addition to matching the model and data 

functionality, which will be explained in details in Section 2.3, the model/data matching entails 

matching between input properties 𝑝1,𝑗
𝑖  of requesting model 𝑥1 and output properties 𝑝𝑖,𝑗

𝑜  of 

candidate model(s) or dataset(s) 𝑦2, which we term as the input/output matching, as shown for a 

single matching between only two models in Figure 3. The input/output matching is performed for 

each of 𝑛𝐼 input properties 𝑝𝑖,𝑗
𝑖  separately and in turn as matched properties might be from different 

models/datasets. Also, it is assumed that requesting model is the last in the chain, hence backward 

matching applies. The properties used in matching are either descriptive, i.e. material type, numerical, 

i.e. flow rate, or even composite, i.e. range of flow rate with minimum and maximum values. Still, the 

level of match is expected to be quantified by a single value for easier comprehension by humans and 

further processing merely by decision support agents. 

 

Figure 3 Principle of single model input/output matching 

For more complex integration which involves more than two models and/or datasets, complex chains 

are formed by recursively repeating the single matching process with each of the candidate models, 

𝑦2 in Figure 3 switching the role to the requesting model, which would be replaced as 𝑥2 in Figure 4, 

and which is then seeking for new matches. More complex chains, such as many-to-many chains, are 

also possible; this process involves either i) matching different input parameters of requesting model 

with outputs of different models or datasets, or ii) property decomposition, both of which is the 

subject of an on-going work and further publications. The combination of the two is also possible. 

 

Figure 4 Principle of chained model matching 

2.3. Definitions and Mathematical Formulations 
Let the set 𝑆 = {(𝑥, 𝑦)|𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}={𝑠𝑖|𝑖 = 1,… , 𝑛𝑇} be a set of all 𝑛𝐼 models and datasets 𝑠𝑖  

available in the repository, where 𝑥 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛𝑀} is the set of 𝑛𝑀 models, 𝑦 = {𝑦1, 𝑦2, ⋯ , 𝑦𝑛𝐷} 

is the set of 𝑛𝐷 datasets, and hence 𝑛𝑇 = 𝑛𝑀 + 𝑛𝐷. Also, let 𝑃𝑖
𝑛𝐼 be a set of 𝑛𝐼 properties 

characterising inputs to the models 𝑠𝑖 

𝑃𝑖
𝑛𝐼 = {𝑝𝑖,𝑗|𝑖 = 1,⋯ , 𝑛𝑇}𝑗=1

𝑛𝐼 , 𝑝𝑖,𝑗
𝑐ℎ𝑎𝑟
⇒  𝑠𝑖 (1) 

and 𝑃𝑖
𝑛𝑂 be a set of 𝑛𝑂 properties characterising outputs of the models and datasets 𝑠𝑖  
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𝑃𝑖
𝑛𝑂 = {𝑝𝑖,𝑗|𝑖 = 1,⋯ , 𝑛𝑇}𝑗=1

𝑛𝑂
, 𝑝𝑖,𝑗

𝑐ℎ𝑎𝑟
⇒  𝑠𝑖 (2) 

both with the subsets of 𝑁𝐼 numerical properties 𝑃𝑖
𝑁𝐼  for inputs 

𝑃𝑖
𝑁𝐼 = {𝑝𝑖,𝑗|𝑝𝑖,𝑗 ∈ ℝ, 𝑖 = 1,⋯ , 𝑛𝑇}𝑗=1

𝑁𝐼 ⊆ 𝑃𝑖
𝑛𝐼   (3) 

and with the subsets of 𝑁𝑂 numerical properties 𝑃𝑖
𝑁𝑂  for outputs 

𝑃𝑖
𝑁𝑂 = {𝑝𝑖,𝑗|𝑝𝑖,𝑗 ∈ ℝ, 𝑖 = 1,⋯ , 𝑛𝑇}𝑗=1

𝑁𝑂 ⊆ 𝑃𝑖
𝑛𝑜  (4) 

To provide more logical arrangements, let 𝑆𝑖
𝐼 be an ordered subset of finite number of elements in 𝑆 

as 

𝑆𝑖
𝐼 = {𝑠𝑗}𝑗=0

𝑛𝐶
, 𝑝𝑗 ∶= 𝑝𝑘  ∧  ∀ 𝑗 > 0  (5) 

where 𝑛𝐶  is the total number of instances sharing common properties. If 𝑆𝑖
𝐼 observes (5) with all 

instances having intentionally equal1 properties 𝑝𝑗 ∶= 𝑝𝑘  and 𝑆𝑖
𝐼 ⊆ 𝑆, then 𝑆𝑖

𝐼 is a class of instances 

{𝑠𝑗}𝑗=1
𝑛𝐶 = 𝑠1, 𝑠2,⋯ , 𝑠𝑛𝐶 characterised by set of 𝑛𝑃 properties 𝑃𝑖

𝑛𝑃 = {𝑝𝑖,𝑗|𝑖 = 1,⋯ , 𝑛𝑇}𝑗=1
𝑛𝑃 . As all 

instances of a class 𝑆𝑖
𝐼 share common properties, then 𝑃𝑖

𝑛𝑃 semantically describes the class 𝑆𝑖
𝐼. For 

𝑛𝐶 = 0 in eq. (5), 𝑆𝑖
𝐼 ⊆ 𝑆 is an empty class and still having properties 𝑝𝑗. Again, out of all considered 

𝑛𝑇 properties, the set of 𝑛𝐼 properties for inputs is normally different from the set of 𝑛𝑂 properties 

for outputs. 

Let 𝑁𝑖
𝐼 be a distinct name of the class 𝑆𝑖

𝐼, then intension 𝐼𝑖
𝐼 of the class 𝑆𝑖

𝐼 is defined as  3-tuple (Junli 

et al. 2006); 

𝐼𝑖
𝐼 ∶= 〈𝑁𝑖

𝐼 , 𝑃𝑖
𝑛𝑃 , 𝑆𝑖

𝐼〉  (6) 

Also, let 𝑆𝑘
𝐼  be a superset of  𝑆𝑖

𝐼 such that 

𝑆𝑖
𝐼 ⊆ 𝑆𝑘

𝐼 ⊆ 𝑆,  ∀ 𝑃𝑘
𝑛𝑃 ⊆ 𝑃𝑖

𝑛𝑃  ∧   𝑖 ≠ 𝑘 (7) 

In ontological sense, the set 𝑆𝑘
𝐼   is the superclass of 𝑆𝑖

𝐼, if 𝑆𝑘
𝐼  observes (7) by following subsumption 

condition 𝑆𝑖
𝐼 ⊆ 𝑆𝑘

𝐼  and inheritance condition 𝑃𝑘
𝑛𝑃 ⊆ 𝑃𝑖

𝑛𝑃 . 

Let  𝐻𝐶  be a superset of 𝑆𝑖
𝐼 such that 

𝐻𝐶 = ⋃ 𝑆𝑖
𝐼

𝑖  (8) 

If 𝐻𝐶  observes eq. (8) and, if 𝑆𝑖
𝐼 follows subsumption and inheritance conditions given by eq. (7), then 

𝐻𝐶  could be considered as a graph 𝐻𝐶 = (𝑆𝑖
𝐼 , 𝑖𝑠 − 𝑎) forming a subsumption hierarchy in ontology 

sense, called the subsumption, were 𝑖𝑠 − 𝑎 indicates the edge between the nodes of the graph 

representing classes, and hence representing class-subclass participation. In the subsumption, a 

superclass contains all the instances of all its subclasses, but it can also have instances on its own. Also, 

all the properties 𝑃𝑖
𝑛𝑃 characterising superclass are inherited by all subclasses.  

Two non-empty subclasses 𝑆𝑖
𝐼 and 𝑆𝑗

𝐼 are disjoint classes if 𝑆𝑖
𝐼 ∩ 𝑆𝑗

𝐼 = 0, ∀𝑖 ≠ 𝑗. In practical terms, 

disjoint classes cannot share instances. 

                                                           

1 Two instances are intentionally equal if they have the same structure of the properties, not necessarily the 
same property values. 



Let 𝑟𝑖,𝑗 be a relationship between instances other than by class-subclass participation between domain 

instance 𝑠𝑘,𝑖  and range instance 𝑠𝑘,𝑗, then the class relationship 𝑅𝑖
𝐶 is a set of bijective relationships 

between all elements of domain class 𝑆𝑖
𝐼 and range class 𝑆𝑗

𝐼 defined as 

𝑅𝑖
𝐶 = {𝑟𝑖,𝑗(𝑆𝑖

𝐼 , 𝑆𝑗
𝐼)|∀ ((𝑆𝑖

𝐼 , 𝑆𝑗
𝐼) ∈ 𝑆, 𝑖 ≠ 𝑗)} (9) 

Note in eq. (9) that the term 𝑟𝑖,𝑗(𝑆𝑖
𝐼 , 𝑆𝑗

𝐼) refers to a predicate calculus form. The relationships can also 

be organised in a 𝑛𝑅-dimensional subsumption 𝑅𝐶 as 

𝑅𝐶 = {𝑟𝑖.𝑗(𝑆𝑖
𝐼 , 𝑆𝑗

𝐼)|∀𝑖 ≠ 𝑗}
𝑖,𝑗=1

𝑛𝑅
 (10) 

Although the inclusion mapping 𝑖 = 𝑗 in eq. (9) and (10) is generally possible, we exclude such a 

reflexive relationship for the purpose of simplifying the process without limiting practical aspect of 

the application in mind. For 𝑟𝑖,𝑗
−1 being inverse instant relationship of 𝑟𝑖,𝑗, then 𝑅𝑖

𝐶−1  (=

{ 𝑟𝑖,𝑗
−1(𝑆𝑗

𝐼 , 𝑆𝑖
𝐼)|∀ ((𝑆𝑗

𝐼 , 𝑆𝑖
𝐼) ∈ 𝑆, 𝑖 ≠ 𝑗)}) is the inverse class relationship of 𝑅𝑖

𝐶. 

Extension of a class 𝑆𝑖
𝐼 is defined by the relationship 𝑅𝑖

𝐶 which profiles the structural properties of the 

class by its relations with other classes (Junli et al. 2006). 

Let 𝑆𝑖
𝐷 be a subset of relationship domain 𝑆𝑖

𝐼 and 𝑆𝑖
𝑅 be a subset of relationship range 𝑆𝑗

𝐼, then the 

restriction of 𝑆𝑖
𝐼 = dom(𝑅𝑖

𝐶) to 𝑆𝑖
𝐷 is a partial function 𝑓𝐷 = dom𝑅𝑖

𝐶|𝑆𝑖
𝑅 providing inclusion map 𝑆

𝑓𝐷
→ 𝑆 as 

 𝑓𝐷: 𝑆𝑖
𝐼
𝑓𝐷
→ 𝑆𝑖

𝐷 (11) 

and the restriction of 𝑆𝑗
𝐼 = rang(𝑅𝑖

𝐶) to 𝑆𝑗
𝑅 is a partial function 𝑓𝑅 = rang𝑅𝑖

𝐶|𝑆𝑖
𝐷 providing inclusion 

map 𝑆
𝑓𝑅
→ 𝑆 as 

 𝑓𝑅: 𝑆𝑗
𝐼
𝑓𝑅
→ 𝑆𝑗

𝑅 (12) 

In consequence, 𝑓𝐷 (and 𝑓𝑅) establishes the binary relationship between: 

 𝑆𝑖
𝐷 and 𝑆𝑗

𝑅 based on universal and existential quantifiers over properties 𝑅𝑖
𝐶 of 𝑆𝑖

𝐼, 

 𝑆𝑖
𝐷 and 𝑛, 𝑛 ∈  ℕ,  based on cardinality quantifiers over properties 𝑃𝑖

𝑛𝑃  of 𝑆𝑖
𝐼, 

 𝑆𝑖
𝐷 and 𝑣,  𝑣 ∈ 𝑠𝑖 ∨ 𝑁, based on equality quantifiers over properties 𝑃𝑖

𝑛𝑃  of 𝑆𝑖
𝐼. 

Let 𝑅𝑖
𝐶  𝑎𝑛𝑑 𝑅𝑗

𝐶  be the extensions of classes 𝑆𝑖
𝐼 and 𝑆𝑗

𝐼 respectively, then 𝑆𝑖
𝐼 and 𝑆𝑗

𝐼 are equivalent 

classes, if 𝑅𝑖
𝐶 = 𝑅𝑗

𝐶and if 𝑆𝑖
𝐼 ∩ 𝑆𝑗

𝐼 = 𝑆𝑖
𝐼 ∪ 𝑆𝑗

𝐼. 

A set of classes 𝐻𝐼, subsumption hierarchy 𝐻𝐶, set of relationships 𝑅𝑖
𝐶, relationship hierarchy 𝑅𝐶 and 

the set of instances 𝑆𝑖
𝐼 form an ontology 𝑂 expressed as 5-tuple 

𝑂 = 〈𝐻𝐼 , 𝐻𝐶 , 𝑅𝑖
𝐶 , 𝑅𝐶 , 𝑆𝑖

𝐼〉 (13)  

If the ontology given by eq. (13) is used to provide hierarchically structured set of causes and effects 

for understanding the (knowledge) domain, which is an effective means to explicitly describe 

knowledge in knowledge base, then eq. (13) refers to the domain ontology. In practical terms, domain 

ontology refers to a collection of interlinked concepts, or names 𝑁𝑖
𝐼 as suggested by eq. (6), the 

concept attributes or properties 𝑃𝑖
𝑛𝐶and functions or logical statements 𝑅𝑖

𝐶 expressing the constraints 



existing in the domain and restricting the interpretation of vocabulary (Qi et al. 2009), all arranged in 

respective hierarchies 𝐻𝐶  and 𝑅𝐶 and supplemented by class-attached instances 𝑆𝑖
𝐼. The terms class 

and concept are then interchangeable. 

Let a h-metric ℎ𝑖 be defined over set of properties  𝑃𝑖
𝑛 characterising model inputs as well as model 

and data outputs as 

ℎ𝑖: 𝑃𝑖
𝑛
ℎ
→ℝ (14) 

then the object (𝑃𝑖
𝑛, ℎ𝑖) forms a metric space over 𝑆𝑚. By observing numerical properties 𝑃𝑖

𝑁 (which 

includes 𝑁𝐼 numerical properties of inputs and 𝑁𝑂 of outputs) as 𝑁-dimensional vector 𝐩𝑖 =

(𝑝𝑖,1, 𝑝𝑖,2,⋯ , 𝑝𝑖,𝑁), objects (𝑃𝑖
𝑁 , 𝐩𝑖) form the vector space2 𝑄𝑁 of 𝑛 vectors.  

For metric ℎ𝑖 observing eq. (14) and respective metric and vector spaces, every pair of vectors (𝐩𝑖 , 𝐩𝑗) 

can be mapped as 𝑆𝑚
2 →ℝ:  

ℎ :𝑆𝑚 × 𝑆𝑚  
ℎ
→ℎ (𝑝𝑖 , 𝑝𝑗) ≡ ℎ𝑖,𝑗 ∈ ℝ (15) 

Let a h-metric ℎ𝑘
𝑉 be defined over the vector space 𝑄𝑛 as mapping from ℝ𝑛 → ℝ so that 

ℎ𝑘
𝑉: 𝑄𝑛

ℎ
→ ℎ((𝐩𝑖 , 𝐩𝑗)) (16) 

then we can define similarity measure of the object (𝑄𝑛, (𝐩𝑖, 𝐩𝑗)) as 

ℎ𝑘
𝑉 = {

𝐩𝑖⋅𝐩𝑗

‖𝐩𝑖‖‖𝐩𝑗‖
}
𝑖,𝑗=1

n

, 𝑘 = 1,2,⋯ , 2n (17) 

representing the measure known as the vector similarity. 

Equivalently, for metric ℎ𝑖 observing eq. (14) and respective metric and vector spaces, every pair of 

classes (𝑆𝑖
𝐼 , 𝑆𝑗

𝐼) can also be mapped as 𝑆2 →ℝ: 

ℎ: 𝑆𝑚 × 𝑆𝑚  
ℎ
→ℎ (𝑠𝑖, 𝑠𝑗) ≡ ℎ𝑖,𝑗 ∈ ℝ (18) 

Let a h-metric ℎ𝑘
𝐶  be defined over 𝐻𝐼 as mapping from 𝑆𝑛 → ℝ so that 

ℎ𝑘
𝐶 : 𝐻𝐼

ℎ
→ ℎ ((𝑆𝑖

𝐼 , 𝑆𝑗
𝐼)) (19) 

then we can define similarity measure of the object (𝐻𝐼 , (𝑆𝑖
𝐼 , 𝑆𝑗

𝐼)) as 

ℎ𝑘
𝐶 = min

𝑆𝐶
𝐼∈𝐻𝐼

[𝛿(𝑆𝑖
𝐼 , 𝑆𝐶

𝐼) + 𝛿(𝑆𝑗
𝐼 , 𝑆𝐶

𝐼 )] (20) 

where 𝛿(𝑆𝑖
𝐼 , 𝑆𝐶

𝐼 ) (𝛿(𝑆𝑗
𝐼 , 𝑆𝐶

𝐼)) is the distance between classes 𝑆𝑖
𝐼 (𝑆𝑗

𝐼) and another class 𝑆𝐶
𝐼  measured in 

number of intermediate edges3 in graph sense along subsumption 𝐻𝐶  and 𝑅𝑖
𝐶 relationships.  

Let the aggregated similarity measure between two instances in respective classes 𝑆𝑖
𝐼 and 𝑆𝑗

𝐼 be 

                                                           

2 In linear algebra, a vector space is a set 𝑉 of vectors together with the operations of addition and scalar 
multiplication (and also with some natural constraints such as closure, associativity, and so on). 

3 The term edge represents the links or relationships between the two classes.  



ℎ𝑘 =
𝛼ℎ𝑘

𝑉+𝛽ℎ𝑘
𝐶

𝛼+𝛽
 (21) 

where 𝛼 and 𝛽 are weighting factors deepening the semantics of the ontology similarity and their 

values are dictated by the application. 

2.4. Implementation of Ontology for Model Integration of Biorefining  
Ontologies are used to represent knowledge, as described in Section 2.3, in terms of classes 𝑆𝑖

𝐼 with 

unique names 𝑁𝑖
𝐼 employing subsumption hierarchies 𝐻𝐶, so called taxonomy, which are merely used 

as classification schemes. The instances 𝑆𝑖
𝐼 are organised by common properties 𝑝𝑖,𝑗, which 

characterise classes through the relationships 𝑅𝑖
𝐶 to specify how they are related. The ontology in the 

domain of biorefining reflects the knowledge of a conceptual representation of the models and data 

representing biorefining processes and its inputs and outputs in order to facilitate i) the consistent 

and explicit description of models and data through common vocabulary for biorefining domain, ii) 

registration process by parsing the taxonomy of the ontology and instantiation of model in the web-

based repository, iii) input/output matching for automated search of models and data based on the 

request for input of the model, and iv) integration of such models or data. The top level of the ontology 

developed to evaluate the proposed concept consists of a concept Model. 

2.4.1. Semantic Description of Models in Biorefining 

The Model concept provides a common reference of existential process models that represent 

biorefining technologies. The Model is classified using the following five main classifications i) 

ModelByFunctionality, ii) ModelByBiorefiningPlatform, iii) 

ModelByCharacteristics, iv) ModelByInputType, and v) ModelByOutputType. The 

name of each classification represents the name of respective concepts in ontology and the names 

are self-explanatory. The ModelByFunctionality classification describes the functionality of 

the process models at four different scales, which include individual operating unit level, functional 

process unit level, process plant level, and supply chain level. Each model that performs a specific 

functionality is further specified in the domain of biorefining. For example, the model for reaction that 

represents the biorefining technology applied to convert biomass feedstock into intermediate/final 

products is categorised into three subgroups of processes: biochemical-, chemical-, and 

thermochemical processes. This classification is closely linked with intrinsic properties of feedstock as 

process has certain feedstock requirements as well as process requirements based on biomass 

characteristics. The ModelByBiorefiningPlatform classification represents the intermediates 

that link between biomass feedstocks and final products where feedstock is fractionated into a 

number of intermediates that are further processed into final material and energy products. The main 

intermediates are known as sugar, oil, lignin, gas, syngas, hydrogen, organic juice, pyrolytic liquid, and 

electricity and heat. The last two classifications reflect the level of detail considered in a model, which 

are also known as granularity of the model. The ModelByCharacteristics classification 

characterises process models by key aspects, such as scope, complexity, nature, equation form, scale, 

and type of model. The ModelByInputType and ModelByOutputType classifications are the 

structured knowledge representation of internal connection between models, which is mainly used 

for calculation of semantic similarity measure by input/output matching. The ModelByInputType 

and ModelByOutputType classifications describe different types of flows that were identified by 

the CAPE-OPEN and follows two different categorisations: i) Material and ii) Energy. The Material 

category typically represents the physical flow from one process unit to the other through inlets and 



outlets, and defines the chemical compositions of biomass feedstock and intermediate/final products. 

It is the most frequently occurring stream type, yet most complex streams to model. Similarly, the 

Energy category is used to represent energy flows, such as heat transfer. This classification is 

developed such that it considers the inheritance and the common features of concepts represented 

through the structure of ontology to evaluate concept in order to obtain a more accurate similarity. 

Top three levels of classifications are listed in Table 1 where indentation indicates the respective level 

in the ontology.  



Table 1 Classification of the biorefining related process models 

ModelByFunctionality ModelByBiorefiningPlatform ModelByCharacteristics ModelByInputType ModelByOutputType 

  FunctionalityForEquipmentLevel   SugarPlatform   ModellingScope   MaterialInput   MaterialOutput 

      Reaction       C5SugarPlatform       ModellingAndSimulation       FeedstockByType       ProductType 

           BiochemicalReaction       C6SugarPlatform       ProcessSynthesisAndDesign            VirginResource            BiochemicalProduct 

           ThermochemicalReaction   Bio-OilPlatform       PlanningAndScheduling            WasteResource            Biofuel 

           ChemicalReaction   BiogasPlatform       ProcessMonitoringAndControl       FeedstockBySource            Biomaterial 

      HeatExchange   SyngasPlatform       IntegratedApproach            EnergyCrop       ProductByIndustrySector 

           Heating   HydrogenlPlatform   ComplexityOfModel            PrimaryResidue            CommunicationSector 

           Cooling   OrganicJuicePlatform       Rigorous            Wastes            EnvironmentSector 

      PressureChanger   PyrolyticLiquidPlatform       Shortcut       ChemicalComponent            HealthAndHygieneSector 

           IncreaseInPressure   LigninPlatform       Conceptual   EnergyInput            HousingSector 

           DecreaseInPressure   ElectricityAndHeatPlatform   NatureOfModel       Steam            IndustrialSector 

      Mixing        Mechanistic       Heat            RecreationSector 

      Splitting        Empirical       Electricity            SafeFoodSupplySector 

      Separation    EquationFormOfModel             TextileSector 

           HomogeneousSeparation        Dynamic             TransportationSector 

           HeterogeneousSeparation        SteadyState        ChemicalComponent 

  FunctionalityForProcessLevel    ScaleOfModel    EnergyOutput 

      PretreatmentProcess        IndividualOperatingUnit        Steam 

           SizeReduction        FunctionalProcess        Heat 

           Densification        ProcessPlant        Electricity 

           Physico-chemicalProcess        SupplyChain   

           ChemicalProcess    ModellingType   

           BiologicalProcess        SequentialModularApproach   

           Densification        EquationOrientedApproach   

      ConversionProcess        StatisticalModelling   

           BiochemicalConversion        BlockDiagramOriented (ForControl)   

           ThermochemicalConversion        ComputationalFluidDynamics   

           ChemicalConversion     

      SeparationProcess     

           EquilibriumSeparation     

           AffinityBasedSeparation     

           MembraneBasedSeparation     

           HybridReaction-Separation     



2.4.2. Relation and Attributes using Properties 
In order to support integration of the models in biorefining domain, the properties are used to 

characterise inputs and outputs of the Model concept. Each property represents a connection 

between models as part of an internal representation as CAPE-OPEN defined streams that connect 

flowsheet blocks in sequential modular simulation. The properties are developed to follow the process 

of developing a process flow diagram, which consists of the flowsheet blocks and streams that connect 

the blocks. The construction of the semantic model representing process system begins with 

identifying the direction of flow of each stream using the properties hasInput and hasOutput, 

the feed streams are denoted as inputs to the model and the outlet streams are denoted as outputs 

to the model. The properties are organised in property subsumption 𝑅𝐶 (eq.(10)) and hence super-

properties hasInput and hasOutput, have two sub-properties to further specify number of input 

and output streams to the model and parameters that are associated with inputs and outputs of the 

model, as shown in Table 2.  The relevant parameters for physical characterisation and chemical 

composition of materials in process streams, in addition to operating conditions for the model 

representing a particular biorefining process are classified by hasInputParameter and 

hasOutputParameter property. The set of properties that characterise each input and output 

stream is denoted as a vector and the values of each properties in numerical format are used to 

calculate the similarity. This classification is adopted for consistency to enable strong encapsulation 

of any models representing biorefining processes. Again, indentation shown in Table 2 indicates the 

property level in the property subsumption, as implemented in the domain ontology. 

Table 2 Relationships reflecting process of developing a process flow diagram 

Input Output Description 

  HasInput   hasOutput Define direction of flow 

      hasNumberofInputs       hasNumberofOutputs Define number of ports 

required for the model by type 

of inputs and outputs 

           hasNumberofMaterialInputs            hasNumberofMaterialOutputs 

           hasNumberofEnergyInputs            hasNumberofEnergyOutputs 

      hasMaterialInputs       hasMaterialOutputs Define value of material 

composition for each stream            hasMaterialInput1            hasMaterialOutput1 

           hasMaterialInput2            hasMaterialOutput2 

           hasMaterialInput3            hasMaterialOutput3 

                          :                                    :          

      hasEnergyInputs       hasEnergyOutputs Define value of energy 

composition for each stream            hasEnergyInput1            hasEnergyOutput1 

           hasEnergyInput2            hasEnergyOutput2 

           hasEnergyInput3            hasEnergyOutput3 

                          :                                    :          

      hasInputParameters       hasOutputParameters Define parameters of 

input/output and set values 

for each parameter in SI units 

           hasInputFlowrate            hasOutputFlowrate 

                hasMassFlowrate                 hasMassFlowrate 

                hasMolarFlowrate                 hasMolarFlowrate 

                hasVolumetricFlowrate                 hasVolumetricFlowrate 

           hasPhaseFraction            hasPhaseFraction 

           hasTemperature            hasTemperature 

           hasPressure            hasPressure 

                          :                                    :          



In addition, properties are further used to describe the attributes characterising sub-concepts of the 

Model concept and to enhance inference. There are two main aspects that support semantic 

matching for the purpose of model integration based on technical compatibility and functional 

feasibility. The technical compatibility aspect assesses how well models can work together with given 

conditions without having to be altered properties, such as maximum capacity, main compositions, 

key parameters etc. The functional feasibility aspect considers the ability of a process that model 

present to remain operable and satisfy output specifications through functionality of the model, 

modelling methods, modelling type etc. All properties mentioned in this paper, in order to 

characterise the attributes and relationship between concepts, are in format of datatype property for 

simplification. 

2.4.3. Property Restrictions 
The restrictions 𝑓𝐷 and 𝑓𝑅 on properties, or axioms, as defined by eq. (11) and (12), are introduced to 

further enrich the knowledge in the domain of biorefining. Value restriction on properties allows to 

support ontology reclassification using inference engine. As an example, restriction on property 

hasSugarInput and hasEthanolOutput, which are subproperties of hasMaterialInput 

and hasMaterialOutput, respectively, relates to the concepts representing the model 

Fermentation and its quantity. The Fermentation concept is defined using the equivalent class 

stating necessary and sufficient conditions, as illustrated in Figure 5, which semantically interprets as 

every model that represents fermentation process has quantity of sugar input and ethanol output that 

are greater than zero. In this particular example, a datatype property links the Fermentation 

concept to the data literal ‘0.0’, which has a type of an xsd:float in order to collect information. 

 

  

Figure 5 Restriction Example 

The composition of inputs and outputs, as well as other characteristics of the process models are 

defined by restrictions and axioms, which can be used in virtue of input and output validation that 

enables input/output matching for the model integration process. Along the same line, Figure 6 

illustrates an example of reclassification for leveraging the semantic content of ontologies to discover 

a new form of knowledge.The model Fermentation is reclassified as model that has 

SugarInputType and SugarPlatform, which is inferred by the restriction “SugarPlatform 

hasSugarInput allValuesFrom greater than zero.” The SugarPlatform model is defined as 

an equivalent class by restriction relating the quantity of sugar through either hasSugarInput or 

hasSugarOutput Properties. As a result, the Fermentation model is automatically inferred as 

a sub-concept of SugarInputType and SugarPlatform, which is a new form of knowledge 

generated by inference engine. 

 



 

Figure 6 Reclassified Fermentation Concept 

 

3. Implementation of Semantic Integration of Process Models in Biorefining 

3.1. Model Registration 
The process of model registration is guided and presented to the user in the form of a questionnaire 

generated on-the-fly by parsing the domain ontology. The direction of parsing is formulated by 

previous answers and hence exploits the full potential of the ontology towards providing the best 

description of the model.  The datatype properties associated with most recently parsed concept are 

then enumerated, the process known as acquisition of explicit knowledge and by which the model 

becomes an instance of the domain ontology. An example of the registration path of fermentation 

model is shown in Figure 7. The user initiates the process by selecting the model using one of the 

classification ModelByFunctionality, ModelByBiorefiningPlatform, 

ModelByCharacteristics, ModelByInputType, and ModelByOutputType. The user 

selects the ModelByFunctionality classification and then identifies the scale of the model as a 

“Process Unit Level” and continues to navigate through the path until the Fermentation model is 

selected. The semantic profile of the model is then created by collecting explicit knowledge of the 

model and data that are required during the matching process. At the ontology instantiation process 

as shown in Figure 8, the information contains characteristics of the model as well as its inputs and 

outputs. The inputs and outputs matching supports the model discovery process based on the 

semantic relevance between the profile of the models and data, which further facilitates the model 

integration process.  

 

 

Figure 7 Example of Fermentation Model Registration 



 

Figure 8 Instantiation of Fermentation Model 

3.2. Semantic Integration by Input/Output Matching 
The formation of semantic integration is performed by the process of matching, which is supported 

by a domain ontology representing process system models and datasets. The input/output matching 

facilitates interoperability between models and allows for the automated discovery of candidate 

models and datasets and hence support model integration (Raafat et al. 2013; Koo et al. 2016). The 

semantic relevance between the models is measured by the similarity measure ℎ𝑘, as defined by eq. 

(21) using tacit knowledge of the model (modelling scope, complexity in modelling methods, nature 

of model, equation form of model, scale of model, modelling type, etc.), as well as explicit knowledge 

of its inputs and outputs (number of inputs and outputs, type, associated properties, etc.). The tacit 

knowledge is embedded in the ontology structure which includes subsumption 𝐻𝐶, relationships 𝑅𝑖
𝐶 

and respective relationship subsumptions 𝑅𝐶 and restrictions 𝑓𝐷 and 𝑓𝑅, as defined by eq. (8), (9), (10), 

(11) and (12), respectively.  Similarly, explicit knowledge is quantified by enumerated properties 𝑃𝑖
𝑛𝐼, 

𝑃𝑖
𝑛𝑂 and 𝑃𝑖

𝑁𝐼 , as defined by eq. (1), (2) and (3), respectively, and formulated in the form of vectors 

used for input/output matching. The input/output matching is capable to incorporate not only full 

matching but also considers partial matching to facilitate a wider search capability. Semantic partial 

matching is considered to suggest alternative options for the model that partially satisfies the 

matching criteria.  

The process of matching undergoes three phases: i) elimination, ii) semantic matching by calculating 

similarity measures ℎ𝑘
𝑉 and ℎ𝑘

𝐶, and iii) performance ranking. The process of elimination is used to 

reduce redundant matching without changing the functionality of search and hence to avoid 

performance deficiency. As at present, the key components required for the input of the requesting 

model is considered as elimination criterion in the process of elimination. The instances that do not 

belong to the requested categories are eliminated from matching. The model profiles which are not 

eliminated from the process of elimination are qualified for the second phase of semantic matching.  



Semantic matching is a process of quantifying the semantic relevance between the requesting model 

and models residing within the repository to determine candidate models and which is based on two 

methods: i) distance measure (eq. 20) between respective concepts representing tacit knowledge 

which is measured along the hierarchical relationships and object relationship in the domain ontology; 

and ii) property similarity (eq. 17) that calculates values of properties that characterise explicit 

knowledge in the form of vectors and measure by a mean average of cosine and Euclidean similarity 

(Cecelja et al. 2015). 

 The distance measure ℎ𝑘
𝐶  is a graph based method for matching, which is a process of calculating 

similarity between the concepts (Conte et al. 2004) to exploit tacit knowledge embedded in the 

ontology. Graphs are made of vertices and edges, where the vertices represent the concepts and the 

edges represent relationships such as subsumption 𝐻𝐶  and relationship hierarchy 𝑅𝐶. The similarity 

measure calculates the shortest distance 𝛿(𝑆𝑖
𝐼 , 𝑆𝐶

𝐼) between two classes where stronger links in 

ontology graphs are given lower weights. The maximum similarity is given to the class itself, which is 

defined as an equivalent class with the distance zero. The subsumption relationship, is-a, is calculated 

by counting the number of vertices in a graph model with a weight of 1. The knowledge about the 

simultaneous processes where two processes occur at the same time in order to increase yield and 

efficiency was considered on the matching process using object property hasSimultaneousProcess and 

its inverse property isSimultaneousProcessOf has the weight of 2. These values are selected to 

represent experiential side of model integration in practice. The similarity is then normalized by the 

longest logical path between the vertices in the ontology graph. 

In property similarity ℎ𝑘
𝑉, each property that characterises the concept representing explicit 

knowledge is presented as a vector, which has direction and magnitude. The magnitude of each vector 

is determined by property value with an assumption that the vectors that are close in space are similar. 

In the current implementation, four datatype properties are used as criteria of calculating property 

similarity, which are converted into a four-dimensional vector {Total flowrate, Temperature, Pressure, 

Fraction of main component}, and which are prepared to expand to more dimensions, as required by 

practice. Cosine similarity ℎ𝑘
𝑉,𝐶  approach calculates the degree of similarity of two vectors expressed 

as the cosine of the angle between them and Euclidean similarity ℎ𝑘
𝑉,𝐸 is considered as it is the most  

commonly used distance function (Wilson & Martinez 1997). As the Euclidean distance is dealing with 

parameters of different scales, the normalization, which scales all numeric variables in the range [0,1], 

is required in order to have the same scale for a fair comparison between two vectors. The 

shortcoming of cosine similarity in dealing with magnitude of vectors is addressed with the inclusion 

of Euclidean distance. As a result, the property similarity is a mean average between cosine similarity 

and normalized Euclidean distance, which is converted into similarity (mentioned hereafter as 

Euclidean similarity).   

To better capture intuition of relevance between the requesting model and existing models in the 

library, weighting factors 𝛼 and 𝛽 (eq. (21)) are introduced to allow users to determine the level of 

interoperability. In the current implementation, the weight of the individual property as well as fuzzy 

weight, 𝛼 and 𝛽, for the aggregated similarity are treated as equal, unless user defines otherwise. 

3.3. Experimental Verification 
A real-life biorefining modelling scenario is used to demonstrate the performance of the proposed 

approach to coordinate model interoperability with regards to technical compatibility and functional 

feasibility. Here, a reduced number of properties are used to simplify yet purposely illustrate the 

performance of the designed ontology and matching algorithm, which are the scale, scope, 

functionality, equation form, modelling type, complexity of models, flowrate, temperature, pressure, 



and the fraction of main component. As previously mentioned in Section 2, properties used in 

characterising inputs and outputs of the model are employed during the matching process. In practice, 

the number and type of matching criteria are determined based on the input requirements of the 

requesting model in order for the particular model to run. The matching results are then presented to 

the user(s) to assist in decision making process hence to fully reflect respective synthesis aspect, which 

is supported by their expertise in modelling. 

The input/output matching as a mean of establishing interoperability between the model(s) and/or 

dataset(s) is demonstrated by investigating the scenario of discovering models from the repository 

that potentially satisfies the requirement of the requesting model. MODEL 1 is an Excel-based model 

registered by the user as a functional process unit representing separation process which purifies 

bioethanol as a product at 80%. This unit consists of two individual pieces of equipment, which are a 

flash separator and a distillation column. Water and ethanol are separated from gas and other 

impurities by flash separator and go through to the distillation column, which further separates water 

from ethanol. During the process of registration, the user has registered the MODEL 1 as an instance 

in the repository and identified it as a requesting model, as illustrated in Figure 9. In turn, the 

requesting model then searches for a potential candidate model(s) that matches according to the 

requirement in S3. The full set of input requirements of MODEL 1 are given in Table 3, which was 

provided by the owner of the model during the registration process and, concomitantly, used for 

matching based on the functionality of the model. As a result of the matching process, the process 

and simulation model(s) and/or dataset(s) at functional process unit level representing conversion 

process that produce ethanol as an output are expected to be discovered. The established 

interoperability, shown in Figure 9, does not aim to create a new pathway, is nevertheless possible to 

form a biorefining pathway as a result of matching process. Based on the information that user 

provided, the requesting model, MODEL 1, initiates backward matching process as it becomes the last 

in the chain. A list of 10 models, residing in the repository, is presented in Table 4  for the 

demonstration purposes. 

 

Figure 9 Illustration of Demonstration Scenario 

The process of matching undergoes the three matching phases i) elimination, ii) semantic matching 

by calculating similarity measures ℎ𝑘
𝑉 and ℎ𝑘

𝐶, and iii) performance ranking (Section 3.2). To reduce 

redundant matching, the key components required for the input of the requesting model is defined 

as a critical criterion in the process of elimination. As at present, the key component that MODEL 1 

requires in input/output matching for the purpose of model integration is identified as ethanol. All the 

individuals, models and data, registered as an instance in the repository which do not satisfy the 



requirements are eliminated during this phase. As a result, MODEL 4 and MODEL 10 (Table 4), which 

do not have ethanol presence in their output, are eliminated. 

In the second phase of matching, quantification of semantic relevance is performed by distance 

measurement in the ontology, accounting for tacit knowledge. The tacit knowledge about the model, 

such as semantic descriptions of the models including model functionality, equation form of the 

model, modelling type, as well as complexity of modelling methods are referred by the classes in the 

ontology where the instances are attached to. The distance measure ℎ𝑘
𝐶  is used to calculate semantic 

similarity between the instance of requesting model with other instances of candidate models using 

graph methods, and which reflect synthesis problem and hence helps the user to make even more 

informed decision to choose the most appropriate model. To demonstrate the process of matching, 

Figure 10 illustrates a part of ontology that represents the model by functionality at process level, 

which is used to calculate semantic relevance between MODEL 1 and MODEL 3. The distance between 

the two concepts, Co-Fermentation and SSF (Simultaneous Saccharification Fermentation) are 

measured along the is-a subsumption relationship, as well as an object property 

isSimultaneousProcessOf. As mentioned in Section 3.2, the weights on each property, is-a and 

isSimultaneousProcessOf, are 1 and 2 respectively. Therefore, the values of the shortest distance 

between the concepts Co-Fermentation and SSF are 3. The similarity is then normalized by the 

longest logical path that exists between any two concepts in the ontology graph. For the purpose of 

demonstration, the part of ontology in Figure 10 is the only part that was taken into account in 

measuring longest path. Note that the concept of MODEL 10 IndirectGasification has the 

maximum distance in terms of number of edges to the concept Co-Fermentation and therefore 

these two concepts are used to determine the longest path in the graph, which is 10 as illustrated in 

Figure 11. As a result, the similarity for this particular criteria is 0.700. The distance measurement to 

calculate the semantic relevance based on equation form, modelling type, and complexity of the 

model is repeated and gives a vector of {0.700, 0.800, 0.800, 0.800}. Finally, similarity measure of 

MODEL 1 and MODEL 3 for the functional feasibility is calculated to be 0.775, which means the match 

between requesting model, co-fermentation model, and comparing model, SSF model have the 

similarity of 77.5%. 

 

 

Figure 10 Domain Ontology used for Semantic Matching 
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Figure 11 Demonstration of Longest Logical Path 
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Table 3 Requirement of Requesting Model 

  Distance Matching Requirements Requirements of Input Parameter* 

 

Model 

Scale 

Model Scope Model 

Functionality 

Model Functionality for 

Process 

Equation 

Form 

Modelling 

Type 

Complexity Total 

Flow 

(kg/hr) 

Temp. 

(C) 

Pressure 

(kPa) 

Ethanol 

Fraction 

MODEL 1 Process 

Unit 

Modelling & 

Simulation 

Conversion 

Process 

Co Fermentation Dynamic Equation 

Oriented 

Detailed 50,000 20-35 100-200 0.075 

* Input parameters to the model 

 

Table 4 List of Model Profile in Repository 

 Elimination Criteria Distance Matching Requirements Requirements of Input Parameter*   

Criteria Ethanol Model Functionality 

for Process 

Equation 

Form 

Modelling Type Complexity Total Flow 

(kg/hr) 

Temp. 

(C) 

Pressure 

(kPa) 

Ethanol 

Fraction 

Software Reference 

MODEL 2 Yes C6 Fermentation Dynamic Equation 

Oriented 

Detailed 

 

117,233 34 101 0.116 gProms (Siougkrou et al. 

2016) 

MODEL 3 Yes 

 

SSF* Steady 

State 

Sequential 

Modular 

Shortcut 449,353 40 91 0.055 AspenPlus (Humbird et al. 

2011) 

MODEL 4 No Transesterification Steady 

State 

Sequential 

Modular 

Detailed 1,004 60 395 0 AspenPlus (Zhang et al. 

2003) 

MODEL 5 Yes Gasification Steady 

State 

Equation 

Oriented 

Conceptual 3,967 700-

1000 

n/a 0.066 Data (Wei et al. 2009) 

MODEL 6 Yes 

 

C6 Fermentation Steady 

State 

Sequential 

Modular 

Detailed 74,256 32 111 0.121 AspenPlus (AspenPlus 2007) 

MODEL 7 Yes Gasification Steady 

State 

Equation 

Oriented 

Conceptual 1,653 200-

350 

6000-

7000 

0.114 Data (Wei et al. 2009) 

MODEL 8 Yes 

 

SSF* Steady 

State 

Equation 

Oriented 

Conceptual 10,722 30 101 0.016 Data (Wei et al. 2009) 

MODEL 9 Yes C6 Fermentation Steady 

State 

Sequential 

Modular 

Conceptual 47,191 25 101 0.075 AspenPlus (Siougkrou et al. 

2016) 

MODEL 10 No Indirect Gasification Steady 

State 

Sequential 

Modular 

Detailed 6,507 870 158 0 AspenPlus (Spath et al. 

2005) 

* Simultaneous Saccharification and Fermentation 



Four criteria are considered to calculate input/output matching using property similarities and are 

based on the set of physical properties characterising the inputs of the model they required for the 

property matching. Table 3 identifies the requirements of input parameter of the requesting model, 

including total flowrate, temperature, pressure, and fraction of input components. The properties are 

represented in the form of 4-dimentional vector, 𝑃𝑖
4 =

(𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡). Total flowrate is used 

as a measure of capacity in the system that requesting model represents, temperature and pressure 

are operating condition that provides upper and lower limit to set boundaries of the operating 

condition based on the type of biological strain employed in modelling, and the required input 

component of the requesting model is ethanol, hence, fraction of the main component is incorporated 

to ensure the presence of this component. The value of total flow of the requesting model is 50,000 

kg/hr, the ranges of temperature and pressure are represented to reflect optimal operating condition 

for employing Saccharomyces cerevisiae (Galanakis et al. 2012; Deesuth et al. 2016) for the 

fermentation process, which are 20-35 degree C and 100-200 kPa respectively, and the fraction of 

ethanol component that is processed by the requesting model is 0.075. To accommodate the range in 

values of input parameters (temperature and pressure) that the requesting model provided, the 

closest values of the parameter of MODEL 1 to MODEL 3 are selected. The values of these properties 

are then converted into a vector and subsequently compared using cosine and Euclidean similarity. 

MODEL 1 and MODEL 3 are presented in the form of vectors 𝐩1 = (50000, 35, 100, 0.075) and 𝐩3 =

(449353, 40, 91, 0.055). Cosine similarity ℎ𝑘
𝑉,𝐶  and Euclidean similarity ℎ𝑘

𝑉,𝐸 are 1.000 and 0.000, 

respectively, which then combined together as a semantic similarity ℎ𝑘
𝐶  using the mean average gives 

a result of 0.637. In the case of missing values of temperature and pressure, the default values are 

atmospheric temperature, 25 degrees C, and atmospheric pressure 100kPa. The final summary of the 

matches with other models are shown in Table 5. 

Table 5 Similarity Results 

 Semantic 

Similarity 

𝒉𝒌
𝑪 

Cosine 

Similarity 

𝒉𝒌
𝑽,𝑪 

Euclidean 

Similarity 

𝒉𝒌
𝑽,𝑬 

Property 

Similarity  

𝒉𝒌
𝑽 

Aggregated 

Similarity 

𝒉𝒌 

MODEL 2 0.917 1.000 0.832 0.916 0.916 

MODEL 3 0.775 1.000 0.000 0.500 0.637 

MODEL 5 0.775 0.978 0.885 0.931 0.853 

MODEL 6 0.850 1.000 0.939 0.970 0.910 

MODEL 7 0.775 0.250 0.878 0.564 0.670 

MODEL 8 0.825 1.000 0.902 0.951 0.888 

MODEL 9 0.800 1.000 0.993 0.996 0.898 

 

Based on the results the suggested models to establish interoperability with the requesting models 

have been ranked in Table 6. Following models, MODEL 2, MODEL 6, MODEL 8 and MODEL 9, are 

suggested to the user as potential candidates, where MODEL 2 being most suitable model. In addition, 

the MODEL 3, MODEL 5, and MODEL 7 will be flagged to inform the user with their similarity measure 

that the operating conditions of these models did not meet the requirement range of input 

parameters and model characteristics that requesting model initially provided. In this stage, the 

system allows user intervention for the user to make informed decision in choosing a model for user’s 

particular needs. 



Table 6 Suggested Models  

 Semantic 

Similarity 

𝒉𝒌
𝑪 

Cosine 

Similarity 

𝒉𝒌
𝑽,𝑪 

Euclidean 

Similarity 

𝒉𝒌
𝑽,𝑬 

Property 

Similarity  

𝒉𝒌
𝑽 

Aggregated 

Similarity 

𝒉𝒌 

MODEL 2 0.917 1.000 0.832 0.916 0.916 

MODEL 6 0.850 1.000 0.939 0.970 0.910 

MODEL 9 0.800 1.000 0.993 0.996 0.898 

MODEL 8 0.825 1.000 0.902 0.951 0.888 

 

In the case of selected model requiring further information for it to run, role of the model becomes a 

requesting model and the process of matching is then repeated. As previously mentioned, there is a 

potential to form biorefining pathways as a result of chain matching process, however, it is not a goal 

of the proposed approach. 

 

4. Conclusion And Future Work 
The concept of using ontology in model and data integration was introduced to improve upon previous 

research with particular focus on flexibility (partial matching) and reusability (reuse of existing models 

and data). The semantic algorithm for establishing interoperability between the models and data is 

presented to reflect the knowledge based on technical compatibility and functional feasibility. The 

domain ontology with a particular view to coordinate model integration embeds both tacit and explicit 

knowledge in the domain of biorefining modelling. Process models and data are semantically 

annotated in terms of input(s), output(s), precondition(s), the software environment in which they 

operate, as well as the functionality they perform. It demonstrates the process of registration and 

instantiation of the model to form model profile, which further supports the input/output matching 

process. Semantic relevance is measured in terms of semantic similarity by employing a graph 

matching method and vector similarity; in addition, the semantic partial matching is performed to 

facilitate the flexibility of model integration. To this end, the suitability of using ontology for model 

and data integration in process modelling in the domain of biorefining has been successfully verified. 

Following upon our current implementation, another extension of the framework that we wish to 

explore is to generalise the concept for all processes in the domain of chemical process systems 

engineering. Therefore, the results of this paper can be considered as a fundamental step towards the 

challenging task of defining and implementing extended framework. 
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