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The direct evaluation of manifestly optimal, cut-sky CMB power spectrum and bispectrum es-
timators is numerically very costly, due to the presence of inverse-covariance filtering operations.
This justifies the investigation of alternative approaches. In this work, we mostly focus on an in-
painting algorithm that was introduced in recent CMB analyses to cure cut-sky suboptimalities
of bispectrum estimators. First, we show that inpainting can equally be applied to the problem
of unbiased estimation of power spectra. We then compare the performance of a novel inpainted
CMB temperature power spectrum estimator to the popular apodised pseudo-Cl (PCL) method
and demonstrate, both numerically and with analytic arguments, that inpainted power spectrum
estimates significantly outperform PCL estimates. Finally, we study the case of cut-sky bispectrum
estimators, comparing the performance of three different approaches: inpainting, apodisation and
a novel low-l leaning scheme. Providing an analytic argument why the local shape is typically
most affected we mainly focus on local type non-Gaussianity. Our results show that inpainting
allows to achieve optimality also for bispectrum estimation, but interestingly also demonstrate that
appropriate apodisation, in conjunction with low-l cleaning, can lead to comparable accuracy.
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I. INTRODUCTION

The study of the cosmic microwave background radi-
ation (CMB) has become one of the most important ar-
eas in cosmology and is largely responsible for moving
the field into a precision era. As the CMB anisotropies
are almost Gaussian, the overwhelming majority of the
information on cosmology is contained in the two-point
correlation function, with significant constraints on the
magnitude of deviations from Gaussianity coming from
higher-order correlators like the bispectrum and trispec-
trum.

A central issue when analysing the CMB is how to
deal with foreground contamination of the data. There
are many sophisticated techniques cleaning the maps (see
e.g. Ref. [1, 2]) but in strongly contaminated regions, the
only solution is to mask that part of the sky. While this
approach is very effective at removing the contamination
it is not without drawbacks. Masking the sky couples the
multipoles together and allows power to leak between
them. Exact inverse-covariance weighting accounts for
the resulting correlations and guarantees minimal error
bars of estimates [3–8]. However, it is computationally
extremely challenging for large state-of-the-art datasets
and typically approximate methods like the pseudo-Cl

approach for power spectrum analysis [9–13] are chosen
in practice1. Similar approximations to optimal estima-
tors are also used for bispectrum analysis. In both the

1 Promising alternative approaches have been developed that
might lead to feasible routes to exact inverse-covariance weight-
ing [14–17]. We will not discuss these further here but rather
focus on less costly alternative approaches.
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power spectrum and the bispectrum case these meth-
ods typically suffer from leakage induced suboptimalities.
There are two standard approaches that can ameliorate
this effect. Apodisation (smoothing) of the mask is cur-
rently the method of choice for power spectrum analysis
while inpainting masked regions is used for the study of
higher-order correlators like the bispectrum. Note that
inpainting in the sense used in this work is not an at-
tempt to reconstruct the CMB in contaminated regions,
a procedure sometimes also referred to as inpainting (see
e.g. Refs. [18–20]). We employ a simple linear inpainting
procedure with the sole purpose of smoothing the sharp
edges of the mask by assigning suitable values to masked
pixels. Inpainting in this sense was first introduced in the
context of binned bispectrum estimation [21, 22] as an
ad-hoc method that produced near-optimal constraints
and subsequently used for the Planck 2013 and 2015 bis-
pectrum analyses [23, 24].

The main purpose of this paper is to develop an un-
derstanding of when and why inpainting is useful and to
compare its performance to other approaches. We will do
so by first focusing on the temperature power spectrum
in Sec. II, which is easier to study. In the process, we
show that it is possible to construct analytically debiased
power spectrum estimates from inpainted maps that sig-
nificantly outperform PCL estimators (both unapodised
and apodised). We also present improved PCL covari-
ance approximations and generalise them to the case of
power spectrum estimates from inpainted maps. It will
become clear that inpainting is an asymmetric method in
the sense that low-l-high-l (low-high) coupling is highly
suppressed, while high-l-low-l (high-low) coupling is in
fact exacerbated compared to unapodised PCL estima-
tion. This asymmetry makes inpainting ideally suited for
the analysis of strongly decaying power spectra where
low-high coupling is highly problematic, but high-low
coupling is largely irrelevant.

We go on to study the case of the bispectrum in
Sec. III. We review standard approximations to optimal
cut-sky bispectrum estimators and analytically estimate
the degradation of the estimator variance due to masking
of the data in the case of an analysis based on a simple
binary mask. The estimate shows that the impact can
be very significant depending on the shape of the bis-
pectrum under consideration. It also provides an ana-
lytic argument explaining the fact that the local shape
is most affected (see e.g. [25, 26]). Focusing on the local
shape as the worst-case scenario, we compare the perfor-
mance of inpainting and apodisation. We also introduce
a cleaning scheme that explicitly subtracts the leakage
from low-l power into high-l modes and can be thought
of as an exaggerated form of inverse-covariance weight-
ing. This cleaning scheme enables the identification of
leakage from low-l modes as the primary origin of esti-
mator suboptimalities which is also the picture suggested
by the analytic estimate.

II. INPAINTING VS. APODISATION: THE
POWER SPECTRUM CASE

A. Setup

To ensure that a comparison of approaches accurately
reflects the performances expected in a realistic analysis
setting, we adopt a setup that mimics the Planck 2013
SMICA map [1]. As mentioned above, inpainting was
first employed to extract bispectrum constraints from
this map in the context of the 2013 analysis [23]. The
fiducial power spectrum we employ is a lensed ΛCDM
model based on the 2013 best-fit parameter values. We
multiply by the beam window of a Gaussian beam with
5 arcmin FWHM and add white isotropic noise at a level
chosen to match the SMICA map. Furthermore, we em-
ploy the 2013 U73 mask. We emphasise that despite the
fact that the choice of beam, noise level and mask are
motivated by the SMICA analysis, the results presented
here obviously apply more generally.

B. Error properties of pseudo-Cl estimates

Given a mask function U(n̂) the pseudo multipoles ãlm
are given in terms of the full-sky multipoles alm by

ãl1m1 =

∫
d2nY ∗l1m1

(n̂)∆T (n̂)U(n̂) = Pl1m1l2m2al2m2 ,

(1)
where we defined

Pl1m1l2m2
=

∫
d2nY ∗l1m1

(n̂)Yl2m2
(n̂)U(n̂) . (2)

Rather than evaluating optimal estimators that involve
inverse-variance weighting of the ãlm, PCL estimation
relies on the introduction of quantities C̃l analogous to
standard full sky Cl estimators given by

C̃l =
1

2l + 1

∑
m

|ãlm|2 . (3)

Using the full-sky covariance matrix it is easy to show
that their expectation values are related to the true power
spectrum Cl via

〈C̃l1〉 =
1

2l1 + 1
Πl1l2Cl2 + 〈Ñl1〉 , (4)
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where 〈Ñl〉 is the noise contribution and2

Πl1l2 =
∑

m1m2

|Pl1m1l2m2
|2

= (2l1 + 1)(2l2 + 1)
∑
l3

2l3 + 1

4π
Ul3

 l1 l2 l3

0 0 0


2

(5)

is a symmetrised version of the standard PCL coupling
matrix (often denoted by Ml1l2) and Ul is the power spec-
trum of the mask which is defined in terms of the multi-
pole coefficients ulm of the mask function U(n̂) as

Ul =
1

2l + 1

∑
m

|ulm|2 . (6)

We deliberately defined the PCL coupling matrix Π with-
out including the factor 1/(2l1 + 1) to highlight the sym-
metry of the PCL coupling. We can terminate the sum
in Eq. (4) at some sufficiently high lmax in which case
M is a square matrix of dimension lmax + 1 and3 we can
obtain unbiased PCL estimates ĈPCL

l as

ĈPCL
l1 = (Π−1)l1l2(2l2 + 1)

(
C̃l2 − 〈Ñl2〉

)
. (7)

The advantage of this approach is its computational sim-
plicity. Little numerical effort is necessary to arrive at
unbiased power spectrum estimates. The C̃l are trivial
to calculate and the expression for the coupling matrix Π,
Eq. (5), can be evaluated numerically in a very efficient
manner. However, while it can give rise to accurate esti-
mators it is in general not optimal. Masking of the sky
couples different multipoles so that power from nearby l
also contributes to a given C̃l. This effect is described by
the coupling matrix Π and multiplication with its inverse
corrects for the resulting bias. Nonetheless the leakage
from nearby multipoles also affects the variance of esti-
mates. While in the case of a constant power spectrum
PCL estimation is equivalent to inverse-variance weight-
ing [11, 27], for non-constant Cl leakage of power be-
tween different l leads to an increase in the variance and
thus causes the estimator to be suboptimal. The cou-
pling width of the mask can be reduced by smoothing
the edges, a method referred to as apodisation. Apodi-
sation reduces long-range leakage and hence can have a
very positive impact on the variance of PCL estimates.
However, requiring smooth edges of the mask comes at

2 If we want to calculate the matrix Π exactly up to a certain lmax

using the analytic formula on the RHS, the sum over l3 in this
expression should extend to 2 lmax. Beyond that, the Wigner-3j
symbol vanishes.

3 We assume that Π is invertible, which is usually the case given
the sky coverage in current CMB experiments (cf. Ref [11] and
references within).

the price of a loss of sky fraction which generally leads
to larger errors. It is clear that a balance must be struck
between smoothing the mask to reduce mode coupling,
and retaining as much sky fraction as possible. For the
purpose of this paper we use a simple apodisation proce-
dure inspired by the one used in the 2013 Planck analysis
[13]. Our method ensures that masked regions of the un-
apodised mask remain masked so that all masks use the
same set of data allowing for a meaningful comparison.
The procedure can be thought of as an approximate con-
volution of the mask with a Gaussian beam of a given
FWHM and is described in detail in App. B. The effect
of this smoothing is strong suppression of mode coupling
beyond a multipole separation ∆l ∼ π/FWHM.

Figure 1 shows a plot of PCL variances up to lmax =
2000 for the setup described in Sec. II A. The plots are
obtained using a HEALPix resolution parameter Nside =
1024. Besides the unapodised mask smoothing scales
0.15◦, 0.3◦ and 0.5◦, labelled as S015, S03 and S05 re-
spectively, are shown. It is evident how at low l . 800,
long-range leakage due to the discontinuities is not as se-
vere and unapodised PCL produces the lowest error bars.
However, without any apodisation the error bars grow
rapidly going to higher l. The S015 mask already elimi-
nates most of the leakage but further improvements can
be made using the S03 mask. Going to even more aggres-
sive smoothing does not result in further improvements
as the reduced leakage is not sufficient to counteract the
loss of sky fraction that causes the error bars to grow
everywhere.

For comparison, Fig. 1 includes the Fisher errors for
the case of a constant power spectrum Cl = const. = C0.
In this case unapodised PCL estimation is optimal and
the Fisher errors can be easily evaluated as the covariance
matrix is a simple projection operator and thus is its own
pseudoinverse. They are simply given by

(F−1const.)ll = 2C2
0 (Π−1)ll (8)

and as we roughly haveΠll ≈ (2l + 1)(fusky)2 we get

2l + 1

2C2
0

(F−1const.)ll ≈ (fusky)−2 ≈ 1.85 (9)

as a good estimate of the actual value plotted in Fig. 1.
Because of leakage and reduced sky fraction in the
apodised cases, the plotted ratios of PCL variance to
full-sky variance are typically larger. A notable excep-
tion is the region at low l that is also shown in the inset.
The fact that the curves are well below the Fisher er-
rors for Cl = const. is not a violation of the Cramer-Rao
bound because we are comparing different fiducial spec-
tra. As the ΛCDM temperature power spectrum decays
rapidly at low l, the low-l modes experience almost no
leakage from the high-l modes and thus can be estimated
more accurately. Another way of saying this is that, be-
cause of the rapid drop in power, for the treatment of
the modes at very low l, the power spectrum is approx-
imately band-limited meaning that full-sky alm can be



4

FIG. 1. The variances of PCL power spectrum estimates divided by full-sky variance for various degrees of apodisation. We
plot exact variances as obtained from 105 MC samples as well as variances predicted by analytic approximations to the PCL
covariance matrices. The approximations perform very well with minor deviations only at the lowest l and, in the case of
the unapodised mask, highest l. Also plotted are Fisher errors obtained under the assumption of a constant power spectrum
Cl = C0 (flat magenta line). The inset magnifies the region at low l where PCL variances approach the cosmic variance limit as
expected based on the fact that the temperature CMB can be viewed as nearly band limited when studying the largest scales
due to the large amount of power in low l modes.

reconstructed accurately from the cut-sky ãlm. Thus,
the variance of the Cl estimates can be close to full-sky
cosmic variance and far below the Cl = const. Fisher
errors (see e.g. Refs. [8, 28–30]).

C. Pseudo-Cl covariance approximations

While we obtained variances from a large number of
MC samples in the previous section, the exact covariance
can also be obtained from the expression

Cov[ĈPCL
l1 , ĈPCL

l2 ]

=2(Π−1)l1l3(Π−1)l2l4
∑

m3m4

|Pl3m3l5m5Cl5Pl5m5l4m4 |
2
.

(10)

Evaluating this expression exactly is cumbersome but it
is required to make the Cl-estimates useful for further
analysis, in particular for the construction of a likelihood
[11, 13, 31]. In order not to spoil the computational sim-
plicity of PCL estimation analytic approximations are
thus used in practice. These approximations assume that
the power spectrum is nearly constant so that the factors
of Cl can be removed from the sums [11, 32]. Following

this approach consistently gives rise to an expression

Cov[ĈPCL
l1 , ĈPCL

l2 ] ≈ 2Cl1Cl2(Π−1)l1l3(Π−1)l2l4Π
(2)
l3l4

,

(11)
where the superscript (2) indicates that a quantity, in this
case the coupling matrix, is evaluated for the square of
the mask. Note that we made use of the completeness of
the spherical harmonics to arrive at this expression. This
approximation is inaccurate as it does not take the im-
pact of variations in the power into account. For example
in the case of an unapodised mask it simply reproduces
the Fisher errors plotted in Fig. 1 that evidently differ
quite substantially from the exact result. To improve
the approximation let us assume the general form to be
the same as Eq. (11), but replace Cl with an appropri-
ate C̄l that ensures that the approximation matches the
true covariance well on the diagonal. More precisely we
require

Var[ĈPCL
l ]

=2(Π−1)ll1(Π−1)ll2
∑

m1m2

|Pl1m1l3m3Cl3Pl3m3l2m2 |
2

≈2C̄2
l (Π−1)ll1(Π−1)ll2Π

(2)
l1l2

. (12)
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Making use of the fact that all matrices involved are
nearly diagonal we arrive at

C̄2
l ≈

1

Π
(2)
ll

∑
m1m2

|Plm1l3m3Cl3Pl3m3lm2 |
2
. (13)

Now rather than simply treating the power spectrum as
constant and pulling it out of the sums on the RHS let
us try to find a better approximation. We can write∑

m1m2

|Plm1l3m3Cl3Pl3m3lm2 |
2 ≈

∑
m

|Plml3mCl3Pl3mlm|2

≈ Al

2l + 1

(∑
m

|Plml3m|2Cl3

)2

= Al(2l + 1)〈C̃l〉2 , (14)

where we treated the mask as azimuthally symmetric and
introduced a factor Al that remains to be determined.
The motivation for introducing Al in this way comes from
the fact that if the terms in the sum are independent of
m we have Al = 1. Now we do not expect the terms to
be completely independent of m but we can assume that
the effect of the variations can be well accounted for by
evaluating Al in the case of a constant power spectrum,
Cl = C0, for which we have∑

m

|Plml3mCl3Pl3mlm|2 = C2
0

∑
m

(
P

(2)
lmlm

)2
=C2

0Π
(2)
ll =

Π
(2)
ll

(f
(2)
sky)2

〈C̃0〉2 , (15)

so that

Al = Π
(2)
ll /((2l + 1)(f

(2)
sky)2) , (16)

which is in fact typically independent of l except at very
small l and relatively close but slightly larger than unity4.
Substituting this result back into Eqs. (14) and (13) we
obtain

C̄l =
〈C̃l〉
f
(2)
sky

. (17)

Summing up, the covariance approximation used in this
work reads

Cov[ĈPCL
l1 , ĈPCL

l2 ] ≈ 2C̄l1C̄l2(Π−1)l1l3(Π−1)l2l4Π
(2)
l3l4

(18)
with C̄l as in Eq. (17).

These covariance approximations are also plotted in
Fig. 1 and the agreement with the exact variances as ob-
tained from MC is very good (also see Fig. 6 below). A
nice property of writing the covariances in this way is

4 The fact that it must be larger than unity can be viewed as a
direct consequence of the Cauchy-Schwarz inequality.

that the loss of sky fraction that increases errors every-
where mostly enters through the coupling matrices and
leaves C̄l largely unchanged. Effects on the variance due
to variations in the power spectrum and the resulting
leakage enter through deviations of C̄l from Cl with the
two being equal in the case of a constant power spectrum
(cf. Fig. 7 and its discussion).

Note that leakage also affects the off-diagonal entries.
Analytic approximations like the one above cannot fully
capture the impact of variations of the power spectrum
on correlations and generally deviate from the exact co-
variance matrix. However, elements far off the diagonal
are typically very small so that errors are likely not im-
portant in practice (cf. Ref. [32]).

D. Inpainting as an alternative approach

Rather than apodising the mask function, inpainting
multiplies the map with the unapodised mask and then
fills in the excluded regions. For our purposes, the cru-
cial requirements are that the method is linear and thor-
oughly eliminates any discontinuities introduced through
masking of the data. As already mentioned in the intro-
duction, inpainting in the sense used in this paper does
not refer to a procedure that attempts to reconstruct the
masked regions of the CMB as in other work. The ap-
proach adopted here is a very simple routine identical to
the one used in the Planck analysis [23, 24].

Starting with a map of temperature fluctuations,
∆T (n̂), and an unapodised mask function U(n̂), we
first determine the set of unmasked pixels, for which
U(n̂) = 1, and the set of masked pixels, for which
U(n̂) = 0. The value of ∆T (n̂) at unmasked pixels is
left unchanged by the procedure and the inpainted map
is still given by ∆T I(n̂) = ∆T (n̂) for this set of pixels.
The masked pixels are zeroed at the start of the proce-
dure. Then we perform iterations on the set of masked
pixels, where at each step a pixel gets assigned the aver-
age value of its immediate neighbours. The precise num-
ber of iterations is not directly relevant as long as it is
large enough to ensure that the resulting map ∆T I(n̂)
is sufficiently smooth. Figure 2 shows an example of the
effect of inpainting. On the left we plot Re{Y10 5(n̂)} for
the masked spherical harmonic in a region that includes
part of the galactic cut and various point source holes
at HEALPix resolution Nside = 512. The right of the
figure shows the real part of the inpainted spherical har-
monic Re{Y I

10 5(n̂)} after 250 inpainting iterations. In
both plots the boundary of the mask is highlighted. We
see that after inpainting the point source holes are filled
in smoothly and the inpainted spherical harmonic now
extends noticeably into the galactic cut.

While this procedure seems largely ad-hoc, it meets
both requirements stated above. In particular it is a
manifestly linear operation. The inpainted multipoles
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FIG. 2. Real part of the masked spherical harmonic Re{Y10 5} (left) and the corresponding inpainted spherical harmonic
Re{Y I

10 5}. In both cases the boundary of the mask is highlighted.

ãIlm are related to the full-sky multipoles alm via

ãIl1m1
= Il1m1l2m2

al2m2
, (19)

where we introduced the inpainting matrix I. Its entries
are simply the harmonic transforms of inpainted spherical
harmonics Y I

l2m2
(n̂), i.e.

Il1m1l2m2
=

∫
d2nY ∗l1m1

(n̂)Y I
l2m2

(n̂) . (20)

E. Inpainting coupling matrix and power spectrum
estimates

Writing the impact of inpainting as in Eq. (20) empha-
sises the similarities to standard PCL estimation. Com-
paring this equation to Eq. (1), we see that the inpainting
matrix I simply replaces the spherical harmonic coupling
matrix P . Thus, in a similar fashion we can construct
unbiased power spectrum estimates ĈI

l from inpainted
maps via

ĈI
l1 =

(
(ΠI)−1

)
l1l2

(2l2 + 1)
(
C̃I

l2 − 〈Ñ
I
l2〉
)
, (21)

where

C̃I
l =

1

2l + 1

∑
m

|ãIlm|2 (22)

and the inpainting coupling matrix ΠI is given by

ΠI
l1l2 =

∑
m1m2

|Il1m1l2m2
|2 . (23)

While this coupling matrix cannot be brought into a sim-
pler form through analytic manipulations as in the PCL
case, the steps involved in the calculation of ΠI are triv-
ial to parallelise and its numerical calculation is feasible

on state-of-the-art supercomputers. The inpainting pro-
cedure has to be carried out for each spherical harmonic
separately. For the purpose of this section we work with a
HEALPix resolution parameter Nside = 512 and inpaint
using 250 iterations5. In this case, calculation of the cou-
pling matrix using the brute force inpainting algorithm
outlined above and HEALPix for spherical transforms
took O(103) CPU hours.

Figure 3 visualises the coupling matrices of PCL es-
timation and inpainting. The top panels plot the scaled
coupling matrices for the unapodised U73 mask (left) and
the inpainting coupling matrix (right). The bottom panel
shows a cross section through the coupling matrices Πl0l

at l0 = 500 for various smoothing scales and inpainting.
The plot can be interpreted as depicting the contribu-
tion of full-sky power at scale l to the cut-sky power at
l0. The figure highlights the asymmetry of the inpainting
coupling. It clearly shows how inpainting in fact increases
the high-low coupling compared to the unapodised case,
but is extremely effective at reducing low-high coupling.

The asymmetry shown in Fig. 3 is the main advan-
tage of inpainting. It is extremely efficient at eliminating
leakage from modes at a given l into modes at higher l.
This can be intuitively understood. A full-sky spherical
harmonic Ylm that is masked has power with much larger
l due to sharp features in the mask. However, inpainting
renders any discontinuities very smooth so that the in-
painted spherical harmonic has very little power at larger
l which suppresses low-high leakage. Conversely, inpaint-
ing is ineffective at reducing leakage from higher to lower
l. A highly oscillatory masked spherical harmonic will
acquire more low-l power due to the inpainting proce-
dure creating smoother contributions in masked regions.

5 The Planck analysis [23, 24] used 1000 iterations at resolution
Nside = 2048, which should be comparable as the smoothing
scale due to inpainting scales as number of iterations times Nside.
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l1

l2

l1

l2

FIG. 3. Density plots of coupling matrices in the case of the unapodised U73 mask (top left) and inpainting (top right). The
bottom panel shows a cross section Πl0l through coupling matrices for various smoothing scales and inpainting at l0 = 500.
The asymmetry of the inpainting coupling is clearly visible. While low-high coupling is heavily suppressed compared to all
PCL cases, high-low coupling is in fact enhanced as explained in the main text.

Hence, the high-low coupling is not reduced but rather
exacerbated somewhat compared to the case of a simple
unapodised mask.

This asymmetry of the coupling makes inpainting ide-
ally suited for CMB temperature analysis. Temperature
power spectra decay rapidly so high-low leakage is gener-
ally irrelevant while low-high leakage is very important.
As data in unmasked regions is unaffected by the inpaint-
ing procedure, the reduction of leakage does not come at
the cost of a loss of sky fraction.

F. Variances of inpainted power spectrum
estimates

We saw in Sec. II B that, even after apodisation, low-
high leakage leads to increases in the variance of PCL
estimates whenever the power spectrum exhibits a drop.
With the insight that inpainting is very efficient at sup-
pressing this type of leakage, we expect that improve-
ments can be made. The variance of inpainted Cl-
estimates along with PCL variances in the unapodised
and 0.3◦-apodised case are shown in Fig. 4. The figure
shows variances obtained from 105 MC samples in each
case. Also plotted are Fisher errors in the case of a con-
stant power spectrum, Cl = const. = C0, already shown
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FIG. 4. The variances of inpainted power spectrum estimates divided by full-sky variance. For comparison the PCL variances
for the unapodised and S03 mask and the Fisher errors obtained under the assumption of a constant power spectrum are
included as well. As in Fig. 1 we plot exact variances as obtained from 105 MC samples as well as variances predicted by
analytic approximations to the covariance matrices. Just like the PCL approximations, the analytic approximation to the
inpainting variance discussed in Sec. II G performs very well. The inset magnifies the low-l region. Note that upon close
inspection very minor differences at high l between the PCL variances shown here and in Fig. 1 are visible that arise because
of the different choices of Nside that cause resolution effects in the harmonic transforms and the apodisation scheme.

in Fig. 1. Inpainting significantly outperforms any of
the apodised PCL estimates. We emphasise again that a
variance below the Fisher errors for Cl = const. is not a
violation of the Cramer-Rao bound because of the differ-
ent underlying fiducial models. Rather, this phenomenon
can be understood intuitively as reflecting the idea that
when the power spectrum has a drop beyond a given l,
it is possible to measure the power better than in the
case of a flat spectrum because the contribution due to
leakage from higher-l modes is reduced. For example, the
dips at l ∼ 500 and l ∼ 800 correspond to the locations
of the acoustic peaks where the second derivative of the
power spectrum briefly becomes negative.

Figure 5 shows the ratio of the variance of the PCL es-
timates in the case of the S03 mask and inpainted power
spectrum estimates to highlight the improvements. In-
painting leads to gains exceeding 15% nearly across the
full range with a maximum improvement of about 45%
seen at l = 400 after the first acoustic peak of the power
spectrum.

FIG. 5. Plot of the ratio of the variance of PCL estimates in
the case of the S03 mask and the inpainted power spectrum
estimates.

G. Approximations to the inpainting covariance
matrix

Evaluation of the covariance matrix of inpainted power
spectrum estimates, either through direct calculation or
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through extensive MC sampling, is computationally very
expensive. As accurate covariance matrices are needed
for the construction of a likelihood, it is desirable to ob-
tain an analytic approximation. Building on the discus-
sion in Sec. II C, we attempt to find a suitable generali-
sation of the improved approximations to the covariance
matrices of PCL estimates to the case of inpainting. Let
us assume that we can approximate the covariance in a
similar fashion as the unapodised PCL case, i.e.

Cov[ĈI
l1 , Ĉ

I
l2 ] ≈ 2C̄I

l1C̄
I
l2(Π−1)l1l2 , (24)

where Π is the coupling matrix of unapodised PCL es-
timates. We then only need to determine the correct
choice of C̄I

l . For the variance of the inpainted estimates
we have

Var[ĈI
l ]

=2((ΠI)−1)ll1((ΠI)−1)ll2
∑

m1m2

∣∣Il1m1l3m3Cl3I
∗
l2m2l3m3

∣∣2
≈2(C̄I

l )
2(Π−1)ll . (25)

To evaluate this expression further, we make use of the
fact that all matrices are nearly diagonal and obtain

(C̄I
l )

2 ≈ Πll

(ΠI
ll)

2

∑
m1m2

∣∣Ilm1l3m3
Cl3I

∗
lm2l3m3

∣∣2 . (26)

Now, evaluating the sum on the RHS exactly in the same
way as we did in Sec. II C in the case of approximations
to PCL covariance matrices,∑

m1m2

∣∣Ilm1l3m3
Cl3I

∗
lm2l3m3

∣∣2 = Al(2l + 1)〈C̃I
l 〉2 , (27)

and using the previous result for Al for an unapodised

mask (recall that in this case f
(2)
sky ≡ fusky and Π

(2)
ll ≡ Πll),

Al =
Πll

(2l + 1)(fusky)2
, (28)

we arrive at

C̄I
l =

Πll

ΠI
ll

〈C̃I
l 〉

fusky
. (29)

The resulting analytic approximation to the variance of
the inpainted Cl-estimates is plotted in Fig. 4 along with
the corresponding approximations to the PCL variances
already shown in Fig. 1. We see that the inpainting
approximation agrees very well with the variances ob-
tained from MC sampling. This is confirmed by Fig. 6
that shows the relative difference between the diagonals
of the covariance approximations and the MC variances
in the case of the S03 PCL estimates and the inpainted
estimates. Both approximations show agreement at the
subpercent level with most of the difference being due to
the scatter of the MC variances. The plot also includes

FIG. 6. The relative difference between the covariance ap-
proximations and variances obtained from MC sampling the
case of PCL estimation using the S03 mask and inpainted
power spectrum estimates. The shaded area indicates 2σ er-
ror bars on the variances expected from 105 MC samples. The
only notable differences occur at very low l.

2σ error bars highlighting that the only significant de-
viations are observed at very low l. In practice, this
region is not very relevant anyway as typically an exact
low-l likelihood replaces the fiducial Gaussian approxi-
mation there (e.g. in the Planck analysis [13]). Obvi-
ously, the good agreement on the diagonal does not nec-
essarily imply that the off-diagonal agreement is equally
satisfactory. To make this approximation reliable and
well suited for the construction of a likelihood, we need
to assume that at least the near-diagonal correlations of
Cl-estimates from inpainting can be modelled as being
similar to the unapodised PCL case. To what extent this
is true and whether the approximation is sufficiently ac-
curate for the construction of a likelihood is beyond the
scope of this paper.

Before we conclude this section, we will briefly pause
to elaborate further on the factors C̄l entering the covari-
ance matrices and in particular highlight the difference
between C̄l for inpainting and the related quantity C̄I

l .
Just as in the case of its PCL equivalents, the approx-
imation to the covariance of inpainted power spectrum
estimates is affected by the sky fraction mainly through
the coupling matrix Π that scales as (fusky)−2, while the
shape of the power spectrum enters through deviations of
C̄I

l from Cl. Figure 7 plots C̄I
l for inpainting along with

C̄l for PCL estimation in the case of the unapodised and
S03 mask. Unsurprisingly, the curves closely resemble
the variance plots shown in Fig. 4. Let us first focus on
the PCL cases. As the loss of sky fraction is divided out
in the definition of the C̄l, the S03 curve shifts down with
respect to the unapodised curve when comparing the two
figures. Since the long-range coupling is significantly re-
duced, the S03 case has significantly lower C̄l at high l,
which was the main motivation to introduce apodisation
in the first place. However, this plot shows that the in-
crease in the S03 variance compared to the unapodised
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FIG. 7. The ratios C̄l/Cl for PCL estimation using the unapodised and S03 mask along with C̄I
l/Cl for inpainting. The plot

also shows C̄l in the case of inpainting to highlight the impact of the Πll/Π
I
ll scaling entering C̄I

l .

case in Fig. 1 at smaller l is not simply due to a loss
of sky fraction, but due to an increase in mode coupling
of short range. This is expected from Fig. 3 which in-
deed shows an increase in short-range coupling. It can
be intuitively understood as being due to the introduc-
tion of features in the mask with angular scale given by
the smoothing scale which should increase the coupling
below separations ∆l ∼ π/FWHM.

Moving on to the inpainting curves, the difference be-
tween C̄l and C̄I

l due to the factor Πll/Π
I
ll entering C̄I

l is
particularly evident at lower l. C̄l for inpainting is sig-
nificantly higher than the corresponding PCL curves at
low l, meaning that the variance of the inpainted pseudo-
multipoles ãIlm is larger than their PCL equivalents alm
at low l. This effect is not due to leakage but rather can
be thought of as the result of amplification of power at
low l. Consider the simplest example of having only a
monopole a00 in the full-sky map. Unapodised PCL esti-
mation would measure a pseudomultipole ã00 = fuskya00
but the corresponding inpainted multipole ãI00 must be
larger, |ãI00| > |ã00|, as inpainting amplifies the monopole
by partially filling in the masked regions. Hence, there
is an artificial amplification of power due to inpainting
at low l that is divided out in the final estimates. This
effect is taken into account by the factor Πll/Π

I
ll and only

C̄I
l enters the variance of the final inpainted estimates6.

6 Note that at higher l inpainting may also have the opposite effect.
Upon close inspection, it can be seen in Fig. 7 that 〈C̃I

l 〉/f
u
sky

starts to dip slightly below C̄I
l beyond l ∼ 800, indicating that

inpainted high-l spherical harmonics Y I
lm have reduced power at

scale l.

III. THE CASE OF THE BISPECTRUM

In Sec. II we focused on the power spectrum to in-
vestigate when and why inpainting is a useful approach
for CMB analysis. The fact that it strongly reduces
mode coupling makes it very attractive for the analy-
sis of higher-order correlators such as the bispectrum as
well. As mentioned above, inpainting was actually first
introduced for bispectrum analysis by the Planck team
in Ref. [23]. Building on the insights obtained by study-
ing the power spectrum, we now proceed to study the
case of the bispectrum. We will first attempt to obtain
an analytic understanding of the impact of leakage on
bispectrum estimates. Then, focusing on the local-shape
bispectrum estimator that is particularly sensitive to low-
high coupling, we go on to study and compare the ability
of inpainting and alternative methods to restore optimal-
ity of cut-sky approximations to the optimal estimator.

A. Optimal bispectrum estimator

Suppose we want to estimate a small parameter fNL

that, at leading order, gives rise to deviations of the PDF
P (ã) from Gaussianity of the form

〈ãl1m1
ãl2m2

ãl3m3
〉 = fNL B̃

l1l2l3
m1m2m3

≡fNL Pl1m1l4m4Pl2m2l5m5Pl3m3l6m6B
l4l5l6
m4m5m6

. (30)

Here, B̃l1l2l3
m1m2m3

is the cut-sky bispectrum and Bl1l2l3
m1m2m3

is the full-sky bispectrum. The latter is given in
terms of the reduced bispectrum bl1l2l3 via Bl1l2l3

m1m2m3
=

Gl1l2l3m1m2m3
bl1l2l3 with Gl1l2l3m1m2m3

the Gaunt integral

Gl1l2l3m1m2m3
=

∫
d2n̂ Yl1m1

(n̂)Yl2m2
(n̂)Yl3m3

(n̂) . (31)
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The optimal estimator in this case if given by

f̂optNL :=
1

N
Bl1l2l3

m1m2m3
(C+)l1m1l4m4

(C+)l2m2l5m5
(C+)l3m3l6m6

(ãl4m4
ãl5m5

ãl6m6
− 3〈ãl4m4

ãl5m5
〉ãl6m6

) , (32)

where C+ denotes the pseudoinverse of the covariance matrix Cl1m1l2m2 = 〈ãl1m1 ã
∗
l2m2
〉 and N is the normalisation

factor

N = Bl1l2l3
m1m2m3

(C+)l1m1l4m4
(C+)l2m2l5m5

(C+)l3m3l6m6
Bl4l5l6

m4m5m6
. (33)

The estimator has variance

Var[f̂optNL ] =
3!

N
. (34)

The optimality property can be deduced from the Edge-
worth expansion of the PDF in the connected n-point
functions (see e.g. Refs. [33, 34] and references therein),
which shows that the Fisher information at fNL = 0 is
indeed F = N/3!.

B. Approximation to the optimal cut-sky
bispectrum estimator

As in the case of the power spectra, optimal estimation
of bispectra naively requires the inversion of the covari-

ance matrix – a computationally very challenging task.
Even though full inverse-covariance weighting has been
performed elsewhere (see e.g. [35, 36]) approximations are
often used in practice to arrive at tractable estimators.
In this work the estimator

f̂NL =
1

Ñ

Bl1l2l3
m1m2m3

(ãl1m1
ãl2m2

ãl3m3
− 3〈ãl1m1

ãl2m2
〉ãl3m3

)

C̄l1C̄l2C̄l3

(35)

is used, where Ñ is a suitably chosen normalisation en-
suring unbiasedness,

Ñ =
Bl1l2l3

m1m2m3
B̃l1l2l3

m1m2m3

C̄l1C̄l2C̄l3

, (36)

and C̄l = 〈C̃l〉/f (2)sky is the modified power spectrum in-
troduced earlier in the context of covariance approxima-
tions. The appearance of the C̄l-factors as the weight can
be understood as replacing the inverse of the covariance
matrix by the inverse of its diagonal Clmlm ∼ 〈C̃l〉. The

choice to normalise with f
(2)
sky is not necessary because it

could equally be absorbed into Ñ but convenient as it
gives Ñ the familiar scaling ∝ fsky. As discussed above,
the mask function U(n̂) can be apodised to reduce long-
range coupling of multipoles.

The approach is in a sense analogous to PCL estima-
tors in the case of the power spectrum. In particular, if
we assume that the power spectrum is constant and we
are dealing with an unapodised mask, then this approx-
imation to the estimator is exact. This can be simply

seen by recalling that the covariance matrix is then pro-
portional to a projection operator and is its own pseu-
doinverse and also C̄l = Cl in this case. If both the
power spectrum and the reduced bispectrum are con-
stant, bl1l2l3 = b0, the normalisation factor is exactly
given by

Ñ = f
(3)
skyNfs , (37)

with Nfs denoting the full-sky normalisation

Nfs =
∑
limi

(Bl1l2l3
m1m2m3

)2

Cl1Cl2Cl3

. (38)

Similarly, the normalisation factor N of the optimal es-
timator evaluates to

N = fuskyNfs (39)

in this case. Even though they only strictly hold for
constant underlying spectra, these results for the nor-
malisation factors are simple to evaluate and useful in
practice. We will refer to them as fsky-approximations
to the normalisation factors.
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C. Leakage contributions to the variance

The variance of the estimator is given by

Var[f̂NL] =
6

Ñ2

Bl1l2l3
m1m2m3

(C̄l1C̄l2C̄l3)
1
2

Cl1m1l4m4Cl2m2l5m5Cl3m3l6m6

Bl4l5l6
m4m5m6

(C̄l4C̄l5C̄l6)
1
2

, (40)

where we introduced the normalised covariance matrix

Cl1m1l2m2
=
Cl1m1l2m2

(C̄l1C̄l2)
1
2

. (41)

Note that for the diagonal entries of this matrix we have

1

2l + 1

∑
m

Clmlm = f
(2)
sky , (42)

independent of the shape of the power spectrum. With
Eqs. (40) and (36) we can identify two phenomena re-
lated to mode coupling that affect the variance of PCL
estimates. An increase in C̄l due to leakage, as was par-
ticularly evident in the case of unapodised PCL estima-
tion at high l in Sec. II B, can cause Ñ in Eq. (36) to
decrease. Even though the numerator in Eq. (40) also

decreases the 1/Ñ2 factor should dominate and lead to
a net increase in variance.

The second, and potentially more severe, effect can
also be understood upon inspection of Eq. (40). Despite
the fact that Eq. (42) suggests that the normalised co-
variance in Eq. (40) should not be directly affected by

changes in C̄l, the variance Var[f̂NL] can be extremely
sensitive to mode coupling. The normalised covariance
matrix is proportional to a projection operator in the case
of a constant power spectrum and an unapodised mask,
but it can develop very large eigenvalues if the power
spectrum decays rapidly making it different from a sim-
ple projection as discussed in Ref. [27]. In particular, the
strong initial decay of the power spectrum can generate
large eigenvalues with eigenvectors related to the masked
low-l spherical harmonics. Inverse-covariance weighting
would downweight the corresponding modes in the data
and eliminate their effect on the variance. However, we
see that the approximated estimator sums over the off-
diagonal entries of the covariances, i.e. the correlated er-
rors introduced by mode coupling, and can be heavily
affected. To what extent obviously depends on the shape
of the bispectrum under consideration. To make this
more explicit we use the results from Ref. [27] mentioned
above to estimate the contribution to the variance from

these large eigenvalues. In particular, assuming a simple
symmetric galactic cut there are only two of these eigen-
vectors for each m. One corresponding to even parity
and one corresponding to odd parity. Let us focus on the
even parity eigenvector associated with m = 0 and label
it as v0. It is approximately given by7

(v0)lm =
1

nv

ulm

C
1
2

l

, (43)

i.e. proportional to the multipole coefficients of the un-
apodised mask function U(n̂) itself. Here, nv is a nor-
malisation factor,

n2v =
∑
lm

|ulm|2

Cl
, (44)

chosen to make v0 a unit vector. Let us call the corre-
sponding eigenvalue of the normalised covariance λ. This
eigenvector generates a contribution to the normalised
covariance

Cl1m1l2m2 ∼ λ(v0)l1m1(v0)∗l2m2
=

λ

n2v

ul1m1

C
1
2

l1

u∗l2m2

C
1
2

l2

(45)

and the contribution to Var[f̂NL] can be estimated to be

Var[f̂NL]

Var[f̂optNL ]
∼ λ3

Ñn6v

(∑
limi

ul1m1
ul2m2

ul3m3
Bl1l2l3

m1m2m3

Cl1Cl2Cl2

)2

=
λ3

Ñn6v

(∑
limi

U l1l2l3
m1m2m3

Bl1l2l3
m1m2m3

Cl1Cl2Cl2

)2

=
λ3

fusky
CorrB[B,U ]2 , (46)

where we introduced the mask bispectrum

U l1l2l3
m1m2m3

= ul1m1ul2m2ul3m3 , (47)

which is the bispectrum of the masking function U(n̂)
directly (this should not be confused with the bispectrum
of masked data), and the bispectrum correlator

7 We ignore small differences between C̄l and Cl here as they do not affect the conclusions.
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FIG. 8. Plot of the reduced bispectra of the mask (left) and the local shape (right) based on a modal reconstruction and
weighted with the large-angle solution for the constant shape (see main text). Note that the modal reconstruction is only able
to capture a small component of the full, highly oscillatory mask bispectrum. The reconstruction is based on relatively slowly
varying basis functions that describe physical reduced bispectra and thus ideally suited for visualising the components of the
mask bispectrum that are relevant for constraining cosmology. Each bispectra has been normalised relative to its variance and
the colour scale is linear, with warm tones positive and cool tones negative.

CorrB[X,Y ] =
1

(Nfs(X)Nfs(Y ))
1
2

∑
limi

X l1l2l3
m1m2m3

Y l1l2l3
m1m2m3

Cl1Cl2Cl2

(48)

=
1

(Nfs(X)Nfs(Y ))
1
2

∑
li

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

 l1 l2 l3

0 0 0


2

xl1l2l3yl1l2l3
Cl1Cl2Cl2

, (49)

where the expression involving the reduced bispectra
xl1l2l3 and yl1l2l3 holds if at least one of the bispectra
is statistically isotropic. As discussed in Ref. [27] one
can think of the normalised covariance matrix in terms
of oblique projections giving rise to a simple geometrical
picture that can be used to estimate the order of magni-
tude of λ for an unapodised mask. We provide the details
of the calculation in App. A. For the setup studied here,
the result is λ3 ≈ 4 × 1013. Hence, we can estimate the
contribution from this eigenvalue to the variance as

Var[f̂NL]

Var[f̂optNL ]
∼ 5× 1013 CorrB[B,U ]2 . (50)

The ulm obviously do not all have the same sign but
rather oscillate rapidly, so we also expect the mask bis-
pectrum U l1l2l3

m1m2m3
and the associated reduced bispec-

trum8

8 Note that the definition of ul1l2l3 only applies for even l1 +
l2 + l3 (otherwise we would be dividing by zero). As we are
typically interested in correlators involving cosmological isotropic

bispectra only this case matters and there is no need to define
ul1l2l3 for odd l1 + l2 + l3.
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ul1l2l3 =

√
4π

(2l1 + 1)(2l2 + 1)(2l3 + 1)

 l1 l2 l3

0 0 0


−1∑

mi

 l1 l2 l3

m1 m2 m3

U l1l2l3
m1m2m3

(51)

TABLE I. Values for the correlation CorrB[B,U ] of the mask
bispectrum U l1l2l3

m1m2m3
with various standard shapes.

Shape CorrB[B,U ] 5× 1013 CorrB[B,U ]2

local 2.4× 10−6 O(102)

equilateral −4.8× 10−7 O(101)

flat 3.8× 10−7 O(101)

constant −4.8× 10−8 O(10−1)

to oscillate rapidly. The oscillatory behaviour of the re-
duced bispectrum can be seen particularly well under the
assumption of a simple symmetric galactic cut. In this
case only the ul0 with even l are nonzero, the Wigner 3j
symbols cancel and thus ul1l2l3 ∝ ul10ul20ul30. Thus, the
reduced bispectrum inherits the highly oscillatory char-
acter of the mask multipole coefficients. This means that
we generally only expect small correlations with shapes
of cosmological interest that typically have a relatively
slowly varying reduced bispectrum. Using ulm ∼ l−1 to
roughly describe the scaling of the mask multipole coef-
ficients, the overall scaling of the reduced mask bispec-
trum is ul1l2l3 ∼ (l1l2l3)−3/2, which suggest a squeezed
character. Hence, we expect the mask bispectrum to be
highly oscillatory with a scaling that resembles that of
local-type non-Gaussianity.

Fig. 8 plots the reduced bispectra of the mask and the
local shape obtained using a modal reconstruction [37].
The reduced bispectra are weighted with the large-angle
solution for the reduced bispectrum of the constant shape
presented in Ref. [38].

bconstl1l2l3 ∝

(∏
i

1

2li + 1

)(
1

l1 + l2 + l3 + 3
+

1

l1 + l2 + l3

)
.

(52)
The modal reconstruction only uses a limited set of slowly
varying modes relevant to cosmology to approximate the
reduced bispectra and thus is blind to highly oscilla-
tory behaviour. However, the plot clearly shows how
the modal reconstruction of ul1l2l3 indeed has a squeezed
character and looks similar to the local shape suggest-
ing a relatively large correlation CorrB[Bloc, U ]. Precise
values for the correlation CorrB[B,U ] of the mask bispec-
trum with various standard shapes are listed in Table I.
As expected, all correlations are very small due to the
oscillatory nature of the mask bispectrum but the cor-
relation with the local shape is by far the largest. It is

five times larger than the correlation with the equilat-
eral and flat shape and almost two orders of magnitude
larger than the correlation with the constant shape. Ta-
ble I also presents estimates for the contribution to the
variance. We expect a very significant contamination of
local measurements increasing the variance by orders of
magnitude and so we will focus on the local shape to nu-
merically investigate the effect of leakage on bispectrum
estimates.

Having discussed the relevance of mode coupling for
bispectrum measurements, we will briefly discuss vari-
ous approaches to reducing leakage. As in the case of the
power spectrum we can obviously apodise the mask. This
will significantly reduce long-range leakage and should
lower the variance. However, it inevitably results in a
loss of sky fraction and, unless we go to extreme apodis-
ation scales, there will still be some leakage contributing
to C̄l, both of which can degrade the errors. We will
investigate the performance of apodised bispectrum esti-
mates in Sec. III F.

D. Reducing leakage by explicit subtraction

Another approach to reducing leakage that we imple-
ment is a cleaning scheme that systematically subtracts
leakage from low-l multipoles at the ãlm level. Specif-
ically, starting with a given set of ãlm we can subtract
out all low-l contributions to high-l ãlm by finding the
minimum norm solution mlm to the equation

Pl1m1l2m2
ml2m2

= ãl1m1
(53)

working up to a given cleaning scale lcl, i.e. P is a (lcl +
1)2 × (lcl + 1)2 matrix in this equation. The cleaned ãclm
are then chosen to be

ãclm =

{
ãlm for l ≤ lcl + 20

ãlm − Plml1m1
ml1m1

for l > lcl + 20
, (54)

where the transition from unchanged ãlm to low-l sub-
tracted ãlm at lcl+20 is chosen so that we avoid those low-
l subtracted multipoles just beyond lcl that have a sig-
nificant fraction of their power subtracted due to strong
coupling to ãlm with l ≤ lcl. This approach has the
advantage that it eliminates low-high coupling originat-
ing from the low-l multipoles without losing sky cover-
age. The cleaning is evidently limited to low multipoles
and leakage originating from higher multipoles is not re-
duced. In particular at high l, the resulting C̄l will not
change significantly as only a fraction of the leakage con-
tribution to C̄l arises from the low-l multipoles. How-
ever, the fact that it completely eliminates all leakage
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from low-l multipoles makes it an interesting approach
to study as it highlights the problems that solely arise
from this type of leakage. Note that it can be thought of
as an extreme downweighting of the modes correspond-
ing to masked low-l spherical harmonics that completely
eliminates them. This is an approximation to what we
would expect inverse-covariance weighting of the ãlm to
achieve, given that these are the modes that correspond
to the large eigenvalues of the normalised covariance as
discussed above. Cleaning and apodisation can also be
combined, i.e. cleaning can be carried out on apodised
ãlm to quantify the impact of residual low-l contamina-
tion in the apodised cases.

E. Bispectrum estimates from inpainted maps

An alternative to apodisation and explicit cleaning is
inpainting. First of all note that inpainting does not in-
troduce a bias of the estimator in the form of a spurious
bispectrum because it is linear in the alm as discussed in
Sec. II D. Hence, Gaussian alm will give rise to Gaussian
ãIlm and deviations from Gaussianity can still be esti-
mates with the optimal bispectrum estimator Eq. (32).
However, there is one caveat. The full-sky bispectrum
Bl1l2l3

m1m2m3
appeared in Eq. (32) rather than the cut-sky

bispectrum B̃l1l2l3
m1m2m3

. This was correct because full-sky
and cut-sky bispectrum were simply related by projection
operators P that leave C+ unchanged so that there is no
need to work with the cut-sky bispectrum. This is not
true for the inpainted bispectrum (B̃I)l1l2l3m1m2m3

and we
need to take this into account when constructing an ap-
proximation to the optimal estimator based on inpainted

maps f̂ I.
Apart from this detail, the approximation to the opti-

mal estimator is formally identical and reads

f̂ INL =
1

Ñ

(B̃I)l1l2l3m1m2m3

(
ãIl1m1

ãIl2m2
ãIl3m3

− 3〈ãIl1m1
ãIl2m2

〉ãIl3m3

)
C̄l1C̄l2C̄l3

. (55)

Now, recalling the discussion above about the amplification of alm by inpainting at low l described by the factor
ΠI

ll/Πll, a natural replacement is

(B̃I)l1l2l3m1m2m3

(C̄l1C̄l2C̄l3)
1
2

→
Bl1l2l3

m1m2m3

(C̄l1C̄l2C̄l3)
1
2

(ΠI
l1l1

ΠI
l2l2

ΠI
l3l3

)
1
2

(Πl1l1Πl2l2Πl3l3)
1
2

=
Bl1l2l3

m1m2m3

(C̄I
l1
C̄I

l2
C̄I

l3
)

1
2

(56)

The approximation then reads

f̂ INL =
1

Ñ

∑
limi

Bl1l2l3
m1m2m3

(C̄I
l1
C̄I

l2
C̄I

l3
)

1
2

(
ãIl1m1

ãIl2m2
ãIl3m3

− 3CI
l1m1l2m2

ãIl3m3

)
(C̄l1C̄l2C̄l3)

1
2

. (57)

We saw in the previous sections that inpainting is ex-
tremely efficient at reducing low-high leakage without
suffering from a loss of sky coverage. So we expect it
to completely eliminate any effect of low-l leakage into
high l modes just as in the case of the cleaning scheme
described above. However, it has the further advantage
that it eliminates the leakage effects originating at higher
l as well. This results in a C̄I

l for inpainting that is close
to Cl. Recalling the discussion of contributions to the
estimator variance in Sec. III C one can hope that these
effects taken together enable inpainting to prevent any
leakage induced suboptimalities.

F. Numerical results for the local shape

To check our analytic expectations from the previous
sections numerically and compare different approaches to
reducing leakage, we obtain estimator variances for the
local shape from MC simulations. In principle, we should
be evaluating Eq. (35) for the apodisation and cleaning
cases and Eq. (57) for the inpainting case. To evaluate
Eq. (57) knowledge of C̄I

l is required, which in turn neces-
sitates the calculation of ΠI. Rather than calculating ΠI

at HEALPix resolution Nside = 2048 up to lmax = 2000,
we simply approximate C̄I

l ≈ Cl (a rather good approx-
imation according to Fig. 7). To place all methods on
the same footing, we make the same replacement in the
apodisation and cleaning cases as well, i.e. we evaluate
the estimator



16

f̂ INL =
1

Ñ

Bl1l2l3
m1m2m3

(Cl1Cl2Cl3)
1
2

(ãl1m1 ãl2m2 ãl3m3 − 3Cl1m1l2m2 ãl3m3)

(C̄l1C̄l2C̄l3)
1
2

(58)

for all methods, where ãlm and C̄l = 〈C̃l〉/f (2)sky are either
the pseudomultipoles and pseudospectra obtained from
apodisation (and cleaning9) or those obtained from in-
painting10. We checked explicitly for some of the apodi-
sation cases, where C̄l can generally be calculated easily,
that the subtle difference in weighting has negligible ef-
fect on the resulting variance. Potential differences are
very small and within the error bars on the variances so
that this does not affect any of the conclusions.

Table II lists the standard deviations ∆fNL =

Var[f̂NL]
1
2 of local estimates obtained for the various

cases from either 200 or 800 Gaussian simulations. The
larger number of 800 simulations was used to obtain more
accurate error bars in certain cases marked with an as-
terisk in Table II. In the apodisation and cleaning cases,
we employ the unapodised, S015 and S05 mask and pro-
vide results for no cleaning and cleaning up to lcl = 30
and lcl = 70. The normalisation factors Ñ in Eq. (58)
were calculated exactly (up to MC errors) from 420 non-
Gaussian local simulations (fNL = 20) to avoid poten-
tial inaccuracies of the fsky-approximation to the nor-
malisation factors affecting the results. For most of the
cases, the residual MC errors on the normalisation fac-
tors are well below the uncertainty in the variances using
200 maps (but are included in the quoted uncertainties
nonetheless).

First of all, we observe highly suboptimal error bars
for the unapodised estimates without any cleaning. The
fsky-approximation for the optimal error bar based on
N = fuskyNfs predicts a standard deviation ∆f ≈ 5.84.
Thus, the unapodised and uncleaned case with ∆f ≈
31.5 produces a variance roughly 30 times larger than
the optimal limit. The analytic considerations in the last
section produced a rough estimate O(102) for this ratio.
Given the approximate nature of the estimate, the agree-
ment is reasonably good. Subtracting the low-l power
leads to enormous improvements reducing the variance
by more than a factor of 10. Here, most improvements
come from the lowest l with little further gains made by
increasing lcl from 30 to 70. This behaviour confirms the
picture discussed in the last sections that the contribu-
tions due to correlated errors are mainly driven by the

9 Cleaning has a subtle impact on the pseudospectra as well. This
is because due to the coupling of the higher-l multipoles to the
low-l alm, some of the power is subtracted out. We take it into
account here, despite the fact that this only leads to very small
changes in the weightings and is unlikely to have any significant
effect on estimator variances.

10 Because we did not calculate ΠI, we obtained the inpainting
pseudospectrum 〈C̃I

l 〉 from 104 MC samples, which offers more
than enough accuracy for the purposes of determining a weight-
ing factor.

low-l multipoles. However, cleaning alone is not enough
and we do not arrive at near-optimal estimates even with
lcl = 70, where we find ∆fNL ≈ 9.5. We can attribute
this to the significant leakage contributions to C̄l in the
unapodised case that also originate at higher l and are
thus still partially present in the cleaned scenarios.

Focusing next on the apodised cases without any clean-
ing, we see that an apodisation scale of 0.15◦ still leads to
substantial suboptimality. In contrast the S05 mask pro-
duces error bars that are already only 20% above optimal
without cleaning. The suppression of long-range leakage
due to apodisation both reduces leakage contributions to
C̄l and also ameliorates the impact of correlated errors
from low-l multipoles. The arguments that gave rise to
an estimate of the large eigenvalues of the normalised co-
variance only directly apply to the case of unapodised
masks. However, we argue in App. A that the method
should also provide a rough idea of the magnitude of λ in
the apodised cases giving for example λ3S015 = O(1012)
and λ3S05 = O(1010). Using the estimate that relates λ
to the degradation of the variance, Eq. (46), this trans-
lates to relative contributions to the variance of O(10)
and O(0.1), respectively. This is in reasonable agree-
ment with the actual results showing a more than fivefold
increased variance in the S015 case compared to the op-
timal limit and a roughly 50 percent increased variance
in the S05 case.

Subtraction of the low-l power in conjunction with
apodisation leads to further improvements. After sub-
traction of the low-l power the error bars are as low as
∆fNL ≈ 6.0 in the case of the S03 mask. This is slightly
larger than the fsky-approximation to the optimal limit
5.84 which is just within the one sigma uncertainty of the
measured error bar. More simulations would be needed
to produce clear evidence that the S03 mask in conjunc-
tion with low-l cleaning is still suboptimal.

Note that the low-l cleaned error bars have a minimum
at an apodisation scale of 0.3◦ and begin to grow again
for more aggressive apodisation. To obtain further in-
sight the apodisation and cleaning results of this section
are visualised in Fig. 9. The figure plots the efficiency,

E[f̂NL], of the local estimators for the different apodi-
sation scales in the lcl = 70 and uncleaned case. The
efficiency of the estimator is defined as the ratio of the
optimal variance and the estimator variance and given
by

E[f̂NL] =
1/F

Var[f̂NL]
=

3!

fuskyNfsVar[f̂NL]
, (59)

where we made use of the fsky-approximation to the
normalisation factor to calculate the Fisher information.
The figure also includes a prediction based on the as-
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TABLE II. Error bars for the local estimator, ∆fNL = Var[f̂NL]
1
2 , for various combinations of apodisation and cleaning as well

as inpainting. Results are obtained from either 200 or 800 realisations. The latter case is indicated with an asterisk. The
error bars are obtained using exact normalisation factors as obtained from MC sampling using simulated non-Gaussian maps.
Uncertainties in the error bars include those arising from MC errors on the normalisation factors. The fsky-approximation to

the optimal limit is ∆fNL = (3!/(fu
skyNfs))

1
2 ≈ 5.84.

Unapodised S015 S03 S05

Uncleaned 31.53 (±2.89) 13.37 (±0.80) 7.40 (±0.23)∗ 7.16 (±0.22)∗

Cleaned lcl = 30 10.07 (±0.56) 6.41 (±0.34) 6.00 (±0.17)∗ 6.27 (±0.33)

Cleaned lcl = 70 9.51 (±0.52) 6.39 (±0.19)∗ 6.00 (±0.17)∗ 6.54 (±0.19)∗

Inpainting 5.88 (±0.17)∗

FIG. 9. The efficiency of the local estimator for the different apodisation scales in the lcl = 70 (orange) and uncleaned (blue)
case. Also shown is the prediction based on the assumption of constant spectra (green dotted line) and the optimal limit
(dashed black line).

sumption of constant spectra. In this case we have

Var[f̂NL] =
3!f

(6)
sky

(f
(3)
sky)2Nfs

⇒ E[f̂NL] =
(f

(3)
sky)2

f
(6)
skyf

u
sky

. (60)

For constant spectra, leakage is irrelevant and the de-
crease in efficiency is purely due to the loss of sky frac-
tion resulting from the smoothing of the mask. In this
sense this curve provides us with an expectation of how
much the loss of sky fraction alone degrades the errors.
Plotting the results in this way highlights how for small
apodisation scales the leakage leads to estimator efficien-
cies far below what one would expect simply based on
the loss of sky fraction. However, for sufficient apodi-
sation the observed efficiencies start to agree with the
constant spectra (i.e. no leakage) prediction. Cleaning

the low-l power mitigates the leakage induced subopti-
malities by eliminating the variance contributions from
the large eigenvalues of the normalised covariance and
already leads to good agreement with the constant spec-
tra approximation at an apodisation scale of 0.3◦. Fur-
ther apodisation beyond this point leads to a decrease in
efficiency following the constant spectra approximation.
This explains the minimum in the low-l cleaned error
bars already mentioned in the discussion of Table II.

The results suggest that with low-l cleaning a balance
between reducing leakage and minimising the loss of sky
fraction is struck at smaller apodisation scales than with-
out low-l cleaning and the maximum achievable efficiency
is increased to ∼ 90% compared to . 70% without low-l
cleaning.

Having discussed the apodisation and cleaning cases
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let us move on to inpainting. Inpainting produces an
error bar ∆fNL ≈ 5.9. This agrees very well with the
fsky-approximation of the optimal limit at the accuracy
with which we measured estimator variances. Hence, as-
suming that the fsky-approximation is accurate, we con-
clude that inpainting is indeed optimal or at least very
nearly optimal. From the point of view taken here this
is because it heavily suppresses low-high leakage, thus
eliminating any contributions due to the large eigenval-
ues of C as well as additional leakage contributions to C̄I

l
arising at higher l, and it does not suffer from a loss of
sky fraction.

IV. SUMMARY AND DISCUSSION

In this paper we discussed inpainting as an approach to
constructing accurate CMB estimators and compared its
performance to other methods. We first studied the case
of the power spectrum and showed that it is possible to
utilise the linearity of inpainting to construct analytically
debiased power spectrum estimates from inpainted maps.
The estimator significantly outperforms PCL estimates
obtained from unapodised or apodised masks. We pro-
vided an explanation of this fact based on the observation
that, in contrast to PCL, inpainting couples multipoles
asymmetrically. While high-low coupling is exacerbated,
inpainting is extremely effective at suppressing low-high
coupling. This makes inpainting very suitable for the
analysis of CMB temperature fluctuations that exhibit
strongly decaying spectra so that low-high coupling is
important while high-low coupling is largely irrelevant.
Unlike apodisation of the mask, inpainting does not re-
duce the effective sky fraction so that this suppression of
leakage does not come at the price of reduced sky cover-
age that leads to a degradation of errors. Comparing the
variance of PCL estimates to estimates from inpainting,
we observed improvements in variance exceeding 20% de-
pending on the apodisation scale used for the PCL esti-
mates.

We also proposed improved approximations to PCL co-
variance matrices that allow for a generalisation to the
covariance matrices of inpainted power spectrum esti-
mates. The resulting approximations are in both cases
highly accurate on the diagonal. Assuming that the off-
diagonal agreement is sufficient, inpainting offers a viable
and more accurate alternative to apodised PCL estima-
tion as a framework for CMB power spectrum analysis
and the construction of a likelihood.

We proceeded to study the case of approximations to
the optimal cut-sky bispectrum estimator. We derived an
analytic estimate for the contamination of bispectrum es-
timates for a given shape due to masking the data. The
estimate relates the expected contribution to the variance
to the bispectrum correlator between a given shape and a
mask bispectrum. It provides an explanation of the em-
pirical fact that the local shape is affected most, having
by far the largest correlation with the mask bispectrum

amongst the shapes of cosmological interest.
Focusing on the local shape we went on to study es-

timator variances numerically. We compared three tech-
niques of ameliorating mode coupling: inpainting, apodi-
sation and direct subtraction of power from coupling to
low-l modes. The results gave a variance for the un-
apodised and uncleaned case 30 times higher than the
optimal limit, confirming the expectation from the ana-
lytic estimate. Cleaning out the low-l contributions led
to the expected significant improvements, but fell short
of completely restoring optimality due to leakage con-
tributions arising at higher l. Apodising the mask also
had a very beneficial effect. Sufficient apodisation sup-
presses the long-range leakage substantially and gave rise
to estimators that are relatively near, but still noticeably
above, the optimal limit without any low-l cleaning.

Combining apodisation with cleaning of the low-l
modes further reduced the variances producing estimates
that came very close in performance to the optimal limit.
Our results for inpainted bispectrum estimates suggested
that these still tend to slightly outperform any of the
other methods. The measured variance agreed well with
the fsky-approximation to the optimal limit. As in the
case of the power spectrum, we attribute the efficacy of
inpainting to the strong suppression of low-high leakage
that does not come at the price of a loss of sky fraction.
Even though we showed that it is possible to construct al-
ternative numerically simple estimators with comparably
small error bars in the case of the bispectrum, inpainting
is probably still the preferable method due to its concep-
tual simplicity and straightforward implementation.

We conclude that there is no need to think of inpaint-
ing merely as a crude ad-hoc solution to curing subopti-
malities of cut-sky bispectrum estimators. It is a highly
effective approach to reducing leakage contributions to
the variance of cut-sky estimators in general when the
underlying spectra decay rapidly. Inpainting is a vital
tool in bispectrum analysis already and could prove very
useful for power spectrum analysis and elsewhere.

We did not explore inpainting in the context of the
analysis of CMB polarisation data and leave this to future
work. The polarisation spectra do not decay rapidly like
the temperature spectra and different conclusions con-
cerning the performance of inpainting might be reached.
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Appendix A: Magnitude of large eigenvalues of C

In this appendix we will derive an estimate for the
order of magnitude of the large eigenvalues of the nor-
malised covariance C following Ref. [27]. For the purpose
of this analysis we slightly alter the definition of the nor-
malised covariance in Eq. (41) to be

Cl1m1l2m2
=
Pl1m1l3m3C̄l3Pl3m3l2m2

(C̄l1C̄l2)
1
2

, (A1)

i.e. we simply replace Cl with C̄l in the numerator. This
expression should produce similar large eigenvalues and
is identical to the one studied in Ref. [27] giving rise
to a simple geometric interpretation with C̄l instead of
Cl. We further assume an unapodised mask and include
the monopole and dipole in the analysis. To do so, we
simply assign values to C̄0 and C̄1, say C̄0 = C̄1 = C̄2.
The normalised covariance can then be written exactly
in terms of oblique projection operators

C = PCP
†
C (A2)

with

(PC)l1m1l2m2
:=

1

C̄
1
2

l1

Pl1m1l2m2
C̄

1
2

l2
, (A3)

where a superscript † denotes the conjugate transpose.
For the images and kernels of these projection operators
we have

Im(PC) ⊥ Ker(P †C) , (A4)

Im(P †C) ⊥ Ker(PC) . (A5)

Figure 10 depicts the emerging geometric picture. The
normalised covariance can develop a very large eigenvec-
tor λ when Im(PC) and Ker(PC) become aligned. Call-
ing the angle between the two θ it is straightforward to
show that

λ =
1

sin2 θ
. (A6)

We claimed in Sec. III B that a large eigenvector associ-
ated with the alignment of image and kernel of PC for a
strongly decaying power spectrum is approximately given
by

(v0)lm =
1

nv

ulm

C̄
1
2

l

. (A7)
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FIG. 10. Images and kernels of the projection operators PC .
The successive oblique projections lead to a large eigenvalue
λ.

This vector is obviously an element of Im(PC) as any
eigenvector of C must be according to Eq. (A2). A corre-
sponding element from Ker(PC) that is very aligned with
it is easily found. It is simply given by

(k0)lm =
1

nk

ulm − δl0δm0

C̄
1
2

l

, (A8)

where nk is a suitably chosen normalisation. The an-
gle between v0 and k0 serves as an upper bound on the
minimum angle between Im(PC) and Ker(PC). Taking

θ = arccos (Re{v∗0 · k0}) , (A9)

we obtain an estimate for the large eigenvalue λ

λ3 ∼ 1

sin6 θ
=

(
1

1− Re{v∗0 · k0}2

)3

≈ 4× 1013 . (A10)

When the mask is apodised an interpretation in terms
of oblique projections is not exact anymore. However, if
we assume that the large eigenvalues can be estimated in
the same way by studying the alignment of the vectors v0

and k0, we can still deduce rough estimates. The results
are then obtained by simply replacing the unapodised
ulm with the apodised versions. We arrive at estimates
λ3S015 = O(1012) and λ3S05 = O(1010).

Appendix B: Apodisation method

The apodisation scheme we use in this thesis was de-
signed with several requirements in mind. While the
transition of the mask function U(n̂) from zero in masked
regions to unity should be made as smooth as possible
to minimise harmonic ringing, we simultaneously want
to ensure that regions where the unapodised mask van-
ishes are also exactly zero in the apodised case so that all
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masks truly mask the same regions. Furthermore, we aim
to minimise the loss of sky fraction as PCL estimators
generally lose accuracy with decreasing sky fraction. In
the Planck analysis [13], the mask is first smoothed with
a Gaussian beam, then 0.15 is subtracted everywhere.
All negative values are subsequently set to zero and the
resulting mask is scaled by 1/(1− 0.15) to ensure that it
rises to unity in unmasked regions. While this method
produces smoothed masks, it is impossible to ensure that
the apodised mask vanishes exactly over the same region
of the sky as the unapodised mask. As we want to com-
pare different estimators that use the exact same set of
data this procedure is not appropriate.

The procedure employed here is based on the following
observation. If we convolve a semi-infinite step in the x–y
plane, i.e. the function f(x, y) = Θ(x), with a Gaussian
beam

G(x, y) =
1

2πσ2
exp

(
− r2

2σ2

)
, (B1)

where σ = FWHM/(2
√

2 log 2), the resulting smoothed
f smo(x, y) is given by

f smo(x, y) ≡ S
( x

FWHM

)
:=

1

2
erfc

[
−2
√

log 2
( x

FWHM

)]
.

(B2)

Performing the remaining steps of the Planck apodisation
procedure, we obtain the final apodised mask, fapo(x, y),
as

fapo(x, y) =

{
S( x

FWHM )−0.15
1−0.15 for x

FWHM > c

0, otherwise
. (B3)

Here, c ≈ −0.44013 is the solution to the equation
erfc

[
−2
√

log 2 c
]
/2 = 0.15. This suggest the following

procedure. Rather than actually convolving the binary
mask with a Gaussian beam, we determine the distance
rp of a given pixel p̂ to the closest masked pixel and then
assign it the value

U(p̂) =
S
( rp
FWHM − c

)
− 0.15

1− 0.15
. (B4)

This procedure gives the same profile as the Planck
method if the boundary of the mask is sufficiently
straight, while ensuring that no originally masked pixel
acquires non-zero weight. Furthermore, we can easily
produce masks with different degrees of smoothing.
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