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Abstract. Semiconducting III-V materials exhibiting piezoelectric properties are

much sought after due to their potential applications in piezotronic and piezo-

phototronic devices. Nanowires of III-V semiconductors are particularly interesting in

this respect due to the occurrence of the wurtzite (WZ) structure commonly associated

with enhanced piezoelectric properties in these materials, as opposed to the zinc blende

(ZB) structure that is typically observed in the bulk. However, direct measurements of

the piezoelectric properties of III-V nanowires using piezo-response force microscopy

(PFM) is challenging, and the analysis and interpretation of such measurements is

far from trivial. Here we present detailed finite element simulations of single GaAs

nanowires, with both WZ and ZB crystalline structure, scanned by an atomic force

microscope tip in PFM mode, demonstrating the effect of the non-uniform electric field

between the tip and nanowire, scan direction as well as nanowire orientation on the

resulting PFM signal. We also report PFM data from single GaAs and InP nanowires

with both ZB and WZ structure, grown by molecular beam epitaxy, based on a novel
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non-destructive intermittent contact PFM mode. We explain our experimental data in

the framework of our simulations, and for the first time, extract an experimental value

for the axial piezoelectric coefficient of WZ InP, d33 = 0.7−1 pm/V. The methods and

analysis described here are particularly relevant for the investigation of piezoelectric

properties in a wide range of semiconducting III-V nanowire systems.

PACS numbers: 00.00, 20.00, 42.10

Keywords: III-V nanowires, piezoelectricity, Wurtzite, PFM, QNM Submitted to:
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1. Introduction

The interest in semiconductor piezoelectricity at the nanoscale has grown tremendously

during the past decade, with interest focused primarily on ZnO, [1,2] through pioneering

work from Z.L. Wang’s group, and III-N (mostly GaN) materials [3]. In both cases, the

wurtzite (WZ) crystal structure induces spontaneous polarization in the c-axis, and

enhanced piezoelectric coefficients [4,5]. During this period, demonstrated applications

varied from sensing [2, 6] to energy harvesting [1, 7] and piezo-phototronics [8, 9].

Simultaneously, the growth and properties of III-V (mostly non-nitride) nanowires

(NWs) were extensively studied, mainly for electronic [10,11] and opto-electronic [12,13]

applications.

Interestingly, III-V NWs may form in the WZ structure [14–16], rather than the

zinc-blende (ZB) crystal structure which is prevalent in bulk form [17]. Although

presently well-known and controlled [15, 18, 19] to a substantial extent, this discovery

was unexpected in the early days of III-V NW research [20]. Moreover, even though

the WZ crystal structure is expected to induce enhanced piezoelectric properties to the

III-V NWs [21] (discussed below in detail), this property has been virtually overlooked

experimentally, compared to the research efforts invested in studying the electronic and

optical properties of III-V NWs. We are currently aware of only two reports regarding

the piezoelectric activity of WZ GaAs NW ensembles, yielding a possible range for the

value of the d33 coefficient [22,23]. In a different study, piezoelectricity in a WZ InAs NW

is related to changes in a two terminal device conductance [24], through the piezotronic

effect [8]. Developing a fundamental understanding of the piezoelectric properties of

these NWs is crucial for piezo-phototronic applications in the visible range, sensing, as

well as energy harvesting. The possible benefits are significant considering the wide

knowledge base available for these materials, and the possible integration with silicon

based technology [10,25].

Herein, we explore the piezoelectricity of single III-V NWs, with ZB and WZ

structures. We consider the piezoelectric characteristics expected for [111] oriented

NWs, showing finite element (FE) simulations of piezo-response force microscopy

(PFM) on such NWs, and present PFM measurements on horizontal and vertical

NWs, in light of simulation results. PFM is the leading method for carrying-out

direct piezoelectric characterization [26–28]; nonetheless, due to it being a contact-

mode atomic force microscopy (AFM) method, its application to samples other than

thin-films is particularly challenging. We therefore apply a novel non-destructive PFM

measurement method suitable for studying NWs, which we briefly discuss here, and

details of which will be published elsewhere. It should be noted that while PFM

measurements have previously been conducted on III-N NWs [29], such measurements

have not been attempted before in III-V NW, to the best of our knowledge. Our work

therefore, presents the first direct PFM studies on III-V NWs, which is validated through

computational modelling.
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2. Scientific Background

2.1. Piezoelectricity in III-V NWs

The piezoelectric properties of bulk III-V have been known for decades, and have been

successfully used to realize electromechanical applications [30,31]. In the ZB structure,

when the principal axes of the piezoelectric matrix are aligned with the cubic axes, III-V

materials exhibit only shear piezoelectricity, d14 6= 0. The piezoelectric matrix takes the

form of:

dZB,[001] =

0 0 0 d14 0 0

0 0 0 0 d14 0

0 0 0 0 0 d14

 (1)

where for GaAs, dZB,14,GaAs = 2.6 pm/V, and for InP dZB,14,GaAs = 1.8.

For III-V NWs, the picture is more complex: firstly, as mentioned earlier,

NWs grow both in ZB and WZ structure, having distinct piezoelectric coefficients;

secondly, the prevailing growth direction is [111]/[0001] (in ZB/WZ notations) [15].

For WZ NWs, this growth direction aligns with the polarized axis (3-axis of the

piezoelectric matrix), therefore no matrix adjustments are needed for considering WZ

NW piezoelectricity. However, in ZB structure, for practical reasons (there is negligible

spontaneous polarization in ZB structures [4] so the polarized axis is chosen arbitrarily)

the matrix should be rotated such that 3-axis corresponds to [111], with the following

rotation matrix [32]:

a =


1√
6

1√
6
−
√

2

3

− 1√
2

1√
2

0

1√
3

1√
3

1√
3

 . (2)

The piezoelectric matrices for WZ and ZB in [111]/[0001] NW coordinates become [32]:

dWZ,[0001] =

 0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0

 (3)

dZB,[111] =

d11 −d11 0 0 d15 0

0 0 0 d15 0 d26
d31 d31 d33 0 0 0

 (4)

with the 1-axis corresponding to [112̄]/[101̄0] and the 2-axis corresponds to [1̄10]/[1̄21̄0].

The numerical values are

dGaAs,ZB,[111] =

−1.06 1.06 0 0 −1.50 0

0 0 0 −1.50 0 2.12

−0.75 −0.75 1.50 0 0 0

 pm/V (5)



PFM studies on single III-V nanowires 5

There are no experimental coefficients for single WZ III-V NWs (Lysak et al. reported

on NW ensemble [23]), and so the values we use are theoretical [21,33,34]

dGaAs,WZ,[0001] =

 0 0 0 0 d15 0

0 0 0 d15 0 0

−1.15 −1.15 2.3 0 0 0

 pm/V (6)

A similar procedure for InP in the WZ form yields

dInP,WZ,[0001] =

 0 0 0 0 d15 0

0 0 0 d15 0 0

−2.46 −2.46 5.42 0 0 0

 pm/V (7)

Since Al-zahrani et al. do not report a theoretical value for the piezoelectric constant

e15 [21], we do not report a d15 value; nonetheless, for simulation purposes we have

used dGaAs,WZ,15 = −3.3 pm/V , following Lysak and co-workers [23]. It is noteworthy

that in the [111] orientation, ZB NWs are expected to have an axial (d33) response,

and that additional coefficients are expected to come into play, when compared to WZ

NWs (single GaN NWs were recently examined [29], in order to extract the three WZ

coefficients). Furthermore, when comparing similar coefficients, the WZ structure is

expected to yield a stronger piezoelectric response. In the following sections we examine

these effects in detail.

Figure 2b shows a schematic representation of ZB and WZ structures. Although

plotted ideally, the WZ structure induces non-idealities in the anion and cation location

resulting in spontaneous polarisation, exploited in in III-N based electronic devices [4].

Interestingly, for GaN NWs, a large value, d33,GaN,NW = 12 − 13 pm/V, has been

reported [29], (compared to bulk values d33,GaN = 3− 4) indicating that NW geometry

is preferable for piezoelectric applications. Due to their associated electronic and optical

properties relevant for piezotronic and piezo-phototronic applications respectively, III-V

NWs make a particularly interesting piezoelectric research subject.

3. Experimental

3.1. Nanowire growth and sample preparation

Self-catalyzed GaAs NWs were grown on epiready n-doped Si substrates with (111)

orientation by solid-source molecular beam epitaxy (MBE). Before introduction into the

ultra-high vacuum (UHV) system, the substrate was ultrasonically cleaned by immersion

into acetone (5 min) and then ethanol (5 min), in order to remove surface contamination.

The rinsed substrate was then out-gassed at 200◦C under UHV for a few minutes and

then transferred into the III-V dedicated MBE chamber. During growth, the sample

holder was continuously rotated to enhance the growth homogeneity. Vapour-liquid-

solid (VLS) mechanism is used for the growth of GaAs NW array, with Ga droplets
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serving as catalysts. The temperature of the Si substrate, whose native oxide was still

on the surface, was first increased to 530◦C and 1 nominal monolayer (ML) of Ga was

deposited on the substrate at an equivalent GaAs 2D growth rate of 0.50 ML/s. The Ga

atoms lead to the local decomposition of the native oxide on the Si surface [35] creating

pinholes and defective sites [36]. This effect enhances the accumulation of Ga atoms

to form Ga droplets for the following NW growth. Then substrate temperature was

increased to 610◦C for the axial growth of NWs, initiated by the Ga and As flux. The

GaAs growth rate was set at about 0.75 ML/s, with a beam equivalent pressure (BEP) of

3.6 ·10−7 Torr and 3.6 ·10−6 Torr for Ga the As4 respectively. After 20 min of deposition,

the Ga flux was cut off and the sample was cooled down to room temperature (RT). As

GaAs inclines to decompose at high temperature, an As4 atmosphere was maintained

during the cooling procedure.

Figure 1a shows an as-prepared GaAs NW array on Si substrate with a density

d)

e)

Figure 1: Nanowire characterization: a) SEM image of GaAs NW array on n-Si(111); b)

TEM image of one typical GaAs NW; c) HRTEM image of the tip of one typical GaAs

NW; d) X-ray diffraction reciprocal space map; e) Diffracted intensity plotted along the

out of plane scattering vector. The diffuse scattering of the Si substrate is visible close

to the WZ [11̄05] peak.

of 5.5 NW/µm2. A typical NW is about 2 µm with an average diameter about 80 nm

(Figure 1a,b). Most of the NWs are vertical, epitaxially grown on the Si substrate.

Figure 1c shows the high resolution TEM (HRTEM) image of the tip of a typical GaAs

NW (marked area in Figure 1b), clearly revealing the four different parts of the NW:

the first segment is a perfectly pure ZB region (starting from the substrate) followed

by the second segment, a transition region with high density of twin boundaries and

stacking faults; the third one is a defect-free wurtzite (WZ) phase and finally the NW

ends to an ultra-thin ZB part about 15 nm. There is a thin layer of amorphous oxide
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on the surface of the NW because of oxidation in air (Figure 1c). Figure 1d shows the

reciprocal space mapping performed on the epitaxial GaAs NWs. Measurements were

performed with a laboratory diffractometer equipped with a rotating anode, the X-ray

beam was monochromatized at λ=1.5406 Å. By modifying the incidence angle and the

detection angle at a fixed azimuthal angle, the reciprocal space was mapped without

moving the sample, allowing the observation of {422} ZB, {331} ZB and {11̄05} WZ

Bragg spots. As shown in Ref. 37 this mapping allows for a clear observation of the ZB

and WZ parts of epitaxial GaAs NWs. Despite the proximity of a Si substrate Bragg

spot close to the [11̄05] WZ reflection, the contribution of WZ crystal phase is clearly

evidenced.

The map of Figure 1d allows to extract the in-plane and out-of-plane lattice

parameters of both ZB and WZ phases. The measured lattice parameters are in

agreement with Ref. 37 showing the presence of a bulk-like ZB structure (fully relaxed)

while the WZ phase exhibits a modification of the out-of-plane lattice parameter (c

= 6.5696 Å) corresponding to a c/a ratio of 1.645, in good agreement with previous

literature [37–39]. Finally, from the intensity of WZ and ZB Bragg peaks, the relative

amount of WZ phase is about 10% of the crystalline material. This indicates a fraction

which is slightly larger than that observed in the TEM images of nominally identical

NWs, where the WZ segment is roughly 100 nm in 2 micron long NWs.

Similar crystal phase sequences (ZB, stacking faults, WZ and ZB) have been

reported by several groups [36, 40–43]. It is well established that GaAs crystal phase

is depending on the contact angle of the droplet catalyst with the solid phase which

can be tuned by the V/III ratio for instance [40]. In our experiment the growth was

achieved at rather low V/III ratio which induces the formation of ZB phase because the

triple line is located on the {11̄0} facets of the NWs (Figure 2a). However, the catalyst

can be consumed during the growth which induces a modification of the contact angle.

When the volume of the droplet is too small, the triple line is located on the top of the

growing facets which favor the formation of the WZ phase (Figure 2a). The defective

region made of ZB structure with stacking faults and twin boundaries is the consequence

of the transition between the two regimes. The last part of the NWs is made of a small

ZB area in agreement with the final consumption of the Ga droplet. The NWs were

transferred to a gold-coated silicon substrate for PFM measurements by mechanical

scraping of the substrates.

InP NWs were grown by metal organic molecular beam epitaxy (MOMBE),

utilizing the selective-area vapor liquid solid method (SAVLS), details of which have

been extensively discussed elsewhere [16, 44]. Briefly, an n-type InP (111)B substrate

was coated by plasma enhanced chemical vapour deposition (PECVD) silicon nitride,

and subsequently patterned by e-beam lithography to etch pinholes (of about 40 nm) in

the selective area mask, where gold (4.5 nm thick) was deposited. Upon heating inside

the growth chamber the gold became a liquid growth catalyst. The conditions used here

were shown to result in the growth of pure WZ NWs [16]. Nanowire morphology and

AFM images are shown later in Fig. 5. The NW height was found to be ∼ 1 µm, with
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Figure 2: a) Growth mechanism of the ZB/WZ GaAs NWs; b) model of a ZB/WZ

interface viewed down the [1̄10] orientation.

diameter of ∼ 60 nm. The sample was mounted on a conductive AFM setup as-grown,

i.e. with the NWs vertically aligned. The NWs reported here are 300 nm stems of NWs

left following damage to the 1 µm NWs.

3.2. Finite element analysis

COMSOL Multiphysics 5.2a was used to model the PFM response of an individual

GaAs NW, with the same morphology as described above, using Finite Element Analysis

(FEA). A GaAs NW with a hexagonal cross section was placed horizontally on a rigid

substrate which was set at a potential of 4 V. An electrically grounded PFM tip was

scanned either along the length of the NW, in contact with the uppermost surface, or

across the NW (Figure S1 in Supporting Information). The total deformation of the

nanowire was calculated for each tip position. From each of these solutions, the x, y

and z deformation components of the point on the nanowire directly beneath the tip

were extracted and used to build the simulated vertical and lateral PFM signals. Two

orthogonal lateral (in-plane) signals were calculated, axial: displacement of the wire

along its length, and transverse: in plane displacement of the nanowire perpendicular

to its length. In the results, these two lateral signals are plotted together, although

experimentally only one of these signals will be observed, dependent on the orientation

of the tip cantilever with respect to the nanowire.

For the simulated scans along the NW, 3 segments were considered. The first and

last segments consisted of ZB GaAs, oriented such that the [111] direction was parallel

to the z direction. The middle 50 nm segment consisted of WZ GaAs, with [0001]

parallel to the z axis. The crystallographic orientation of ZB GaAs was achieved by

assigning the material a local coordinate system, rotated from the global xyz axes using

the matrix

a−1 =



1√
6

−1√
2

1√
3

1√
6

1√
2

1√
3

−
√

2

3
0

1√
3

 . (8)
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This allowed for the piezoelectric and elastic properties to be entered as described in the

material’s principal axes. For scans across the NW, only ZB material was considered.

The boundaries between the segments ensured that the nanowire was mechanically

continuous. The facet in contact with the substrate was set as a fixed boundary. The

AFM tip apex was spherical with a radius of curvature of 50 nm. The model calculated

the steady-state response of the nanowire.

3.3. PFM analysis

Due to the nature of the sample at hand, including short horizontal NWs, and

mechanical-exfoliation related debris (Fig. S2 in Supporting Information), or long

vertical NWs (Fig. 5) traditional PFM application was not successful. The non-

destructive PFM method adopted here for the study of NWs is described in length

elsewhere. Briefly, the measurement is based on an intermittent AFM mode known

as peak-forceTM (Bruker), where the mechanical properties of the sample, as well as

topography, are sensed by continuous acquisition of force-curves, and their on-line

analysis [45]. By applying an off-resonance electrical voltage to the tip, and analysing

the corresponding deflection only when the tip is in contact with the sample, the

PFM signals (both vertical and lateral) are extracted (Figures S2-S3 in Supporting

Information). Since this procedure relies upon a high speed data capture protocol (6.25

MHz sampling) to extract the tip deflection, only single line-scans are recorded at a time

(Figure 4a). We have used a Nanoscope VIII (Bruker) in a modified peak-force tapping

mode, with MESP-RC-V2 tips (5-7 N/m, ∼ 150kHz). The voltage amplitude applied

to the substrate (with the tip being grounded) was 4-8 V @ 125 kHz. Note that the

PFM frequency is much higher than the peak-force frequency used (250 Hz), such that

there are several periods of PFM activation complete in the time the sip is in contact

with the sample, which is about 0.5 msec.

4. Results and discussion

4.1. Finite elements measurements

Figure 3 schematically shows the simulated PFM configurations. In Fig. 3a,b

the simulated NW was constructed to resemble the experimentally grown NWs:

predominantly ZB, with a 50 nm WZ segment, and a ZB tip. The NW axis was aligned

with the [111]/[0001] orientation, therefore the piezoelectric matrices in Eq. 5 & 6 can

be used to interpret the results. Two configurations were examined - with the PFM

tip applying a field down the 1-axis ([112̄]/[101̄0]) or alternatively down the 2-axis

([1̄10]/[1̄21̄0]). In Fig. 3c the NW was treated as pure ZB and scanned perpendicular

to its length. The crystalline configuration considered was identical to that Fig. 3b.

The simulated “vertical” and two orthogonal “lateral” PFM signals are also shown

in Figure 3, corresponding to the schematic. It is evident that the ZB and WZ GaAs

regions yield different PFM responses. Furthermore, the orientation of the nanowire on
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the substrate had a significant effect on the PFM response observed. Lateral signals

were present in both orientations; in the [112̄] field orientation the lateral response was

manifested only in the axial signal, whereas for a field applied along [1̄10] a lateral

response could be observed in both axial and transverse directions. Changing the

nanowire orientation also led to a change in the vertical signal observed. Zinc blende

GaAs yields a strong vertical response in the [112̄] field orientation, a result of the non-

zero d11,GaAs,ZB,[111] coefficient in the rotated matrix in Eq. 5. Conversely, d22,GaAs,ZB,[111]

in the same rotated matrix is zero, hence for the orthogonal field orientation [1̄10], there

was no vertical response from the ZB region. In each case, the transition from the

ZB region to the WZ region resulted in different characteristics. Generally, in these

configurations, the vertical WZ signal is expected to be low, considering the lack of a

d11/d22 coefficient. Lateral signals are expected due to the d15/d24 shear modes.

To achieve the different field orientations in Figure 3a & b, the entire (simulated)

nanowire was rotated 90◦ about its axis, including the WZ region. From inspecting

the piezoelectric matrix in Eq. 6, it is apparent that such a rotation should have no

effect on the piezoelectric response of WZ GaAs with [0001] orientation. However, it is

evident from Figure 3 that the PFM response from the WZ region does indeed change

with nanowire orientation. This apparent discrepancy can be rationalised by considering

that the WZ region is mechanically connected to the ZB region and that the influence of

the electric field extends beyond the area immediately beneath the tip. Even as the tip

was scanned along the WZ region, deformation was still induced within the ZB region.

The deformation detected by the tip therefore had contributions from all elements both

‘upstream’ and ‘downstream’ of the tip position. Therefore, since the response from

ZB GaAs changed with field orientation, the response observed from the WZ region

also changed. As an example, consider the vertical signals from both field orientations.

For a field along [112̄], ZB GaAs produced a large response, large enough to make the

response from WZ GaAs undetectable. Only in the orthogonal field direction, where ZB

GaAs is not active in the vertical direction, can the vertical response from WZ GaAs be

observed. In both these cases, the vertical response from WZ GaAs was identical, yet

the effect of the neighbouring ZB GaAs results in two different observed signals.

When the NW was scanned in a direction perpendicular to its length (Fig. 3c),

features related to the geometry and tip position arose. For example, a stronger axial

lateral signal was found when the tip contacted the side facets compared to the top

facet. Conversely, the transverse lateral signal reached a maximum value on the top

facet - a value which was larger than any other orientation or tip position. The vertical

signal showed two peaks of opposite signs, and notably, the signal was not constant on

the top facet, as was the case for the transverse lateral signal. Our experimental system

is more likely to correspond to the two configurations on the right-hand side where field

is applied along the 2-axis, considering: i) the side-facets of the NWs are {1̄10}; ii) it

is more likely that a NW rests on its facet rather than its edge. This will be taken into

account when examining experimental results.



PFM studies on single III-V nanowires 11

a b c

ZB WZ[111]

[112]

ZB WZ[111]

[110]

[111]

[110]

0 100 200 300 400 500 600

0

0

0

0 100 200 300 400 500 600

0

0

0

-40 0 40

0

0

0

P
F

M
 D

ef
le

ct
io

n
s

Position (nm)

Vertical

Lateral - transverse

Lateral - axial Lateral - axial

Lateral - transverse

Vertical

Position (nm) Position (nm)

Vertical

Lateral - axial

    Lateral - transverse

Figure 3: Simulated vertical and lateral PFM responses from horizontal GaAs nanowires

in two different orientations scanned along their length, corresponding to a) a field along

the piezoelectric ‘1’ axis and b) ‘2’ axis as described by the matrices in equation 4; c)

a ZB NW scanned across its length, field applied at ‘2’ axis. All signals are plotted in

the same scale of arbitrary units. The tip in [a,b] was modeled as a cone and sphere of

35 nm radius, while in [c] it was modeled as a sphere of 30 nm radius. The notations

‘axial’ and ‘transverse’ relate to the NW, not the cantilever.

4.2. PFM measurements

Figure 4a shows the peak-force based topography image of a NW ready for the

intermittent PFM measurement. The dashed arrow indicates the PFM scan direction,

and the thick arrow indicates the cantilever orientation, which determines if lateral-axial

or lateral-transverse PFM signals are recorded. As mentioned above, it is reasonable to

assume that the NWs were lying on a facet, and that the 2-axis of the piezoelectric

coordinates is the vertical axis, and therefore the picture arising from Fig. 3c was

expected. Figure 4b shows the extracted vertical and lateral PFM signals in arbitrary

units, under an 8V PFM excitation; the NW topography (in arbitrary units) is shown

as well. Considering the configuration of the cantilever and the NW, the lateral signal

probed is the “lateral-axial” (top simulated curve) - dominated by d24. The vertical

signal measured in experiments was, unlike in the ideal simulation, intermixed with

the transverse lateral signal, resulting in buckling mode deformations of the cantilever,

added to the vertical deflection mode; the associated signal might actually be stronger

than the “true” vertical signal [46].

Figure 4c,d show the vertical and lateral signals in the area marked by the dashed

circle. Interestingly, features that can be related to the top and two side facets were

seen, with transition taking place in similar positions in both channels, with reasonable

fit to the simulation. Taking a closer look, the vertical channel could be thought of as a

combination of the simulated vertical and transverse lateral signals, as mentioned above.
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This is demonstrated by the dashed lines - resembling these features in the simulation.

The lateral signal also bore resemblance to the middle section of the simulated axial-

lateral signal. Following a calibration procedure (Figure S4 in Supporting Information)

the vertical measurement sensitivity was sim0.4 pm/a.u. (see Supporting Information),

leading to coefficients of the order of 0.5 pm/V. Note that in this measurement, a kelvin

probe force microscopy (KPFM) measurement was performed prior to the PFM, and the

measured contact potential was used applied in order to reduce electrostatic contribution

to the signal [47]. When considering other factors affecting the measurement, it is

possible that surface states and oxide layer on the GaAs surface were interfering with

better assessment of the coefficients. Furthermore, the complicated d -matrix of the

ZB structure makes it even difficult to extract a quantitative coefficient. Nonetheless,

the value reached is reasonably close to the theoretical coefficients of GaAs, in various

orientations.

Figure 5a,b show the topography of an InP NW array obtained by SEM and

a

c

b

d

Topography

Transverse
lateral

Vertical

Figure 4: Peak-force PFM measurements of a GaAs NW lying transverse to the

cantilever. a) NW topography, with scan direction and cantilever orientation (dashed

and solid arrows correspondingly); b) uncalibrated PFM results, showing the vertical

and lateral signals, alongside the scan topography. The dashed circle indicates the area

of interest; c) close-up to the vertical PFM signal; d) close-up to the lateral PFM signal.

tapping mode AFM (prior to peak-force mode onset), correspondingly. The inset shows
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the peak-force image of two NWs which broke under the AFM tip during attempts to

perform the PFM measurements. It is likely that these NWs, of about 1 µm in length,

were too long for stable peak-force operation. However, the remaining stem of about

300 nm was the subject of a PFM scan, shortly after its failure. Figure 5c shows the

vertical PFM signal extracted from the measurement, alongside the topography, under a

4V PFM excitation. Figure 5d shows a close-up to the signal containing both substrate

and NW. The selective area mask is expected to impede most of the PFM signal, and

is treated as zero (the offset attributed to background noise in PFM [48]), resulting

in a signal of about 7 a.u. from the NW, corresponding to about 3 pm displacement,

considering the calibration described earlier. This leads to a d33 coefficient of about

0.7-1 pm/V for the vertical InP NW. This value is somewhat smaller than expected

however is the first report of the piezoelectric coefficient of a non-nitride III-V NW. We

note that the d31 coefficient might contribute to this signal through the buckling mode

of the cantilever, and therefore future work should include examining vertical NW by

scanning in orthogonal directions. We note that the lateral signal is this case did not

exhibit distinctive results when comparing the NW and the substrate.

PFM scans taken along the NW axis were inconclusive in clearly distinguishing

the ZB and WZ segments, and are currently under investigation. This is most likely

due to tip being of comparable size with the WZ segment, and the presence of surface

states. The use of NWs with longer segment of different crystalline structures might be

beneficial to improve detection of such signals. However, the simulations shown here

shed light on the complexity of the topic and serve to inspire future work on the subject.

5. Conclusions

To conclude, in this work we examine in detail piezoelectricity in III-V NWs in light of

recent interest in their piezotronic and piezo-phototronic applications. Such studies have

not been reported before, due to challenges related to conventional contact mode PFM

studies of nanomaterials. Our studies on III-V NWs are particularly significant when

compared to III-V bulk materials as: i) WZ crystal structure is frequently observed in

these NWs, and is expected to induce enhanced piezoelectric properties; ii) since the

preferred growth direction of III-V NWs is [111], axial piezoelectricity is expected even

in ZB structured NWs. We have further simulated the PFM response of horizontal

GaAs NWs, illustrating the effect of tip/NW interaction, tip/NW positioning, scan

direction, NW crystal structure and dimensionality. These simulations were directly

used to discuss PFM measurements that have been performed for the first time on

individual III-V NWs. In particular, we present results originating from a novel non-

destructive PFM mode that is being specifically developed to study such NWs. In case

of horizontal GaAs ZB NWs, our results were qualitatively explained by the simulation,

and for the vertical WZ InP NW measured, an axial d33 coefficient of about 0.7-1

pm/V was extracted for the first time, reasonably in line with theoretical expectations.

We hope our simulations and experiments will serve to inspire further work in this
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Figure 5: Peak-force PFM measurements of a vertical InP NW. a) Tilted SEM image

of the examined array; b) NW array topography - obtained by tapping mode prior to

QNM imaging. Inset shows QNM topography of two NW broken under the AFM tip

- becoming a source for a PFM signal, the dashed arrow indicates the PFM scan; c)

Uncalibrated PFM results, showing the vertical signal, alongside the scan topography.

The dashed rectangle indicates the area of interest; d) close-up to the PFM signal.

fascinating aspect of III-V NWs.
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