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Silicon-based metal-oxide-semiconductor quantum dots are prominent candidates for high-fidelity,
manufacturable qubits. Due to silicon’s band structure, additional low-energy states persist in these
devices, presenting both challenges and opportunities. Although the physics governing these valley
states has been the subject of intense study, quantitative agreement between experiment and theory
remains elusive. Here, we present data from a new experiment probing the valley states of quantum
dot devices and develop a theory that is in quantitative agreement with both the new experiment
and a recently reported one. Through sampling millions of realistic cases of interface roughness, our
method provides evidence that the valley physics between the two samples is essentially the same.

Qubits based on isolated electron spins in semiconduc-
tors are one of the earliest proposals for a quantum in-
formation processing architecture [1], where electrons are
confined to zero-dimensional quantum dots via electro-
static gates patterned on the surface of a semiconductor
heterostructure [2]. These isolated electrons resemble ar-
tificial atoms, and are very versatile, supporting several
qubit encoding schemes [3–5]. Si [6–9] is a promising can-
didate for these qubits due to excellent electronic spin
coherence times that can easily range to seconds [10].

A complication in Si arises from its band structure; in
the bulk, the conduction band has six degenerate min-
ima, called valleys. This valley degeneracy is broken by
the sharp material interfaces present in heterostructures,
resulting in a low-lying manifold of additional electronic
states. The presence of these states can be either a bene-
fit [11, 12] or a drawback [13, 14], but understanding and
being able to predictably engineer the valley physics in
quantum dots is important for developing qubits.

For these reasons, the valley physics of silicon has been
the subject of intense study over the past decade. Re-
searchers have used effective mass theory [15], atomistic
pseudopotentials [16], and atomistic tight binding [17–20]
to make predictions of the energy gap between the lowest
two valley states, termed the valley splitting, in a variety
of experimentally-relevant scenarios. These studies indi-
cate that disorder in the heterostructure interface dra-
matically influences the valley splitting [21, 22], leading
to the unfortunate conclusion that valley splitting may
vary substantially amongst nominally identical devices.
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Recently, experiments have advanced to the point
where it is possible to track valley splitting as a function
of applied electrostatic biases while maintaining single-
electron dot occupation [23]. In this work, we present a
second measurement on a device with a significantly dif-
ferent design and fabrication process. We then develop a
non-perturbative, multi-valley effective mass theory that
can directly simulate both experiments. We find simi-
lar, predictable behavior in the tuning of the valley split-
ting. Our theory enables efficient high-throughput nu-
merical sampling of random interfaces, achieving quanti-
tative agreement with experiment and providing a sub-
stantial improvement upon previous work.

The experiments were performed on two different
metal-oxide-semiconductor (MOS) quantum dot (QD)
samples. Electrodes patterned on the top of the device
were used to provide confinement, isolating a single elec-
tron in a QD. The first device, depicted in Fig. 1(a), is
a single-layer gated wire geometry fabricated at Sandia
National Laboratories (SNL) [24]. The second device,
shown in Fig. 1(b), is a three-layer design fabricated at
the University of New South Wales (UNSW) [23].

The valley splitting of a single-electron quantum dot
was measured. In tightly confined quantum dots like
those considered here, the first excited state carries a
valley-like degree of freedom [25], so the valley splitting
is given by the difference between the first excited and
ground state of the quantum dot: EV S = E1−E0. Here,
confinement to a narrow sheet next to the interface splits
the six-fold degenerate conduction band minima of bulk
silicon into a low-lying doublet and an excited quadru-
plet. The doublet, whose conduction band minima lie
along the ±ẑ directions in momentum space, is further
split by the sharp oxide interface potential. By changing
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FIG. 1. (Color online) Schematics of both devices used in this work. (a) The device fabricated at SNL [24], comprising a single
layer of 200 nm n-doped poly-Si electrodes on 35 nm oxide. The single quantum dot studied here is formed at the Si-oxide
interface as indicated. (b) The device fabricated at the UNSW [23], comprising three layers of aluminum electrodes on 8 nm
oxide. The gates are separated by a thin layer of thermally grown AlxOy. The potential energy surface V (r) witnessed by
electrons 3 nm beneath the oxide is shown, the result of self-consistent Thomas-Fermi calculations (see main text for additional
details).

the voltages on the control electrodes while compensating
to ensure the quantum dot remains in the single-electron
regime, the electronic wavefunction can be forced to pen-
etrate more into the oxide barrier, effectively tuning the
valley splitting as a function of voltage configuration.

In the SNL experiment, the valley splitting is mea-
sured using a pulsed gate spectroscopy technique [4, 26].
The quantum dot is tuned to the single electron regime
and the tunnel rate to the lead is adjusted to roughly
10 kHz. Then, using a square pulse on the CPL gate
(Fig. 1) of varying frequency and mean voltage, the ex-
cited one-electron states of the quantum dot are probed
by monitoring the average quantum dot occupancy with
the charge sensor [21]. For a small range of frequencies,
both the ground state and the first excited state can be
seen, even if they have similar tunnel rates, allowing the
measurement of their energy separation. Gate voltage
differences are converted to energy using a gate lever-arm
which is calibrated through a temperature dependence
measurement. The procedure is repeated for multiple
gate voltage configurations. In particular, the P gate has
the most influence on the electrical field perpendicular
to the oxide interface, and thus has a large influence on
the valley splitting as well. The gate voltages were thus
chosen to explore a large range of P voltages.

In the UNSW experiment, reported in Ref. 23, two
techniques were used to measure the valley splitting. For
small plunger gate voltages Vp, a spin-relaxation hotspot,
for which the electron T1 time is minimized when the
valley splitting is commensurate with the Zeeman split-
ting of the device, was used. For larger values of Vp,
pulsed-gate magnetospectroscopy was used. For details
regarding the measurement technique, see Ref. 23.

Since the valley splitting depends sensitively on the
electrostatics of the problem, here we take a multi-stage

approach to our calculations. First, we perform self-
consistent Thomas-Fermi simulations [27] of the devices
under the experimental voltage configurations. In the
leads of the device, this simulation captures the effect of
dynamic screening, using COMSOL Multiphysics with
a 2D density of states to self-consistently model charge
accumulation at the oxide-silicon interface Nearby the
quantum dots, we exclude self-consistent accumulation,
since the devices are experimentally tuned to the single-
electron regime. We note that when tuned using the ex-
perimental voltages, the UNSW device simulation exhib-
ited a clear quantum dot potential, so the dot accumula-
tion region was readily excluded from accumulation. The
SNL simulation did not show a clear dot-lead separation,
so the choice of exclusion zone (which then generates a
dot confinement potential), was somewhat ambiguous. A
possible explanation for this discrepancy is non-uniform
fixed charge in the real device but not in the simulation.
The output of the electrostatic simulations is then fed
into a non-perturbative multi-valley effective mass theory
[29]. For implementation details, see the Supplemental
Information.

We simulated both experiments using multi-valley ef-
fective mass theory, as described above. First, we re-
stricted ourselves to the case of a flat interface. Our
electrostatic simulations do not take the threshold volt-
age shift due to oxide charge into account directly. To
mimic various thresholds, we apply a uniform voltage
shift V0 to all the electrodes in the simulation relative
to the Fermi level, so that the voltages in the simula-
tion Vsim = Vexp +V0, where Vexp are the experimental
voltages. This causes a shift in when the theory predicts
carrier accumulation (e.g. V0 = −1.0 V implies carrier
accumulation beginning at applied biases of +1.0 V).

In Fig. 2, we show the results of these calculations. For
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FIG. 2. (Color online) Measured and computed valley split-
tings. (a) Results for the SNL device [24]. The experimental
data (dots) are shown with measurement error bars as a band.
(b) Results from the UNSW device [23]. The experimental
data and error bars were reported in Ref. 23; the theory re-
sults are new here. In both cases, the best-fit voltage offset is
about V0 = −1.8 V. The effective vertical electric fields plot-
ted on the right axis are computed using a vertical field vs.
valley splitting relationship (see Supplemental Information).
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FIG. 3. (Color online) Worst case relative error εwc of val-
ley splitting with respect to experiment for disordered inter-
faces. Each plot shows a 2D sweep over correlation length
and root-mean-squared (RMS) roughness. Offset voltages be-
tween V0 = 0.0 V and V0 = −2.0 V are shown as columns,
which correspond to the lines shown in Fig. 2. Since we do
not know the actual experimental interface configurations, we
report εwc averaged over the interface realizations in panels
(a) and (c) and for the best interfaces in panels (b) and (d).
These results show that by increasing the magnitude of dis-
order, lower threshold voltages produce valley splittings com-
patible with experiment.

both devices, the computed slope of valley splitting vs.
voltage agrees well with experiment. For no voltage offset
(V0 = 0), there is a pronounced uniform shift of 0.1-0.2
meV, with the theory overestimating the valley splitting.
This is not unexpected: an offset was previously observed
[23], where it was attributed to interface disorder. In

that previous work, the offset was reported to be con-
siderably larger than what we find here ( 1 meV). Our
model directly computes the valley splitting from the full
electrostatic potential, including the important fringing,
non-uniform vertical field, directly computing the valley
splitting from the electrostatic potential. In contrast,
Ref. 23 extracted an approximate vertical electric field
from TCAD calculations and fed the results into previ-
ous simple model system calculations of valley splittings.
To make more direct contact with previous results, we
can translate our valley splitting results into an effective
vertical electric field (i.e., the vertical electric field that,
in an ideal model system, would explain the valley split-
ting). We do this using the valley splitting vs. vertical
electric field results shown in Fig. 1(b) of the Supple-
mental Information, and we show the effective vertical
electric fields in Fig. 2 on the right axes. The UNSW de-
vice exhibits higher valley splittings than the SNL device
mainly due to thinner oxide thickness, smaller device fea-
tures, and larger applied voltages, all of which serve to
raise the effective vertical electric field.

Despite obtaining excellent experimental agreement at
V0 = −1.8 V, thresholds in these devices are typically
between 0.1-1.0 V. Hence, from experiment we expect
to need to include a compensating offset of V0 = −0.1
to −1.0 V in our simulations. To investigate this ap-
parent discrepancy, in Fig. 3 we show the effect of
disordered interfaces on the valley splitting. We pa-
rameterize the interface using a Gaussian correlation
function and a two-parameter correlation length and
RMS roughness model [22]. We sample these param-
eters over a 20x20 grid, with 65 random realizations
per point. For each case, we choose a voltage offset
V0 and then compute the valley splitting for the exper-
imental voltages. We report the worst-case relative er-

ror εwc = maxVp

(∣∣∣Eexp
V S (Vp)− Etheory

V S (Vp)
∣∣∣ / |Eexp

V S (Vp)|
)

with respect to the experimental valley splittings, where

Eexp
V S (Vp) and Etheory

V S (Vp) are the measured and predicted
valley splittings at voltage Vp, respectively.

For both the SNL and UNSW devices, we show εwc av-
eraged over the 65 interface realizations as well as the re-
sult for the best interface. In both cases, we found disor-
dered interfaces that are consistent with the lower thresh-
old voltages observed in experiment as well as realistic
MOS interface parameters of RMS roughness ∼ 0.1 nm
[30] and a wide range of correlation lengths. This shows
that the introduction of realistic disorder is sufficient to
solve the apparent discrepancy between theoretical and
experimental threshold voltages noted in Fig. 2.

In this work, we analyzed the valley splitting for two
distinct MOS devices: a single-layer gated-wire design
fabricated at SNL, and a multi-layer device fabricated at
UNSW. Despite superficially appearing to have very dif-
ferent valley splitting properties, detailed MVEMT cal-
culations of the valley splitting, directly incorporating
the potential energy landscape, revealed that geometric
differences are likely responsible for the differences and



4

that the valley physics is consistent across the two de-
vices. By introducing a voltage offset of -1.8 V to mimic
threshold voltage, we obtained quantitative agreement
with experiment. Since this value is larger than what
is typically seen in experiment, we implemented a non-
perturbative disordered interface model to attempt to
explain this discrepancy. Through this, we found plausi-
ble interface roughness parameters that lead to realistic
threshold voltages.

Overall, our results suggest that MOS quantum dots
are a promising qubit platform. Since excessively small
valley splitting is problematic for qubit operation, being
able to reliably tune and design for large valley splitting is
critical for successful qubit operation. Here, we have put
forward evidence that MOS single-electron valley split-
ting is both tunable and predictable, opening the door to
further design and optimization of robust qubits.

SUPPLEMENTARY MATERIAL

See supplementary material for details on multi-valley
effective mass theory, convergence and Bloch function in-
formation, more details on the electrostatic finite element
simulations, and details on the computation of the disor-

der matrix elements.
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