
The Cost of Push Notifications for Smartphones using Tor Hidden Services

Stephan A. Kollmann

Computer Laboratory
University of Cambridge

Cambridge, UK
Email: sak70@cl.cam.ac.uk

Alastair R. Beresford

Computer Laboratory
University of Cambridge

Cambridge, UK
Email: arb33@cl.cam.ac.uk

Abstract—Push notification services provide reliable, energy
efficient, store-and-forward messaging between servers and
clients. This mode of communication is widely used, and
sufficiently compelling for mobile devices that push notification
services are integrated into operating systems. Unfortunately,
push notification services today allow the service provider
to practice censorship, surveillance, and location tracking.
We explore whether running a Tor hidden service from a
smartphone offers a viable, privacy-aware alternative. We
conduct empirical measurements in the lab as well as modelling
using data from 2 014 handsets in the Device Analyzer dataset.
We estimate the monthly median cost of cellular data required
to support a Tor hidden service from a smartphone at 198 MiB.
We further estimate that the network activity would cost at
least 9.6% of total battery on a Nexus One device with a
daily charging cycle and connected to the Internet via 3G. We
explore four strategies for reducing cellular data costs which,
when combined, could potentially reduce the total monthly
median cost to 61 MiB.

I. INTRODUCTION

Push notification services provide reliable, energy ef-

ficient, store-and-forward messaging between servers and

clients. This mode of communication is sufficiently com-

pelling for mobile devices that push notification services

are integrated into operating systems. For example, Google

Cloud Messaging (GCM) is embedded into Android through

the Google Play Services API. GCM is also available as

a library for developers of iOS apps and developers of

extensions for the Chrome web browser. Consequently, push

notification services are widely used by apps to support both

device-to-device communication (e.g. sending and receiving

messages between users of a social media app) as well as

supporting information dissemination (e.g. news apps and

sports score apps).

Push notifications provide app writers and client device

owners with four advantages: first, if the client device is

switched off, or temporarily disconnected from the Inter-

net, the push notification service will store messages and

deliver them when the device is next online; second, push

notification software on the client initiates a single long-

lived TCP connection from the client device to the service,

avoiding issues with NAT and firewalls as well as removing

the need to poll servers periodically for updates; third,

multiple messages destined for a variety of apps on a single

client device can be coalesced temporally and multiplexed

down a single TCP connection, saving battery life and

improving performance; finally, an app server can achieve

service fan-out by sending a single copy of a message to a

push notification service and requesting that the message is

delivered to many devices on a group or topic basis.

There are downsides to push notifications however. From

a privacy perspective, a push notification service has the

disadvantage that the service can see the sender and the

recipient of every notification across a broad range of apps

and thus may conduct surveillance and censorship. While

data is encrypted between the app server and the notification

service, and between the notification service and the handset,

there is no requirement for it to be encrypted end-to-end.

Therefore, app data can often be read by the push notification

server. In addition, regardless of support for end-to-end

encryption between an app server and a handset, metadata

on which handsets use which apps, as well as the location

of the user (e.g. via the handset’s IP address), are revealed

to the notification service.

In this paper we explore the design space of more privacy-

friendly designs for push notification services. We consider

three broad options: use push notification services as de-

ployed today; connect to a single push notification service

via Tor; or run a separate push notification service per app

and connect to each of these via Tor. In the latter two

cases, connections via Tor could be made outbound from

the phone to the service or to a Tor hidden service running

on a smartphone. We discuss details of these designs, and

the trade-offs they represent, in Section III after we review

the background on Tor and its support for hidden services

in Section II.

A key requirement for mobile devices is careful manage-

ment of battery energy and cellular data usage. We therefore

measure the data usage costs of using Tor and running a

Tor hidden service on an Android handset. We do this by

breaking down the costs of running a Tor hidden service into

components that allow us to produce a model of data usage

as a function of the connectivity profile of a handset. By

using connectivity data, such as the availability of WiFi and

cellular data from 2 014 handsets in the Device Analyzer [1]

2017 IEEE European Symposium on Security and Privacy Workshops

© 2017, Stephan A. Kollmann. Under license to IEEE.

DOI 10.1109/EuroSPW.2017.55

76

2017 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)

© 2017, Stephan A. Kollmann. Under license to IEEE.

DOI 10.1109/EuroSPW.2017.55

76

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/81513103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

dataset, we estimate the cellular data usage of running a Tor

hidden service on an Android device. We find that running a

Tor hidden service today costs the median Device Analyzer

user 198 MiB per month in cellular data usage, and the top

10% of devices in excess of 362 MiB (and at e 0.20 per

MiB, e 72.40 per month). Using EnergyBox [2] we estimate

cellular data usage costs 9.6% of battery charge for a Nexus

One device with a daily charge cycle.

The cellular data costs of running a Tor hidden service are

significant. We therefore explore four strategies to reduce

costs, making push notification services over Tor more

attractive. By combining these strategies, we are able to

reduce the costs of running a Tor hidden service for the

median Device Analyzer device to 61 MiB per month.

II. BACKGROUND

To understand the costs and benefits of using Tor to

improve the privacy of push notification services for mobile

devices, we start with a brief summary of Tor. The Tor

network is composed of clients, which generate and consume

traffic, including smartphones, laptops, or desktops; and

servers, called relays, which forward traffic to other relays

and make connections to the public Internet on behalf of

clients. To use the Tor network, clients download the latest

network status document approximately every 90 minutes,

which lists information about around 7 000 Tor relays cur-

rently available worldwide. The network status document

is managed by a small number of more trusted servers,

called directory authorities, who vote on a consensus of

its contents once an hour. The directory authorities publish

additional, relatively static, information on relays in relay
descriptors every 18 hours. After downloading the network

status document, clients download any relay descriptors

mentioned in that document that the client does not already

have. The client also downloads certificates of authorities

where it does not already have a current one.

Clients use relays to build circuits through a sequence

of (typically three) relays. Such circuits support an overlay

network between the client and the final public Internet

service required. The client applies layers of encryption in

such a way that none of the relays, nor the final Internet ser-

vice, is able to determine which devices on the Tor network

are connecting to which Internet services. Because circuit

construction takes time, clients proactively build circuits

in anticipation of any requirement for data connectivity;

circuits can also support multiple concurrent TCP streams.

Tor clients periodically send keep-alive messages on idle

open connections to prevent the connection from expiring

at any intermediate routers. The default interval between

keep-alive messages is currently 5 minutes. To improve the

privacy properties of Tor, circuits are (at least partially)

rebuilt every 10 minutes.

A. Tor hidden services

In addition to supporting clients connecting to services

such as websites on the public Internet, Tor also allows

Tor clients to publish hidden services. A hidden service

is identified by an onion address, which represents the

first 16 characters of a base32-encoded SHA1 hash of

a public key generated by the client. Onion addresses

are long-lived identifiers, distributed through some out-of-

band mechanism between parties who wish to communi-

cate. For example, Facebook offers a Tor hidden service

at https://facebookcorewwwi.onion/.1 An onion

address allows Tor clients to establish circuits with the

hidden service using the Tor rendezvous protocol, and there-

fore transfer data to and from the service over the Tor

network. The design of Tor hidden services prevents any

single relay from learning the IP address associated with

an onion address, therefore providing anonymity to both a

hidden service provider and its clients.

The rendezvous protocol is described below, where we

assume that Bob wants to run a hidden service and Alice

wants to connect to it. A reasonably detailed understanding

of these steps is required in order to understand the network

and energy costs presented in later sections of the paper.

Bob creates a hidden service:

1) Bob asks his Tor client to create a new hidden service.

This generates a public-private key pair for the service.

The public key of the service identifies the service and

is used to generate an onion address.

2) Bob shares his onion address with Alice via an out-of-

band mechanism.

Bob runs a hidden service:

3) Bob’s Tor client chooses a small number of (typi-

cally three) relays as introduction points. Bob then

establishes a circuit to each introduction point and

sends a single-use public key, or service key, and signs

a message to prove he is the owner of this public

key.2 Bob’s Tor client must keep the circuits to the

introduction points open while the service is running

to receive connection requests from new clients.

4) Bob’s Tor client generates a service descriptor contain-

ing the public key, the service key, and the introduction

points. The service descriptor is uploaded to a few (cur-

rently six) hidden service directories, chosen based on

the descriptor ID, which is a hash of the service’s public

key, the current date and time, and other deterministic

data. Bob’s Tor client publishes a new descriptor once

an hour, or whenever its content changes.

1Note: Facebook have spent considerable computational resource to final
a public key whose base32-encoded SHA1 is memorable.

2Earlier versions used the public key of the hidden service instead of a
single-use service key, but this allowed the introduction point to monitor
Bob’s activity.

7777

Alice connects to Bob’s hidden service:
5) Alice’s Tor client determines the set of hidden service

directories responsible for Bob’s key using his onion

address and the current time, and retrieves Bob’s service

descriptor from one of them.

6) Alice’s Tor client establishes a rendezvous point. It does

so by randomly choosing a Tor relay, building a circuit

to it, and asking it to act as a rendezvous point, speci-

fying a randomly chosen 20-byte rendezvous cookie.

7) Alice’s Tor client connects to one of Bob’s introduction

points and requests an introduction to Bob by pro-

viding a hash of Bob’s service key. Alice also sends

a rendezvous request, including the address of the

rendezvous point, the rendezvous cookie, and the first

part of a Diffie-Hellman key exchange, all encrypted

under Bob’s temporary service key.

8) The introduction point forwards the rendezvous request

to Bob. Bob checks the request is valid and not a replay.

9) Bob’s Tor client creates a new circuit to the rendezvous

point chosen by Alice and asks the rendezvous relay

to complete a circuit to Alice. Bob’s request contains

the rendezvous cookie, the second part of the Diffie-

Hellman exchange, and a handshake digest. The ren-

dezvous point forwards the latter two to Alice’s Tor

client. Alice’s Tor client checks that the handshake is

valid, and both sides derive a new set of keys. A new

circuit is now established between Bob and Alice.

10) Alice can now establish one or more TCP connections

over her circuit with Bob.

III. PUSH NOTIFICATIONS OVER TOR

We now consider three overall designs: push notification

services as deployed today; connection to a single push noti-

fication service via Tor; running a separate push notification

service per app and connect to each of these via Tor.

Connecting to a single push notification service may

be more energy efficient than using one push notification

service per app since separate messages from multiple app

servers (likely destined for a variety of apps on the same

handset) can be coalesced into a batch for delivery in a single

Tor circuit. The downside is that the push notification service

learns the app servers (and therefore apps) communicating

with a single handset, although it does not necessarily know

the identity or location of the handset if such communication

is sent over Tor.

Running a hidden service on a smartphone does not, at

first glance, appear to provide much benefit over the use of

an outbound Tor connection to a push notification service.

Importantly, however, hidden services allow app developers

to avoid using a push notification service at all if the aim of

the app is to share data between client devices.

Mobile devices typically sit behind a NAT or firewall.

Thus, direct phone-to-phone communication is often difficult

or impossible. If every device operates a Tor hidden service,

direct communication between two smartphones is now pos-

sible, as an onion address is globally unique and accessible.

The downside to this approach is that both the sending and

receiving smartphone need to be online simultaneously for

data to flow. This requires careful scheduling of smartphones

to wake from low-power states and both devices to have

network connectivity at the same time. We note that an

energy- and data-efficient solution is likely a prerequisite

for mobile apps that use device-to-device communication

(e.g. messaging apps). We therefore focus on data and

energy issues of Tor hidden services. We leave the issue

of scheduling communication between devices for future

work, although such issues have been addressed before.

For example, the PEN network supported direct peer-to-peer

communication, with a scheduling algorithm that was more

efficient than the more traditional (centralized) master-slave

scheme [3, p. 21].

Both connecting to push notification services via Tor,

and the use of Tor hidden services, inherit the anonymity

properties of Tor, which is resistant to local adversaries who

are able to control any local network. This means that a local

adversary does not learn the endpoints of any connections.

In addition, the app server may also be located behind a

hidden service, providing anonymity for the app server too.

Regardless of whether we use a single push notification

server, a push notification service per app, or phone-to-phone

communication, our primary concern is that using Tor, and

possibly running a Tor hidden service, may be significantly

less energy-efficient, or may result in substantially more data

usage, than traditional push notification services. Quantify-

ing and improving the cost of Tor is a requirement in all

three use-cases and is thus the focus of the remainder of

this paper.

We note that the use of Tor to support push notifications

may increase latency for message delivery, but we do not

believe the typical latency times found on Tor will lead to

large problems for push notifications. We therefore leave this

analysis as an area of future work.

IV. EXPERIMENTAL METHOD

We present a series of experiments to measure data usage

requirements and to estimate the energy consumption of us-

ing Tor and operating a Tor hidden service on smartphones.

Our testbed consists of two Nexus 5X smartphones running

Cyanogenmod (Android 6.0.1). To support the creation and

operation of Tor hidden services, we developed a simple cus-

tom app that uses Tor project’s Orbot Android app (version

15.1.2) to run a hidden service. Our app accepts connections

to the hidden service and logs any data sent to it, allowing

us to explore data transmission at various rates between the

smartphone and another computer. To avoid problems with

the phone going into deep sleep, we configured the phone to

always stay awake. To provide a comparison with Google’s

7878

Cloud Messaging (GCM) service, we installed and enabled

the Google Play Services Framework when necessary.

We obtained full packet traces of all traffic on a Linux

workstation by connecting the smartphones to a NETGEAR

WiFi access point with an Ethernet uplink connected to a

workstation. The workstation was configured to route data

onto the wider Internet, allowing connections to and from the

Tor network and GCM. The experiments where conducted

between December 2016 and February 2017.

A. Measuring Tor traffic

To estimate the cost of using Tor for push notifications, we

wanted to construct an empirical model of Tor traffic. Such

a model is important for accurately estimating the data and

energy costs an app might generate using any of the Tor-

based push notification systems we discussed in Section III.

As discussed in Section II, the Tor client takes part in

many different network activities which we break down into

nine categories in order to build an empirical model: regular

downloads of the network status; relay (micro) descriptor

data; creating circuits to introduction points; regular uploads

of hidden service descriptors; sending keep-alive messages

along established connections to Tor relays; downloading

authority certificates; measuring circuit timeouts; establish-

ing and closing connections to a (first hop) Tor relay; and

creating circuits, responding to connection requests, and data

communication associated with a hidden service.

In this section we describe how we quantify the amount of

network traffic in each above categories. We use this analysis

in Section VI to derive an empirical model of Tor data usage

and assess the real-world impact of using Tor with handsets

in the Device Analyzer project.

Tor traffic is encrypted, and thus it is not straightforward

to obtain a breakdown of traffic by category. We therefore

instrumented the Tor source code to identify and log the

purpose (thus category) of all network data sent or received

by the Tor client. We used the log to associate this category

with each packet in the network trace captured by the

workstation.

Tor clients and routers communicate with one another

via TLS connections with ephemeral keys. Traffic on these

connections consist of 514-byte cells, which contain a header

and a payload. Cells are either control cells, used to create,

extend, or destroy a circuit, or are payload cells, containing

encrypted data travelling over an existing circuit. The cir-

cuits themselves are used to support connectivity for client

applcations (e.g. allowing an app on the phone to make a

TCP connection to a push notification service) and maintain

connectivity to the Tor network (e.g. downloading network

status; uploading a hidden service descriptor; sending a

keep-alive message; and so on).

Our instrumented Tor client generally allows us to deter-

mine the purpose of each cell sent or received, but associat-

ing this with the network trace captured by the workstation

is difficult because: multiple cells may be carried inside

a single IP packet; a single cell may be split across an

IP packet; and TLS handshake messages, TLS headers,

TCP headers and TCP re-transmissions introduce additional

overhead that should be associated with the underlying

category of use.

Accounting for the TCP header size and re-transmissions

is relatively easy as these are visible in the packet trace.

To account for TLS headers and overheads, we record

the number of bytes read and written to the TLS stream

and to the underlying TCP socket. We match the byte

counts written to the TCP socket with the bytes sent in the

network trace to determine which cells (or parts of cells)

are contained within a specific network trace. The overheads

resulting from TLS and TCP are assigned proportionally to

the cells contained within the relevant packets.

Determining the purpose of each cell is generally straight-

forward since the cell header associates the cell with a

specific circuit, and additional instrumentation allows us to

record the current purposes of a circuit or of the stream asso-

ciated with the cell. One complication is that the assignment

of a purpose to a cell cannot be made directly after data is

read from the underlying TLS connection, since only part

of a cell may be returned. Additional bookkeeping is thus

needed so that the purpose can be determined after complete

cells have been received and parsed. Another difficulty is that

many TCP streams can be multiplexed down a single circuit.

For circuits that were used for more than one purpose, there

can exist some traffic that cannot be assigned to a particular

TCP stream (e.g. creating a new circuit); if the purpose

cannot be uniquely inferred, the traffic cost is shared equally

between all the purposes associated with the circuit.

Consequently, there are two approximations in our analy-

sis that are small and therefore do not have a material impact

on our analysis. First, since Tor preemptively builds circuits,

some of these circuits may not have been used; we find

unused circuits were responsible for only 0.1% of the total

traffic. Second, when cells cannot be associated with a TCP

stream, and their purpose cannot be inferred, we assign their

cost equally to all purposes associated with a given circuit;

this only affected 0.2% of the total traffic. Section V-A offers

more details.

V. RESULTS

We now report on four experiments. First we measure

the cost of maintaining a Tor hidden service for a fixed IP

address and stable Internet connection. Second, we measure

the additional cost of changing our IP address, a regular

occurrence for a smartphone as it moves between cellular

data and WiFi networks. Third, we explore the overhead of

data transmission across the Tor network. These results allow

us to produce a model of the cost of running a Tor hidden

service, something we build on in Section VI. Finally, for

comparison, we measure the overheads of using GCM.

7979

A. Hidden service maintenance

We measured the network traffic induced by maintaining

a Tor hidden service over a 48-hour period using our testbed.

We recorded 32.5 MiB of Tor traffic, including IP headers

across 46,790 packets, or an average of 693 KiB (975

packets) per hour. The large majority of the traffic volume

in bytes was caused by network status consensus downloads

(79.9%), with another 11.7% caused by hidden service

descriptor uploads. Downloading relay descriptors caused

4.3% of the traffic, keep-alive messages 2.5%, and intro-

duction circuits 0.2%. Establishing and closing connections

to entry (first hop) relays was responsible for 0.8% of the

traffic. 0.2% was used to measure circuit timeouts, another

0.2% to fetch authority certificates, and the remaining 0.1%

was used to manage circuits that remained unused. Table I

provides further detail.

At the time of writing, directory authorities vote on a

new network status consensus every hour, which is valid

for three hours. Clients download a new consensus at a

randomly chosen time between 105 and 170.6 minutes after

their current consensus becomes valid. We observed a total

of 38 consensus downloads, with an average size of 699±9
KiB. In addition, we saw one case where the directory server

returned a “304 Not modified” status. In this case, the client

retried the download after one minute, resulting in the same

status code. When the client tried again at a different server

10 minutes later, it received a full consensus document again.

This caused an additional 8 KiB of traffic. We also observed

336 hidden service descriptor uploads. Keep-alive messages

are padded to the size of a cell, with the total size of keep-

alive IP packets as 595 bytes, which is answered by an ACK

packet of 52 bytes. Both sides of the connection send a

keep-alive packet, resulting in 4 packets and 1 294 bytes

exchanged per idle connection every 5 minutes.

Type of traffic KiB/h KiB% Pkts/h Pkts%
Network status download 554 79.9% 694 71.2%
Relay descriptors 30 4.3% 47 4.9%
HS descriptor 82 11.7% 144 14.8%
Keep-alive 17 2.5% 54 5.6%
Introduction circuits 1 0.2% 3 0.3%
First-hop connections 6 0.8% 24 2.5%
Measure circuit timeout 2 0.2% 3 0.3%
Authority certificate 2 0.2% 3 0.3%
Unused circuits 1 0.1% 1 0.1%
Total 693 100% 975 100%

Table I
AVERAGE NETWORK TRAFFIC GENERATED WHEN MAINTAINING A TOR

HIDDEN SERVICE.

B. Network connectivity changes

Smartphones regularly change their network connectivity

as they move between WiFi access points and connections

via cellular data services. Whenever such device connec-

tivity changes, connections to the Tor network must be re-

established because the source IP address used to support

the TCP connections underlying Tor circuits changes.

To estimate the total additional network traffic caused by

network connectivity changes, we used the same setup as

in the maintenance experiment in Section V-A, but forced

a disconnect of the WiFi connection every 20 minutes, and

a reconnect 5 seconds later. When Orbot detects that the

network is down, Tor shuts down all connections and starts

rebuilding connections when connectivity is back.

We then measured the amount of traffic generated over 48

hours and classified it as in Section V-A. Our experiments

showed that network status document and relay descriptor

downloads were not affected by connectivity changes. We

therefore exclude traffic classified as one of these categories.

The current implementation of Orbot chooses new introduc-

tion points after each reconnect, and re-uploads the hidden

service descriptors. Based on Section V-A, which describes

the traffic required for a set of hidden service descriptor

uploads, we also exclude traffic related to them to get an

estimate of the remaining traffic caused by a connectivity

change. Ignoring traffic related to these three activities, we

calculated the difference in total traffic compared to the idle

connection (Section V-A). Excluding these, we measured

5 628 KiB of traffic, compared to 1 362 KiB for the idle

connection. During the 48 hour period, the WiFi reconnected

143 times. We therefore estimate an average additional traffic

per reconnect of 29.8 KiB, primarily for re-establishing

connections, introduction circuits, and other circuits. Adding

the approximately 70 KiB it takes to upload hidden service

descriptors, a reconnect generates roughly 100 KiB of traffic.

C. Data transmission

We measured the overhead of transmitting data over the

Tor network. To do so, we sent messages of three different

sizes (1 B, 512 B and 1 KiB) at three different intervals

(1 min, 8 min, 12 min) to the smartphone. We chose 8 and

12 minute intervals to explore the effect of circuit rebuilds,

which currently occur every 10 minutes (Section II). For

each message, we established a fresh TCP connection to the

hidden service and sent a stream of bytes of the given length

before closing the connection. For each combination, we

sent messages for 4 hours. Table II shows how much traffic

was generated on average by a single message for different

message sizes and rates. We estimated this amount by

counting all traffic not labeled as network status download,

relay descriptor download, hidden service descriptor upload,

certificate authority download, or measuring circuit timeout

over the 4 hour-period, subtracting the expected amount of

traffic for the same categories for simply maintaining the

hidden service as measured in Section V-A (429 bytes/1.4

packets per minute), and dividing by the number of messages

sent. Note that we count keep-alive traffic, as receiving

messages may reduce or increase the need for keep-alive

messages.

8080

Interval 1 B 512 B 1 KiB
1 min 2.7(7.6) 3.2(7.8) 3.8(9.2)
8 min 5.7(15.7) 6.1(16.4) 7.2(19.6)

12 min 9.1(25.1) 9.9(26.7) 9.7(25.4)

Table II
THE AVERAGE ADDITIONAL NETWORK TRAFFIC IN KIB (NUMBER OF

PACKETS IN BRACKETS) GENERATED PER MESSAGE OVER TOR FOR

DIFFERENT MESSAGE SIZES AND DIFFERENT SENDING RATES.

D. Comparison with GCM

For comparison with Tor, we used our testbed to measure

the costs of maintenance, connectivity changes, and message

overhead of using GCM. To determine the traffic relevant to

GCM, we filtered TCP traffic from the smartphone whose

destination was mtalk.google.com, ports 5228–5230.

Push notifications over GCM requires Google Play Ser-

vices (PS) running on the handset. PS initiates and maintains

a single open TCP connection to a GCM server to receive

push notifications. To keep the connection alive, PS periodi-

cally sends keep-alive messages to a GCM server. The active

keep-alive intervals can be determined by typing the code

##426#*#* in the Phone app. Using this technique, we

experimentally confirmed that, for mobile data connections,

PS currently uses a 28-minute interval. On WiFi, PS uses

a proprietary adaptive algorithm to determine an interval of

between 110 seconds and 29 minutes; in our case the interval

was typically set to 19, 24, or 29 minutes.

There are no entries in the smartphone system log con-

cerning keep-alive messages. Thus, to quantify data usage

and packet count for keep-alive messages, we looked at

the packet trace from the smartphone deployed with our

testbed with PS installed and enabled. To ensure that PS

connected to GCM and waited for push notifications, we

wrote and launched a simple app that waits for incoming

GCM messages. We observed a periodic burst of three or

four packets with a total length between 224 and 278 bytes,

which matched the WiFi heartbeat interval. From the 246

bursts we observed, the average total size was 238±22 bytes

(not counting duplicate packets). Alongside this periodic

burst, we sometimes observed up to four additional packets

containing duplicate TCP packets (up to 528 bytes in total).

The contents of the packets were encrypted so we could

not determine further details of the keep-alive message or

the purpose of the retransmission. The average total size

including duplicate packets was 258± 57 bytes.

We repeated the experiment described in Section V-B for

GCM on a Nexus 5X handset. We again forced the phone to

reconnect to WiFi every 20 minutes. We ran the experiment

for 48 hours. We measured the amount of traffic within a

minute after each reconnect and observed a burst of traffic,

with an average size of 2.9±1.5 KiB (16.8±1.6 packets) in

141 out of 143 cases when the phone reconnected to WiFi.

In two cases, we observed no additional traffic directly after

a reconnect. We assume that the fact that we did not change

the IP address might have resulted in PS not reconnecting

in these cases.

To measure the traffic overhead when sending messages

to the smartphone, we sent similar messages to our GCM-

enabled app as we did over Tor in Section V-C. We used the

same message sizes and intervals (1 min, 8 min, 12 min; 1 B,

512 B and 1 KiB) and we measured each combination for 2

hours. The average traffic per message did not significantly

differ for different intervals. Per 1-byte message we observed

on average 0.3 KiB, per 512-byte message 0.8 KiB, and per

1024-byte message 1.3 KiB of traffic.

VI. TOR HIDDEN SERVICE MODEL

In this section, we use the results of Section V to derive

a model for the data usage of a hidden service on a

smartphone. We use this model to evaluate the data usage

and energy costs of using Tor to support a push notification

service on real devices in Section VI-A. The model is based

on the results from our measurements and therefore on the

current state of the Tor network. Future work could take into

account the changing nature of the Tor network and create

a model that depends on parameters like the number of Tor

relays that notably impact the amount of network traffic.

To estimate the total network traffic required to maintain

the hidden service on a phone, we require knowledge of the

connectivity profile of a device: the periods the device was

connected to the Internet via WiFi or a cellular network,

when the IP address of the handset changes, and when

no network connectivity is available. Network traffic is

generated by periodic network status and relay descriptor

downloads, hidden service descriptor uploads, and the cre-

ation and maintenance of Tor circuits to introduction points.

We look at each of these in turn.

The network status document is downloaded at regular

intervals. Building on our analysis in Section V-A, we

assume that the Tor client starts a network status download

when either: a disconnected device connects to the Internet

and has no valid network status document; or time t (chosen

uniformly at random from the interval [105, 170.6] minutes)

has passed since their current download became valid. We

assume that a new network status document becomes valid

on the hour, every hour (in UTC) and the client always

downloads the most recent valid document. We assume that

each consensus download produces 716 419 bytes of traffic,

the average measured in Section V-A.

We assume that the client downloads a set of relay

descriptors immediately after it downloads a network status

document. We assume that this requires 30 356 · h bytes of

traffic, where h is the number of hours that have passed

since the last network status download. This is based on the

average descriptor download traffic we observed per hour,

and should give a good approximation, in particular because

8181

the large majority of descriptor downloads happens shortly

after a network status download.

We assume that each time the phone changes the way

it connects to the Internet, it needs to rebuild its Tor con-

nections and circuits (including the ones to the introduction

points), which costs 30 548 bytes of traffic, the average

measured in Section V-B.

We assume that the client uploads its hidden service

descriptor immediately after it has (re-)established its con-

nections to the introduction points, or 60 minutes after

the last upload. We assume that each set of uploads (to

six directories) incurs 71 504 bytes of traffic, the average

measured in Section V-A.

Finally, we assume that for every 5 minutes the device is

connected to the Internet, 1 474 bytes of keep-alive traffic

is generated, the average measured in Section V-A. We do

not include periodic changes of the introduction points, as

these have a small impact on total traffic (0.2% during the

experiment described in Section V-A) and in our analysis,

the Tor client changes introduction points once a day.

Similarly, for simplicity, we do not include other traffic in

our model since the remaining traffic was only about 1% of

the total traffic during our measurement.

A. Evaluation

To evaluate the energy and data usage costs of using

Tor to support push notifications, we use our model from

Section VI together with connectivity profile data of smart-

phones from the Device Analyzer project [1].

Device Analyzer is an Android app, available on the

Google Play Store since May 2011 and installed on over

30 000 handsets. It gathers information on a wide variety

of system statistics, including: app usage; metadata on calls

placed and received; metadata on text messages sent and

received; Bluetooth devices seen and connected to; WiFi ac-

cess points seen and connected to; cell network coverage for

calls and data; and battery and power usage. Data collected

by the app is processed on the handset to obscure direct

personal identifiers (e.g. phone numbers) before uploading

data to a server at the University of Cambridge.

We analyzed traces from the 30 444 devices in the Device

Analyzer dataset. We excluded all devices with less than

30 days’ worth of data. We further excluded all devices

where Device Analyzer data collection has been interrupted

at any point, had large jumps in their device clock, or

where the device clock was obviously wrong or broken.

For each device trace from the remaining 2 014 devices, we

estimate the volume of cellular data required to maintain a

Tor hidden service. We do this by assuming that cellular data

is used when a cellular connection is available and a WiFi

connection is not. Since the Tor client uses timing randomi-

sation when downloading the network status document, we

simulate the connectivity pattern of the device 40 times and

take the average amount of traffic.

The baseline box plot shown in Figure 1 shows our esti-

mate of the cost of running a Tor hidden service for 30 days

on the 2 014 devices from the Device Analyzer dataset. An

equivalent numeric summary is shown in Table III. Cellular

data usage is high, with a median cost across all devices

of 198 MiB. For 10% of the devices we estimate a cellular

data usage of 362 MiB or more. These are high data rates,

and in most countries will require a significant data plan.

For exposition purposes, assuming networks charge e 0.20

per MiB, the maximum roaming charge mobile operators

within the EU were allowed to charge after March 2014, this

represents e 72.40 per month; a substantial price to pay for

better privacy. By way of comparison, GCM maintenance,

without any IP address changes, costs on average 258 bytes

every time it needs to send a heartbeat (see Section V-D), or

0.44 MiB over 30 days for heartbeat interval of 24 minutes.

Even factoring in multiple network changes per day, at

2.9 KiB per change, total costs are still likely only a couple

of MiB per month.

We use EnergyBox [2] to estimate the energy costs of

maintaining a Tor hidden service on a smartphone. Ener-

gyBox takes a packet trace, a smartphone model, and a

connectivity profile (WiFi or cellular). To provide a reason-

able lower-bound estimate for the energy costs, we reused

the 48-hour packet trace collected for our experiment in

Section V-A and assumed this trace was transferred over the

cellular data network (3G) with a Nexus One device on the

TeliaSonera network, the only device and network operator

the EnergyBox authors provide an energy model for. The

Nexus One was released in 2010, and we expect newer

devices’ batteries to last longer. Over the 48-hour period,

the estimated total energy costs were 5 346 J; or 2 673 J

= 0.743 Wh per day. The Nexus One device has a battery

capacity of 5.18 Wh, so, assuming a battery profile where

the device is charging for 8 hours over night and on battery

for 16 hours, this represents 9.6% of total battery capacity

– a significant amount. Note that this value only takes into

account the energy required for network communication, and

additional power is required to make a hidden service work,

e.g., to keep the device awake when needed.

B. Reducing Tor data usage

The above numbers demonstrate that running a Tor hidden

service on a smartphone generates several hundreds of

megabytes of cellular data traffic per month on a typical

device, an unacceptable volume for all but those with a

generous data package. As the EnergyBox paper [2] demon-

strates, there is a strong correlation between data volume and

energy usage too. Therefore, we evaluate four strategies to

reduce the amount of data Tor requires, thereby reducing

energy usage. Note that these strategies may potentially

impact user anonymity. We leave evaluating this for future

work.

8282

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

Baseline A B C B+C D A+B+C+D

E
st

im
at

ed
 tr

af
fic

 p
er

 m
on

th
 in

 M
iB

Strategy

Figure 1. Estimated traffic over the cellular network over 30 days for
2 014 devices in the Device Analyzer dataset. The leftmost box shows a
data usage estimate for Orbot’s current behaviour; the remaining boxes
estimate data usage with various data reduction strategies developed in
Section VI-B.

Base A B C BC D ABCD
Median 198 165 172 169 154 95 61
Mean 367 305 333 322 304 188 119
Std.dev. 141 108 138 132 132 101 45

90th perc. 362 341 353 329 327 172 120

99th perc. 649 424 628 612 607 517 202

Table III
ESTIMATED TRAFFIC IN MIB OVER THE CELLULAR NETWORK OVER 30

DAYS FOR 2 014 DEVICES IN THE DEVICE ANALYZER DATASET.

Strategy A: Reconnect to the same introduction points:
In the version of Tor client we used in our experiments, Tor

chose a new set of introduction points whenever a device

changed its IP address. This is supposed to be fixed [4].

However, we found that changes in network connections

continued to require new introduction points. At the time

of writing, Tor developers were working on a fix [5].

Changing introduction points requires the Tor client to

generate a new hidden service descriptor and upload it. This

causes additional traffic, and also affects anyone wanting to

connect to the hidden service: other clients may have cached

the hidden service descriptor and therefore connectivity is

broken. A fix is under development [6].

Strategy A in Figure 1 estimates the data usage costs

for a Tor client that reconnects to the same introduction

points when the IP address of the smartphone changes, and

therefore does not need to re-upload the hidden service

descriptor.

Strategy B: Proactively fetch network status on WiFi:
If we assume free data usage over WiFi, a straightforward

strategy to reduce cellular data costs is to proactively down-

load the most recent network status document as soon as

it is available. This has the downside of causing additional

traffic at the directory mirrors and will also increase energy

costs. Strategy B in Figure 1 explores this option.

Strategy C: Defer fetching network status on cellular:
Since mobile devices regularly move between WiFi and

cellular data, it may make sense to delay downloading the

network status document until just before expiry in the

hope that WiFi connectivity appears before a download over

the cellular network becomes necessary. Additionally, this

may reduce the total number of network status document

downloads. This strategy may cause spikes in download

requests on directory mirrors in the Tor network if many

clients adopt this policy. Nevertheless, strategy C in Figure 1

explores this option.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140 160 180

S
iz

e
in

 K
iB

Time passed in hours

Consensus diff stdev
Consensus diff
Full consensus

Figure 2. Average size of the compressed output of diff -d -e on
pairs of all microdescriptor consensus documents from 1 November to
30 November 2016, compared to the compressed size of the full network
status documents.

Strategy D: Download network status diffs: The network

status document is updated every hour, but only a small part

of it changes from hour to hour. Therefore, we consider

the potential benefits of downloading the difference in two

network status documents. This is not a new idea—a version

of this was implemented [7], [8] in 2014—but it is not yet

integrated into the main branch of Tor or available in Orbot.

To estimate potential savings from downloading differences

instead of full documents, we looked at all 720 consecutive

network status documents from November 2016 (UTC).

We compared documents pairwise by applying

diff -d -e and then gzip -9 to the output to

calculate the size of a diff. We calculated how the size of

the diff changed as the time period between the pairs of

documents increased. Figure 2 shows the average size of

the compressed difference between all pairs of documents,

grouped by the number of hours between the start of the

validity of the two documents. The knee in the curve at

18 hours is due to the fact that Tor relays update their

relay descriptors every 18 hours. The data shows that using

diffs can drastically reduce download size if time between

network status downloads is small. The diff between two

consecutive network status documents is a mere 6% of the

size of the full network status document; it is still 35%

smaller after 18 hours, reaching the size of a full network

status download only after 6 days. Thus, consensus diffs

can be particularly beneficial for devices that constantly

stay connected to the Tor network and frequently download

the consensus. To account for the overhead incurred by

8383

downloading the diffs, we add 17.6% to the sizes of

all compressed diffs for our model. We calculated this

percentage by comparing the average traffic incurred for a

consensus download in Section V-A with the average size

of compressed consensus documents from November 2016.

Strategy D in Figure 1 computes the cost savings on

cellular data if network status diffs followed the averages

found in Figure 2.

VII. RELATED WORK

Previous work has highlighted a scalability problem in

Tor’s design: every client needs up-to-date information on all

relays, resulting in a total bandwidth expenditure that grows

with the number of clients times the number of relays [9],

[10]. Several papers propose more scalable solutions using

peer-to-peer architectures [9], [11]–[14]. These approaches

are usually based on using distributed hash tables (DHTs)

and/or random walks letting clients find random relays on

demand without needing the entire list of relays. Mittal et

al. [10] proposed an alternative approach to improve Tor’s

scalability: keep the existing client-server architecture, and

letting clients obtain random relays from directory servers or

guard relays using private information retrieval techniques.

While the focus was to reduce the data usage from network

status downloads on the Tor network centrally, such tech-

niques also offer large advantages to mobile devices with

limited data usage requirements and energy constraints.

Loesing et al. [15] measured the time taken to complete

the steps involved in connecting to a hidden service. Lenhard

et al. [16] conducted similar experiments with similar results.

They also measured the time a Tor client takes to complete

the bootstrapping phase under low-bandwidth conditions.

Solberg and Bezem [17] measured various performance

characteristics of the Tor network and Tor hidden services,

including throughput, access time, connection latency, and

reliability, for both the public and a private Tor network.

Wiangsripanawan et al. [18] and Doswell et al. [19], [20]

looked at the impact of mobility on the performance of Tor in

client mode. They explored the problem of changing network

connectivity, and the resulting change in IP address, the

need to re-establish Tor circuits, and the loss in connectivity.

Wiangsripanawan et al. also considered location privacy.

To keep connections alive across changes of IP address,

they propose re-establishing a circuit to the same exit node.

Doswell et al. estimated the impact on throughput, and

proposed client throttling to reduce the amount of “wasted”

traffic, and the use of a trusted (private or public) bridge

relay to keep circuits open, allowing the client to quickly

reconnect to the circuits. Neither of these papers consider

the costs of running a hidden service from a mobile device.

Briar [21] is an open source app that uses Tor hidden

services to support instant messaging between smartphones

without using other cloud infrastructure or push notification

servers. They do not quantify the costs of running a hidden

service; the results from our paper provide support for the

introduction of network status diffs.

VIII. CONCLUSION

We have shown that the cellular data cost of maintaining

a Tor hidden service from a smartphone today is high, with

a median cost across all devices of 198 MiB. In the worst

case, we see devices with cellular data usage in excess of

600 MiB. Energy costs were also significant: we estimated

the network activity would cost at least 9.6% of battery

capacity on a Nexus One connected to the Internet via 3G

with a daily charge cycle.

We explored four strategies to reduce the cost of main-

taining a Tor hidden service on a smartphone: reconnect

to the same introduction points when the phone’s IP ad-

dress changes; proactively fetch network status on WiFi;

defer fetching network status on cellular connections; and

download network status diffs. When these four strategies

are combined, the result is a more reasonable total monthly

median cost of 61 MiB. However, there remains significant

work to do. Our experiments show that Google Cloud

Messaging costs in the order of 1 MiB per month, an order of

magnitude less than a Tor hidden service with all four of our

data reduction strategies deployed. Similarly, transmission of

a single 1 KiB message consumes significantly more over

Tor (between 3.8 KiB and 9.7 KiB of data; see Table II) as

compared with GCM (1.3 KiB; See Section V-D).

The introduction of Doze [22] in Android 6.0 makes

some form of privacy-preserving push notification service

all the more important. Doze is enabled when the handset is

stationary for a period of time, not charging and the screen

is off. When Doze is enabled, a handset conserves battery

life by suspending apps, including suspending background

tasks, network communication, alarms, and wake locks.

Consequently GCM is an essential developer tool if an app

needs to receive messages from an external source because

high-priority messages sent over the network to Google Play

Services are not affected by Doze.

Popular apps such as Facebook already allow users to con-

nect via Tor from their smartphone. However, they currently

lack support for push notifications for these connections.

Our work shows that, with some further work to Tor as

outlined in Section VI-B, using Tor for push notifications

may be acceptable for such users. Tor hidden services are

also likely to be useful to support direct phone-to-phone

communication in next-generation apps like Briar [21].

Scaleability is a concern if Tor hidden services become

popular for deploying push-notification services. If millions

of mobile devices start running a Tor hidden service, the

increased bandwidth requirements on the Tor network and

the large number of hidden service descriptors that need to

be managed by hidden service directories will require more

Tor relays to be deployed. This will in turn increase the size

of the network status document that needs to be downloaded

8484

to the devices regularly. Future work is therefore required

to develop more scalable anonymity networks.

DATASET

Data and source code used to produce the results in this

paper are available [23]. Data from Device Analyzer is

already available from the Device Analyzer project.

ACKNOWLEDGMENTS

Stephan A. Kollmann is supported by Microsoft Re-

search through its PhD Scholarship Programme. Alastair R.

Beresford is partly supported by The Boeing Company and

EPSRC [grant number EP/M020320/1].

We also thank Nikilesh Balakrishnan, Lucian Carata, and

Ripduman Sohan for their assistance with the experimental

method; and Martin Kleppmann, Laurent Simon, Daniel

RṪhomas, and Diana Vasile for helpful discussion and

insight.

REFERENCES

[1] D. T. Wagner, A. Rice, and A. R. Beresford, “Device Ana-
lyzer: Large-scale Mobile Data Collection,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 41, no. 4, pp. 53–
56, 2014.

[2] E. J. Vergara, S. Nadjm-Tehrani, and M. Prihodko, “En-
ergybox: Disclosing the wireless transmission energy cost
for mobile devices,” Sustainable Computing: Informatics and
Systems, vol. 4, no. 2, pp. 118–135, 2014.

[3] J. Weatherall and A. Jones, “Ubiquitous networks and their
applications,” IEEE Wireless Communications, vol. 9, no. 1,
pp. 18–29, 2002.

[4] (2013) Tor Ticket #8239. Hidden services should try harder to
reuse their old intro points. https://trac.torproject.org/projects/
tor/ticket/8239. Accessed 20 December 2016.

[5] (2016) Tor Ticket #19522. HS intro circuit retry logic fails
when network interface is down. https://trac.torproject.org/
projects/tor/ticket/19522. Accessed 20 December 2016.

[6] (2015) Tor Ticket #16387. Improve reachability of hidden
services on mobile phones. https://trac.torproject.org/projects/
tor/ticket/16387. Accessed 20 December 2016.

[7] P. Palfrader. (2008) Provide diffs between consensuses.
http://github.com/isislovecruft/torspec/blob/master/proposals/
140-consensus-diffs.txt. Accessed 20 December 2016.

[8] D. Martı́. (2014) [GSoC] Consensus diffs - Fourth
report. https://lists.torproject.org/pipermail/tor-dev/2014-July/
007163.html. Accessed 20 December 2016.

[9] J. McLachlan, A. Tran, N. Hopper, and Y. Kim, “Scalable
Onion Routing with Torsk,” in Proceedings of the 16th
ACM Conference on Computer and Communications Security.
ACM, 2009, pp. 590–599.

[10] P. Mittal, F. Olumofin, C. Troncoso, N. Borisov, and I. Gold-
berg, “PIR-Tor: Scalable Anonymous Communication Using
Private Information Retrieval,” in Proceedings of the 20th
USENIX Security Symposium. USENIX Association, 2011.

[11] A. Nambiar and M. Wright, “Salsa: A Structured Approach
to Large-Scale Anonymity,” in Proceedings of the 13th
ACM conference on Computer and Communications Security.
ACM, 2006.

[12] A. Panchenko, A. Rache, and S. Richter, “NISAN: Net-
work Information Service for Anonymization Networks,” in
Proceedings of the 16th ACM conference on Computer and
Communications Security. ACM, 2009.

[13] M. Rennhard and B. Plattner, “Practical Anonymity for the
Masses with MorphMix,” in Financial Cryptography: 8th
International Conference. Springer, 2004, pp. 233–250.

[14] P. Mittal and N. Borisov, “ShadowWalker: Peer-to-peer
Anonymous Communication Using Redundant Structured
Topologies,” in Proceedings of the 16th ACM Conference on
Computer and Communications Security. ACM, 2009, pp.
161–172.

[15] K. Loesing, W. Sandmann, C. Wilms, and G. Wirtz, “Perfor-
mance Measurements and Statistics of Tor Hidden Services,”
in 2008 International Symposium on Applications and the
Internet. IEEE, 2008, pp. 1–7.

[16] J. Lenhard, K. Loesing, and G. Wirtz, “Performance Measure-
ments of Tor Hidden Services in Low-Bandwidth Access Net-
works,” in Proceedings of the 7th International Conference
on Applied Cryptography and Network Security. Springer,
2009, pp. 324–341.

[17] P. Solberg and B. Bezem, “Performance of hidden services in
Tor,” Master’s thesis, Norwegian University of Science and
Technology, Department of Telematics, 2013.

[18] R. Wiangsripanawan, W. Susilo, and R. Safavi-Naini,
“Achieving mobility and anonymity in IP-based networks,”
in Proceedings of the 6th International Conference on Cryp-
tology and Network Security. Springer, 2007, pp. 60–79.

[19] S. Doswell, N. Aslam, D. Kendall, and G. Sexton, “Please
Slow Down!: The Impact on Tor Performance from Mobility,”
in Proceedings of the Third ACM Workshop on Security and
Privacy in Smartphones & Mobile Devices. ACM, 2013, pp.
87–92.

[20] S. Doswell, D. Kendall, N. Aslam, and G. Sexton, “A
longitudinal approach to measuring the impact of mobility
on low-latency anonymity networks,” in 2015 International
Wireless Communications and Mobile Computing Conference
(IWCMC). IEEE, 2015, pp. 108–113.

[21] Briar. https://briarproject.org/. Accessed 20 December 2016.

[22] Optimizing for Doze and App Standby. https:
//developer.android.com/training/monitoring-device-state/
doze-standby.html. Accessed 20 December 2016.

[23] S. A. Kollmann and A. R. Beresford. (2017) Supporting data
for ”The Cost of Push Notifications for Smartphones using
Tor Hidden Services”. https://doi.org/10.17863/CAM.7547.

8585

