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Abstract1

A famous theoretical prediction of the minimum bow2

force to maintain Helmholtz motion of a bowed string3

is re-examined to take account of effects associated4

with resonances of the instrument body. Starting5

from a more robust assumption of an ideal stick-slip6

velocity waveform at the bowing point rather than7

a perfect sawtooth-shaped excitation force at the8

bridge, the analysis predicts that the minimum bow9

force, and the force waveform exciting the instrument10

bridge, can depend in a complicated way on the11

position of the bow on the string. Also, the frequency12

of “maximum wolfiness” of an instrument like a cello13

is predicted to shift away from that of the strong14

body resonance causing a wolf note. Simulations are15

used to evaluate the new formulation. For the simple16

case in which the string vibrates only in a single17

polarisation, the results are accurately confirmed.18

However, simulation also reveals that string vibration19

in the second polarisation can change the detailed20

response. Further simulations are used to investi-21

gate the influence on minimum bow force of some22

physical details of the model, especially torsional23

string motion and the presence of sympathetic strings.24

25

PACS numbers: 43.40.Cw, 43.75.De26

1 Introduction27

1.1 Background28

When a player plucks a guitar string, almost regard-29

less of the strength and the position of the pluck, it30

will lead to a “musical” guitar sound with a pitch31

very close to the first mode frequency of the string.32

By contrast, not all gestures applied to a bowed string33

lead to the desired “singing” sound: a bowed string is34

a nonlinear oscillator, capable of a richer repertoire of35
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vibration regimes than a plucked string. This moti- 36

vates the investigation of factors influencing the ease 37

of playing, or “playability”, which can be somewhat 38

independent of questions relating directly to sound 39

quality. 40

Two famous examples of playability factors are the 41

minimum and maximum bow forces. The Helmholtz 42

motion, the usual desired motion of a bowed string, 43

involves a single sharp corner travelling back and forth 44

along the string, triggering slip and stick transitions 45

when passing underneath the bow [1]. If the player 46

does not apply enough normal bow force, the friction 47

may be too weak to hold the string until the corner ar- 48

rives, so that an untimely slip occurs during the nom- 49

inal sticking phase. This results in more than one slip 50

per cycle and a consequent “surface” sound. On the 51

other hand, if the bow force is too high, the bowhair’s 52

grip on the string is too strong, and the string force 53

associated with the arrival of the Helmholtz corner 54

may be insufficient to trigger the slip. This usually 55

results in non-periodic motion of the string described 56

as “raucous” or “crunchy” sound. The thresholds of 57

bow force leading to these two types of undesirable 58

string motion define the minimum and maximum bow 59

force, respectively. 60

Early work by Raman [2], later built upon by Schel- 61

leng [3], led to simple approximate formulae for the 62

minimum and maximum bow forces. Of these two 63

force limits, the former makes a better candidate to 64

account for differences between the playability of dif- 65

ferent instruments, or for the note-by-note variations 66

on a given instrument [4]. The minimum bow force 67

depends critically on the small but non-zero motion 68

at the bridge of the instrument: a string that is termi- 69

nated at rigid boundaries has a minimum bow force 70

very close to zero. However, the maximum bow force 71

is predicted to be almost independent of the proper- 72

ties of the body; it depends only on the properties of 73

the string and the frictional properties of the rosin. 74

In the remainder of this section Schelleng’s work 75

on the minimum bow force is reviewed, together with 76

an extension of his argument by Woodhouse [4]. In 77
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the following section, the analysis is extended to a78

more general form involving less restrictive assump-79

tions. The revised model predicts some significant80

differences of behaviour compared to the earlier work,81

and these predictions are verified using time-domain82

simulations. Finally, some particular physical details83

are discussed to show how they may affect the min-84

imum bow force: torsional motion of the string, the85

presence of sympathetic strings, and out-of-plane vi-86

brations of the string.87

1.2 Schelleng’s bow force limits88

For an ideal Helmholtz motion, the force that the89

string applies to the bridge is a sawtooth waveform90

with the ramp slope of T0vb/βL, interrupted by sud-91

den jumps of magnitude T0vb/βLf0, where L is the92

length of the string, T0 is its static tension, f0 is the93

stick-slip frequency of the bowed string, vb is the bow94

speed, and β is the bow-bridge distance expressed as95

a fraction of the string length. As Schelleng argued96

[3], if the bridge reacts in a resistive manner with re-97

sistance R, its velocity would be proportional to the98

applied force. Integrating the sawtooth shape leads to99

a waveform of displacement that is parabolic within100

each cycle. Treating the short segment of the string101

between the bow and the bridge quasi-statically, such102

a displacement at the bridge would result in a pertur-103

bation force at the bowing point given by104

Fpert =
T 2
0 vbt

2

2Rβ2L2
+K0, −

1

2f0
< t <

1

2f0
. (1)

Time t = 0 is chosen to be half-way through the stick-105

ing period of the cycle. The integration constant K0106

can be found by enforcing the condition that the per-107

turbation force at the bowing point is zero during108

the slipping phase, assuming the simple Amontons-109

Coulomb law of friction. The result is110

K0 = −vbZ
2
0T

2Rβ2
, (2)

where Z0T =
√
T0ms is the characteristic impedance111

of the string, ms being the mass per unit length.112

Equation (1) then predicts a peak value of the per-113

turbation force −K0 at t = 0. But the perturbation114

force cannot exceed FN (µs − µd) for the Helmholtz115

motion to be self-consistent, where FN is the normal116

force of the bow on the string, and µs and µd are the117

static and dynamic coefficients of friction. Rearrang-118

ing, the minimum bow force is thus119

Fmin =
vbZ

2
0T

2Rβ2(µs − µd)
. (3)

Note that this criterion does not make any claims120

about the formation of the Helmholtz motion in the121

first place. In general, the formation of the Helmholtz122
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Figure 1: The “Schelleng diagram”. The playable
range for Helmholtz motion falls between the maxi-
mum bow force from Eq. (4) and the minimum bow
force from Eq. (3).

motion is much harder than maintaining it, as is 123

demonstrated numerically in [5]. 124

The primary focus of this study is on the minimum 125

bow force, but for future reference it is convenient to 126

mention Schelleng’s maximum bow force [3] as well: 127

Fmax =
2vbZ0T

β(µs − µd)
. (4)

By combining Eqs. (3) and (4) Schelleng drew his 128

now-famous diagram that shows the playable range on 129

a log-log plot of the FN −β plane. A schematic of the 130

Schelleng diagram is shown in Fig. 1: the maximum 131

bow force line has a slope of –1, while the minimum 132

bow force line has a slope of –2, so that the playable 133

range becomes narrower as the bow gets closer to the 134

bridge. The two limits will cross at some point, cre- 135

ating a wedge-like shape. This simple model predicts 136

that the string will not be playable if the bow is placed 137

closer to the bridge than the limit set by the apex of 138

this wedge. Schelleng’s diagram applies to any bowed 139

note: there is always a minimum and a maximum 140

bow force. For certain notes the two limits may get 141

uncomfortably close together, in which case a player 142

may describe the result as a “wolf note”. 143

Schelleng himself proposed two possible enhance- 144

ments of Eqs. (3) and (4). The first concerns µd. The 145

majority of work on the bowed string has assumed 146

the “Stribeck” or “friction curve” model of friction, 147

in which the friction coefficient is regarded as being 148

a function of the instantaneous sliding speed. The 149

maximum sliding speed in ideal Helmholtz motion is 150

vb(1 − β)/β, and if µd is evaluated at this velocity it 151

becomes a function of β and vb, depending upon the 152

shape of the particular assumed friction curve. The 153

bow force limits then become slightly curved lines on 154

the log-log scale [6]. Schumacher proposed a similar 155

modification to the maximum bow force limit [7]. The 156

correction to both minimum and maximum bow forces 157
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tends to become less important when the player uses158

a larger bow speed. The friction-curve model is now159

known to be physically inaccurate [8, 9], so the de-160

tails of this correction are subject to debate, but cer-161

tainly the simple Raman-Schelleng formula requires162

some correction to account for the physics of friction.163

The second modification that Schelleng proposed164

for the bow force limits is to take into account the165

torsional motion of the string. The friction force from166

the bow is applied to the surface of the string, and167

causes twisting of the string as well as transverse dis-168

placement. Combining the two effects, the effective169

characteristic impedance of the string from the bow’s170

perspective would be Ztot = Z0TZ0R/ (Z0T + Z0R)171

where Z0R is the characteristic torsional impedance of172

the string. To take this effect into account in the sim-173

plest way, ignoring the dynamics of the string’s tor-174

sional motion, Z2
0T in the numerator of the minimum175

bow force should be replaced with Z0TZtot, and Z0T176

in the numerator of the maximum bow force should177

be replaced with Ztot. The expected effect is a reduc-178

tion in the minimum and maximum bow forces by the179

same factor. This issue will be investigated in some180

detail in Sec. 4.1.181

1.3 Incorporating measured body be-182

haviour183

There were three restrictive assumptions involved in184

Schelleng’s argument: (a) the excitation force at the185

bridge can be approximated by the sawtooth wave-186

form resulting from a perfect Helmholtz motion; (b)187

the short segment of the string between the bow and188

the bridge can be approximated as a straight line and189

thus treated quasi-statically; (c) the bridge acts as a190

simple resistance. It can be argued that the least ro-191

bust of the three is (c). To approximate the dynamics192

of the instrument body by a single resistance ignores193

the influence of the resonant modes of the body: there194

is no straightforward way to calculate an equivalent195

resistance for different instruments, or for different196

notes played on the same instrument.197

In response to this concern, Woodhouse introduced198

a way to consider more realistic behaviour of the in-199

strument body [4]. The general argument is the same200

as Schelleng’s, except that the sawtooth excitation201

force is applied to the measured bridge admittance202

Y (ω) (the transfer function between the force and203

the velocity). The resulting physical velocity wave-204

form of the bridge notch is readily calculated, based205

on the Fourier series decomposition of the sawtooth206

force waveform. The perturbation force at the bow207

can then be calculated by integration, again based208

on treating the short segment of the string quasi-209

statically, and finding the integration constant by im-210

posing Fpert (±1/2f0) = 0. The minimum bow force211

is then found as before, by insisting that the maxi-212

mum perturbation force is less than FN (µs − µd). It213

takes the form 214

Fmin =
2vbZ

2
0T

π2β2(µs − µd)
.

max
t

{
Re

∞∑
n=1

(−1)n+1

n2
Y (nω0)einω0t

}

+Re
∞∑

n=1

Y (nω0)

n2


(5)

where ω0 = 2πf0. 215

2 Revised minimum bow force 216

formula 217

Recent simulations of bowed string motion [10] have 218

shown that the excitation force acting on the bridge 219

may depart significantly from the assumed perfect 220

sawtooth waveform when the stick-slip frequency of 221

the string falls close to a strong body resonance. 222

This phenomenon could invalidate the first assump- 223

tion made in deriving the minimum bow force rela- 224

tion, both by Schelleng and by Woodhouse. This may 225

be important, because some of the most blatant playa- 226

bility issues arise precisely under these circumstances: 227

playing a note close to a strong body resonance can 228

lead to a “wolf note”, especially prevalent in the cello 229

[11, 4]. 230

To check whether the effect seen in simulation oc- 231

curs on a real instrument, the C2 string of a cello 232

with a prominent wolf note was bowed close to the 233

frequency of the strongest body mode. The bridge 234

force was monitored using a piezoelectric pickup sys- 235

tem built into the top of the bridge under the string 236

notch, similar to ones used in several previous studies 237

[12, 13, 14]. Examples of the measured force signal are 238

shown in Fig. 2. The hardest notes to play were found 239

to fall in the range 171–173 Hz. The bow-bridge dis- 240

tance was not accurately controlled, but the bow was 241

placed at around β = 0.1 (as can be confirmed by the 242

spacing of the “Schelleng ripples” [15, 3] in the force 243

signal). The upper trace in Fig. 2 shows the familiar 244

sawtooth obtained well away from the wolf region, at 245

a fundamental of 190.6 Hz. The middle and lower 246

traces show the bridge forces when the fundamen- 247

tal falls slightly above (174.9 Hz) and slightly below 248

(169.2 Hz) the wolf region. It can be seen clearly that 249

the sawtooth is significantly distorted in both cases. 250

Examining the frequency content of the bridge force 251

(not reproduced here), the fundamental was found to 252

be systematically weaker compared to an ideal saw- 253

tooth wave when the played note fell below the wolf 254

region, but stronger when it fell above that range. 255

The effect presumably arises from interaction be- 256

tween the string and the body mode, and it would 257

be useful to extend the minimum bow force calcula- 258

tion to capture this coupling effect. In order to stay 259
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Figure 2: The bridge force measured experimentally
on the C2 string of a cello. The upper trace is for
f0 = 190.6 Hz, far away from the wolf region. The
middle trace is for f0 = 174.9 Hz, slightly above the
wolf region, and the lower trace is for f0 = 169.2 Hz
slightly below the wolf region.

within the spirit of Schelleng’s calculation, a differ-260

ent aspect of “perfect Helmholtz motion” will be as-261

sumed: in place of a perfect sawtooth bridge excita-262

tion waveform, a perfect stick-slip velocity waveform263

will be assumed at the bowed point. The resulting264

bridge force can then be calculated quite straightfor-265

wardly. Only the short length of string between bow266

and bridge need be included in the calculation: since267

the motion of the string at the bow is specified, the268

length of string on the finger side is effectively isolated269

from any influence on the bridge force (provided string270

rolling on the bow due to torsion is not allowed: this271

issue will be discussed in Sec. 4.1).272

The simplest model, therefore, is to drive the body,273

with admittance Y (ω), through a length βL of ideal274

string with properties as before. If a harmonic veloc-275

ity V eiωt is applied to the end seen from the bow, it276

is readily shown that the resulting force Geiωt acting277

on the body is given by the transfer function278

G

V
=

iZ0T

iZ0TY cos kβL− sin kβL
(6)

where k = ω/c is the wavenumber and the wave speed279

c =
√
T0/ms. A more complicated version of k could280

be used to take into account damping and bending281

stiffness of the string (see [16] section 4.4), but the282

simple version used here is in keeping with the level283

of approximation employed in other parts of the dis-284

cussion, and by Schelleng. It is reassuring to note that285

this expression reverts to 1/Y as expected if β → 0.286

If the body were to be rigid (Y = 0), the transfer287

function would become288

[
G

V

]
rigid

=
Z0T

i sin kβL
≈ Z0T

iωβL/c
=

T0
iωβL

(7)

where the approximate expressions apply if β is very 289

small. The final expression is precisely the “straight 290

string” result used originally by Schelleng, whereby 291

the bridge force is a scaled version of the integral of 292

the velocity waveform. It is convenient to introduce 293

the non-dimensional ratio of the transfer functions in 294

Eqs. (6) and (7), which captures the correction to the 295

bridge force arising from a non-rigid body: 296

ζ =
sin kβL

sin kβL− iZ0TY cos kβL
. (8)

For future reference, it is useful to note the driving- 297

point admittance at the “free” end of the string, based 298

on the same level of approximation: this is given by 299

YTb = − 1

Z0T

Y Z0T cos(kβL) + i sin(kβL)

cos(kβL) + iY Z0T sin(kβL)
. (9)

Including the finger side of the string, assuming an 300

ideal string with a rigid termination, the combined 301

driving-point admittance YT (ω) is then given by 302

1

YT
=

1

YTb
+ iZ0T cot(k (1− β)L). (10)

The rest of the argument for the minimum bow 303

force now follows through exactly as before. A for- 304

mula for the minimum bow force could be constructed 305

directly using the Fourier series representation of the 306

Helmholtz velocity waveform and the transfer func- 307

tion from Eq. (6), but it is simpler to say that the 308

original formula Eq. (5) still applies, except that ev- 309

erywhere that Y appears it should now be replaced 310

by ζY . The modified minimum bow force thus takes 311

the form 312

Fmin =
2vbZ

2
0T

π2β2(µs − µd)
.

max
t

{
Re

∞∑
n=1

(−1)n+1

n2
ζ(nω0)Y (nω0)einω0t

}

+Re
∞∑

n=1

ζ(nω0)Y (nω0)

n2


(11)

Note that, similar to the bridge admittance, param- 313

eter ζ is a complex value, so the relative phase of 314

the excitation force and the response is automatically 315

taken into account. 316

To explore the consequences of this model it is use- 317

ful to express the bridge admittance in terms of the 318

body modal properties, in the standard way. Suppose 319

the kth mode has frequency ωk, Q factor Qk, and 320
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mass-normalised modal amplitude at the string notch321

in the plane of bowing uk: then322

Y (ω) =
∑
k

iωu2k
ω2
k + iωωk/Qk − ω2

. (12)

Equivalently, this can be expressed in terms of the ef-323

fective modal mass Mk = 1/u2k. Now focus first upon324

the effect of a single body mode, such as is responsi-325

ble for the classic cello wolf note. A single term from326

the summation describes this mode, and its effect can327

be seen in simplest form by factorising the quadratic328

expression in the denominator and then expanding in329

partial fractions:330

iω

Mk(ω2
k + iωωk/Qk − ω2)

≈ i

2Mk

{
1

ω +$∗k
− 1

ω −$k

} (13)

where $k ≈ ωk(1 + i/2Qk), ∗ denotes the complex331

conjugate and the modal damping is assumed to be332

small. The first partial fraction term describes a pole333

at negative frequency, which can be neglected in this334

approximation. This leaves335

Y ≈ − i

2Mk(ω −$k)
(14)

so that the modified response according to the model336

developed above can be rearranged into the form337

ζY ≈ − i

2Mk(ω −$k − Z0T

2Mk
cot kβL)

≈ − i

2Mk(ω −$k − Z0T

2Mk
cotπβ)

.

(15)

The final expression applies when frequency is con-338

trolled by a player, adjusting the length of the string339

to give a fundamental frequency ω so that kL = π.340

The expression (15) describes a single pole with the341

same residue as in Eq. (14), but the (complex) fre-342

quency has shifted from $k to $k + Z0T

2Mk
cotπβ. For343

a player searching out a wolf note, the frequency of344

“maximum wolfiness” is predicted to shift upwards,345

by an amount that increases as the bowing point346

moves nearer to the bridge.347

These approximate results are illustrated in Fig. 3.348

The chosen case has the single body resonance at 172349

Hz with a Q factor of 40, and in order to show the350

effect in a rather extreme form, a low effective mass351

of 120 g is assumed. Figure 3a shows the magnitude352

of the function ζ for a range of values of β. It is353

immediately clear that the model agrees with the ex-354

perimental observation that the bridge force near the355

fundamental frequency tends to be reduced below the356

body resonance, and increased above it (but note that357

the actual switch of behaviour occurs slightly above358
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Figure 3: Effect on bridge force of a single body
resonance at 172 Hz with a Q factor of 40 and ef-
fective mass of 120 g: (a) the dimensionless ratio
|ζ(ω)| defined in Eq. (15); (b) original bridge admit-
tance |Y (ω)| (dashed line) and the modified version
|ζ(ω)Y (ω)| for several values of β.

the body resonance frequency). Figure 3b shows the 359

corresponding plot of the modified body admittance 360

|ζY | compared to its original version |Y |. A single 361

peak is seen, as predicted, moving to higher frequency 362

as β is reduced. The height of the peak stays fixed, 363

exactly as predicted by Eq. (15). 364

Figure 4 shows the simulated bridge force for the 365

same model, in a form that is directly comparable to 366

Fig. 2. The parameters used correspond to a bowed 367

C2 cello string [17], stopped at positions correspond- 368

ing to fundamental frequencies 169.2 Hz, 174.9 Hz, 369

and 190.6 Hz. The bow was positioned at β = 1/9.21. 370

The general similarity between the two sets of plots 371

is very clear. 372

Next, the minimum bow force as a function of the 373

played note is calculated from Eqs. (5) and (11) and 374

the predictions are compared against one another in 375

Fig. 5. The same single-resonance body is assumed, 376

and β is fixed at 1/9.21. It can be seen that the 377

frequency of the hardest note to play (the peak in 378

the minimum bow force plot) is shifted upwards for 379

the prediction made by Eq. (11). For the particular 380

chosen value of β this frequency is shifted from 172 381

Hz to 174.6 Hz. The smaller peak at around 86 Hz 382

represents a note that has its 2nd harmonic close to 383

the body resonance frequency. 384
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Figure 4: Simulated bridge forces for the case of a
single body resonance at 172 Hz with a Q factor of
40 and effective mass of 120 g, directly comparable to
ones shown in Fig. 2. The upper trace is for f0 = 190.6
Hz, far away from the wolf region. The middle trace
is for f0 = 174.9 Hz, slightly above the wolf region,
and the lower trace is for f0 = 169.2 Hz slightly below
the wolf region.
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Figure 5: Calculated minimum bow force for a single-
resonance body with the resonance frequency of 172
Hz. The red-dashed line shows the calculated mini-
mum bow force predicted by Eq. (5) and the black-
solid line shows the same quantity predicted by
Eq. (11). The vertical lines indicate the standard fre-
quencies of equal-tempered semitones, for reference.

3 Validation with time-domain385

simulation results386

3.1 The perturbation force at the bow387

A time-domain simulation model described in detail388

elsewhere [17, 18] can be used to test the modified389

predictions of minimum bow force. The model can390

include any desired combination of: the frequency-391

dependent damping behaviour, bending rigidity and392

torsional motion of the string; the coupling to body393

resonances and to the sympathetic strings via the394

bridge; both polarisations of transverse string motion; 395

transverse and longitudinal vibrations of the bow hair 396

ribbon, and its coupling to the bow stick. The model 397

can also be run with different models for dynamic 398

friction at the bow-string interface, but the simple 399

friction-curve model is used for all simulations in this 400

paper because the analytical results for minimum bow 401

force assume that model. 402

As has been discussed in Sec. 1.2 the perturba- 403

tion force at the bowing point, assuming a perfect 404

Helmholtz motion and a resistive end support, is a 405

parabola with its maximum value in the middle of 406

the sticking phase. This pattern repeats every cycle, 407

and in between each pair of parabolas is a section 408

of slipping represented by zero perturbation force if 409

Coulomb friction is assumed. The actual waveform 410

of friction force, however, is much more complex. It 411

can be influenced by the various model features listed 412

above, and it is useful to show some examples before 413

using simulations to address directly the question of 414

minimum bow force: see Fig. 6. 415

The first notable structure in the perturbation force 416

is the pattern of Schelleng ripples, which are a con- 417

sequence of rounding of the Helmholtz corner. When 418

the corner arrives at the bow from the finger side, it 419

begins to interact with the bow before slipping is trig- 420

gered; similarly, on the bridge side the tail of the cor- 421

ner continues to interact with the bow after recapture 422

has been triggered. Those interactions occur in the 423

sticking phase, during which the bow acts as a barrier 424

and reflects the waves that arrive at it. That reflec- 425

tion requires an increase in the perturbation force at 426

the bow, giving rise to the so-called “rabbit ears” ap- 427

pearing in the friction force just before and after the 428

slipping phase [3]. These reflected waves at the bow 429

get trapped between the bow and their corresponding 430

termination point, and together with their counter- 431

parts from the cycles before and after, form a struc- 432

ture of ripples with period βP where P is the period 433

of the full-length string [15, 3]. 434

A consequence of the friction-curve model is that 435

the ripples on the finger side tend to be larger than 436

the ones on the bridge side, because they are pro- 437

duced by the large jump of the friction force before 438

triggering of the slip, while the ones on the bridge side 439

are created from the smaller jump before recapture. 440

The effect is demonstrated in Fig. 6a, which shows 441

the simulated friction force at the bowing point for 442

a damped but perfectly flexible C2 string terminated 443

at rigid supports. The velocity of the string at the 444

bowing point is also plotted, to indicate the timing of 445

transitions between sticking and slipping. The only 446

source of dissipation in this system is the damping 447

of the string, which is very low; so the general trend 448

of the friction force is flat, apart from the prominent 449

Schelleng ripples. The arrows labelled ‘1’ and ‘2’ point 450

to the “rabbit ears”. β was chosen at around 1/13, 451

so there are 13 Schelleng ripples in each string period. 452



Mansour et al.: On minimum bow force 7

0 0.5 1 1.5

-0.5

0

0.5

1

(a) None

0 0.5 1 1.5

-0.5

0

0.5

1

(b) Torsion

Time (periods)
0 0.5 1 1.5

N
o

rm
a

lis
e

d
 f

ri
c
ti
o

n
 f

o
rc

e
--

V
e

lo
c
it
y
 (

m
/s

)

-0.5

0

0.5

1

(c) Bending stiffness

Time (periods)
0 0.5 1 1.5

-0.5

0

0.5

1

(d) Body resonance

4
3

2
1

torsional spike

Figure 6: Samples of simulated friction force at the
bowing point non-dimensionalised by the normal bow
force (solid-black lines), overlaid on the synchronised
string velocity at the same point (blue dashed-dotted
lines). (a) is for a rigidly terminated, damped, but
perfectly flexible string, and (b) to (d) are the same
as (a), except in (b) the torsional motion of the string
is included, in (c) the string’s bending rigidity is in-
cluded and in (d) the bridge is a single resonator with
mode frequency of 172 Hz (the features are added
individually). The simulations are made on the C2

string played at 164.23 Hz with a normal bow force of
0.746 N and β = 0.0764. The red-dashed line shows
the constant value of 1.2, which is the maximum value
considered for the static friction coefficient.

The “rabbit ears” do not have implications for mini-453

mum bow force as they happen at the boundaries of454

the slipping phase. The most important ripples for455

triggering an early slip are probably the ones that456

have only been reflected once at each boundary, so457

that they are the least attenuated. These two ripples458

are shown by arrows ‘3’ and ‘4’ for the bridge and459

finger sides, respectively.460

The next influence on the friction force at the bow-461

ing point is torsional motion of the string. One im-462

portant effect of torsional motion is to modify the ef-463

fective characteristic impedance of the string as seen464

by the bow. A second effect is to allow the string465

to roll on the bow during sticking, which allows the466

Schelleng ripples (or any other disturbances) arriving467

at the bowing point during sticking to ‘leak’ past the468

bow. This results in relatively smaller fluctuations of469

friction force at the bow. This effect is demonstrated470

in Fig. 6b, which is the same as Fig. 6a except that471

the torsional motion of the string has been added to472

the model. The ripples are much weaker, and there473

is also a gentle hill-like structure in the force wave-474

form, presumably caused by the added damping of475

the torsional motion. 476

Another effect on the friction force that might con- 477

ceivably be significant is the “torsional spike”. The 478

mechanism that generates “rabbit ears” also results 479

in outgoing torsional waves. In particular, the tor- 480

sional pulse initiated by the large jump in friction 481

force at the end of sticking is sent toward the fin- 482

ger side. As torsional waves travel roughly five times 483

faster than transverse waves, the pulse arrives back 484

to the bow early in the sticking phase and causes a 485

disturbance that could possibly trigger a slip. The 486

spike is quite insignificant in the example waveform 487

in Fig. 6b (marked by an arrow), but under some cir- 488

cumstances it can be bigger. 489

Bending stiffness of the string also leads to a distur- 490

bance in the friction force. It causes higher-frequency 491

waves to travel along the string faster than low- 492

frequency waves, so that the high-frequency content 493

of the Helmholtz corner arrives at the bowing point 494

before the main peak arrives, forming what can be 495

called “precursor waves”. Those precursor waves hit 496

the bow in the nominal sticking phase, so they have 497

to be reflected and in the process require an increased 498

friction force at the bowing point. After a few peri- 499

ods, the reflected precursor waves from different cy- 500

cles merge so that the individual origin of each feature 501

cannot easily be discerned. Figure 6c shows an exam- 502

ple: all the parameters of the model are the same as 503

for Fig. 6a, except that the bending stiffness of the 504

string has been added. 505

The final contribution to the perturbation force at 506

the bow is the one already discussed: the motion of 507

the bridge. Figure 6d shows an example of how a 508

non-rigid bridge affects the friction force at the bow, 509

all other parameters being the same as for Fig. 6a. 510

For simplicity, a single-resonance body has been con- 511

sidered with a resonance frequency slightly above the 512

played frequency of the string. The effect is a sinu- 513

soidal contribution to the friction force. For a more 514

realistic multi-resonance case the body-induced per- 515

turbation would be a superposition of such sine waves, 516

which is usually dominated by the strongest body res- 517

onance falling close to the string’s fundamental, or one 518

of its harmonics. 519

3.2 The playable range and sawtooth- 520

ness 521

The results of the time-domain simulation model can 522

now be compared with the predictions of the mini- 523

mum bow force from Eq. (11), which tries to capture 524

the effect of a non-rigid bridge. Note that among the 525

mechanisms just illustrated, all except the trapdoor 526

effect of the torsional waves are detrimental to the 527

stability of the Helmholtz motion, so both original 528

and revised predictions of minimum bow force can be 529

expected to underestimate the minimum bow force 530

to some extent. The predictions should give a bet- 531
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ter match to the actual minimum bow force close to532

strong body resonances where the movement of the533

bridge is the major contributor to the perturbation534

force at the bow. Away from that, other effects —535

not accounted for in the theoretical relations — gain536

significance and widen the gap.537

In keeping with Schelleng’s original argument, for538

each combination of β and FN the simulated finger-539

stopped C2 string was initialised with Helmholtz mo-540

tion and then monitored to see whether or not it could541

sustain that vibration regime (see [18] for details). For542

the purposes of this study, any motion of the string543

that involves only one stick and slip per string period,544

including “S-motion” [19], was classified as Helmholtz545

motion. For clarity a single body resonance was con-546

sidered, using the same rather extreme case as in the547

results presented earlier: frequency 172 Hz, effective548

mass is 120 g and Q factor 40. Only a single polar-549

isation of the string was considered. The frequency-550

dependent intrinsic damping of the string was based551

on Valette’s relation [20], with parameter values taken552

from [17]. The stiffness of the string and its torsional553

motion were excluded from the model at this stage.554

The string was bowed with a relatively small constant555

bow speed of 5 cm/s.556

Figure 7 shows the Schelleng diagrams calculated557

from the simulated data, overlaid on the theoreti-558

cal maximum bow force from Eq. (4) (dashed-dotted559

line), minimum bow force from Eq. (5) (dashed line),560

and its revised version from Eq. (11) (solid line). The561

variation of the dynamic friction coefficient as a func-562

tion of the sliding velocity has been included in the563

calculation of those theoretical limits. The simula-564

tions are made for 24 values of string fundamental565

frequency, starting from 162.35 Hz and increasing by566

20-cent steps. Each subplot specifies the frequency567

relative to the frequency of the body mode at 172 Hz.568

The data points in each subplot are spaced logarith-569

mically on the β axis from 0.016 to 0.19 in 20 steps,570

and on the bow force axis from some lower limit to571

11 N in 30 steps. The lower limit of bow force for572

each string frequency and β value was manually ad-573

justed, iteratively when necessary, so that it is always574

close but smaller than the minimum bow force at that575

particular combination.576

The shading scheme used in Fig. 7, also calculated577

from the simulated data, is based on a metric to cap-578

ture the extent of deviation of the calculated bridge579

force from being a perfect sawtooth wave. This met-580

ric (named “sawtoothness”) is the relative strength of581

the fundamental frequency component to the second582

harmonic normalised by a factor 2, the value of the583

relative strength for a perfect sawtooth wave. Thus a584

perfect sawtooth has a sawtoothness of 1, while any585

smaller value connotes a weaker-than-expected fun-586

damental and any larger value connotes a stronger-587

than-expected fundamental. Although the criterion588

is relatively crude, it reveals a clear and systematic589
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Figure 7: The Schelleng map of the playable range
for a simulated damped but perfectly flexible C2 cello
string terminated at a single-resonance body at 172
Hz and with an effective mass of 120 g. The torsional
vibrations of the string were excluded from the sim-
ulations. The number on top of each subplot shows
the relative frequency of the played note with respect
to the body resonance. The color of the simulated
sample points represents their sawtoothness, defined
in the text and according to the scale shown on the
color bar. The overlaid blue dashed-dotted line shows
the maximum bow force limit calculated from Eq. (4),
the red-dashed line shows the minimum bow force cal-
culated from Eq. (5), and the black-solid line is the
same quantity calculated from Eq. (11).

pattern. 590

It is immediately striking how well the revised ver- 591

sion of the minimum bow force relation fits the lower 592

boundary of Helmholtz motion. Both theoretical esti- 593

mates slightly underestimate the minimum bow force, 594

as anticipated, but the revised equation makes a much 595

better prediction of the trend. Of particular inter- 596

est are the range of relative frequencies -9.65 Hz to 597

+4.02 Hz in Fig. 7 where there are many occurrences 598

of Helmholtz motion below the level set by Eq. (5). 599

The revised minimum bow force limit is curved in 600



Mansour et al.: On minimum bow force 9

a manner that generally avoids this situation, miss-601

ing only 4 instances of Helmholtz occurrences across602

all simulated cases. For relative frequencies +1.99603

to +8.13 Hz a local maximum occurs in the mini-604

mum bow force curve. It is encouraging to see that605

the β-value of this maximum depends on the fun-606

damental frequency of the simulated string as pre-607

dicted by Eq. (11), with its physical origin described608

by Eq. (15).609

In extreme cases this local maximum crosses the610

maximum bow force line, with the striking conse-611

quence of splitting the playable range. These splits are612

plainly visible in the simulated data, following the pre-613

dicted pattern in all cases (see the results for relative614

frequency +6.06 Hz, for instance). This phenomenon615

is entirely absent from Eq. (5), a difference which may616

well prove to be significant to a player. The max-617

imum bow force limit set by Eq. (4) makes a very618

good prediction of the upper boundary of Helmholtz619

motion, lending credence to Schelleng’s original argu-620

ment. The few exceptions for which “Helmholtz mo-621

tion” was achieved above that boundary were checked622

manually, and were confirmed to correspond to S-623

motion [19]. S-motion is expected to occur for β val-624

ues near, but not equal to, simple integer fractions,625

and it is predicted by Schelleng’s argument to have626

a higher maximum bow force than Helmholtz motion627

so that it can appear in otherwise raucous territory.628

The behaviour of the sawtoothness metric follows629

the pattern described earlier: the general rule is that630

at frequencies lower than the body resonance the631

share of the fundamental is weaker than expected,632

while it becomes stronger than expected at frequen-633

cies above the body resonance. There is some β-634

dependency as well, as is clear from the plots: the635

sawtoothness metric is systematically lower for small636

β values, and higher for larger values. There seems637

to be no particular bow force dependency: the equi-638

sawtoothness lines are approximately vertical in each639

subplot. A quantitative comparison of these sim-640

ulated sawtoothness results with theoretical predic-641

tions of Eq. (8) also revealed a very close agreement642

between the two; those results are not reproduced643

here.644

Note that the simulations for Fig. 7 were performed645

for the heaviest string of the cello and with a smaller-646

than-normal effective body mass to show the trends647

in extreme form. A wide range of similar simulations648

have been performed with more realistic parameter649

values [16], not reproduced here, and in all cases the650

prediction of the minimum bow force from Eq. (5) was651

found to pass above some Helmholtz samples while652

the revised prediction curves correctly mirrored the653

simulated behaviour. There is always a tendency for654

the Helmholtz region to extend toward lower β val-655

ues for frequencies below the wolf region, while the656

Helmholtz region is reduced in the small-β range for657

frequencies above the wolf region.658

With a multi-resonance body, the pattern is more 659

complicated and occurs over a wider range of frequen- 660

cies as there is more than one mode contributing to 661

the response of the body in the frequency range of 662

interest. The playable range is not usually split into 663

two parts for any simulated note when a more real- 664

istic model of the body is considered. All the effects 665

become weaker, as expected, when a lighter D3 string 666

is simulated in place of a C2 string. 667

4 Influences on minimum bow 668

force 669

4.1 Torsional string motion 670

The simulation model can now be used to explore the 671

effect on minimum bow force of the various additional 672

physical effects listed earlier. As a first step, the sim- 673

ulations of Fig. 7 were repeated with torsional mo- 674

tion of the string included in the model. Figure 8 675

shows a comparison between the simulated data and 676

the analytical predictions of the maximum and min- 677

imum bow forces calculated from Eqs. (4) and (11). 678

The dashed line shows the analytical prediction of the 679

minimum bow force when Z2
0T in Eq. (11) is replaced 680

by Z0TZtot, and the dotted line is the prediction of 681

the maximum bow force when Z0T in the numerator 682

of Eq. (4) is replaced with Ztot, as suggested by earlier 683

researchers [6, 7]. Interestingly, the predictions made 684

without consideration of the torsional motion give sig- 685

nificantly closer matches to the simulated data than 686

the ones with such consideration. This conclusion is 687

consistent with recent experimental findings by Mores 688

[21] about the maximum bow force. 689

To understand this somewhat surprising observa- 690

tion, it can be argued that the influence of torsional 691

motion on playability should manifest itself through 692

the admittance at the bowing point as felt by the bow. 693

In the spirit of the earlier calculations in this paper, 694

it is easy to write down a first approximation to the 695

combined admittance including the effect of torsional 696

vibration. The admittance at the bowing point asso- 697

ciated with torsional motion alone is given by 698

YR =
1

iZ0R (cot(kRβL) + cot(kR (1− β)L) )
, (16)

where kR is the wavenumber of torsional waves. The 699

corresponding admittance for transverse motion alone 700

was given in Eq. (10), and the combined admittance 701

is simply the sum of these two. The magnitudes of the 702

bowing-point admittances with and without allowing 703

for torsional motion are compared in Fig. 9, and it can 704

be seen that they are indeed very close in the lower 705

frequency range. 706

The key to this observation is that the first torsional 707

mode of the string occurs at almost five times the 708
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Figure 8: Same as Fig. 7 except the torsional mo-
tion of the string is included in the simulations. The
blue dashed-dotted line shows the maximum bow
force limit calculated from Eq. (4), the black-solid
line shows the minimum bow force calculated from
Eq. (11). The red-dashed line and the black-dotted
lines are the minimum and maximum bow forces pre-
dictions which also take into account the torsional mo-
tion of the string as explained in the text.

stick-slip frequency of the string when it is bowed. As709

a result, for frequencies below the 5th harmonic of the710

bowed string the numerical value of YR remains very711

small, so the bowing-point admittance is little affected712

by it. To his credit, Schumacher left the door open713

to this possibility noting that replacing Z0T by Ztot714

ignores “the normal-modes structure of the rotational715

modes, thus in effect treating the string as if it were716

unbounded for rotational waves.”[7].717

4.2 Sympathetic strings718

A violin or cello has four strings, of which only one719

is usually bowed at a given time. The other three720

non-played, but freely-vibrating, strings are coupled721

to the bowed string as well as to other freely-vibrating722

strings through the common bridge that supports723
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Figure 9: The magnitude of the bowing point admit-
tance plotted against the normalised frequency. The
results excluding torsional motion, from Eq. (10), are
shown by the thick black line and the results includ-
ing torsion as described in the text are shown by the
thin red line.

them. For brevity these three strings can be called 724

“sympathetic strings”, although they may or may not 725

be tuned sympathetically to the bowed string. As far 726

as the bowed string is concerned, any effect from the 727

sympathetic strings should come into play by modify- 728

ing the bridge admittance as felt by the bowed string. 729

The effective bridge impedance, Zeff , is simply the 730

sum of the bridge impedance in the absence of the 731

sympathetic strings, plus the impedance of the sym- 732

pathetic strings at the bridge: 733

Zeff =
1

Y
+ i

∑
strings

Z0sym cot(ksymLsym), (17)

where the subscript “sym” represents the correspond- 734

ing parameter for each sympathetic string. Replacing 735

Y by 1/Zeff in all earlier equations concerning the 736

minimum bow force gives the equivalent results with 737

sympathetic strings taken into account. 738

Figure 10a shows the real part of the effective bridge 739

admittance when a single G2 sympathetic string is 740

included. The effect in the plotted range is to add 741

two sharp local resonance structures at around 98 Hz 742

and 196 Hz. The admittances with and without the 743

sympathetic string look very similar away from those 744

frequencies. There can be some interaction between 745

the sympathetic strings and the body resonance if 746

they fall very close in frequency: that interaction usu- 747

ally results in some repulsion of the two peaks. Fig- 748

ure 10b shows the minimum bow force plot, equivalent 749

to Fig. 5a but calculated using the modified admit- 750

tance. Not surprisingly, the minimum bow force is 751

most affected around 98 Hz, its almost-integer multi- 752

ples, and the subharmonics of all of those multiples. 753
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Two examples of those subharmonics visible in the754

range plotted here are a 65.4 Hz peak that has its 3rd755

harmonic coincident with the 2nd mode of the sympa-756

thetic string, and a small spike at 146.83 Hz, which is757

half the 3rd mode frequency of the sympathetic string.758

The modified admittance always shows a dip at the759

exact frequency of the sympathetic string modes, ac-760

companied by a closely spaced peak. This is familiar761

behaviour for any structure fitted with what is var-762

iously called a “tuned mass damper” or “tuned dy-763

namic absorber” (see for example [22]): a very similar764

effect occurs when a wolf suppressor is installed on a765

string’s after-length, tuning its frequency to match the766

wolf note. For the particular case of a single-resonance767

body, the peak always happens before the dip at fre-768

quencies below the body resonance, and after the dip769

at frequencies above the body resonance. This trend770

is necessary so that the combined set of resonances,771

including the sympathetic strings, obey Foster’s theo-772

rem: in a driving-point response, resonances and anti-773

resonances always alternate [23]. Translating this into774

the minimum bow force plot creates an interesting775

shape at 98 Hz. There is a dip exactly at 98 Hz which776

has a peak below, reflecting what happens in the ad-777

mittance at around 98 Hz; as well as another small778

peak slightly above 98 Hz that is the consequence of779

the peak at slightly above 196 Hz in the admittance780

curve (look at the magnified box in Fig. 10b). Care781

should be taken not to misattribute this double peak782

structure to the coupling of the bowed and the sym-783

pathetic strings, and the consequent peak splitting784

[24, 25]. Evidently, this double peak situation does785

not apply to the minimum bow force plot at around786

196 Hz as the peak frequencies of the fundamental787

and all of its harmonics are slightly above the pure788

multiples of 196 Hz in the admittance.789

Leaving aside those details, Fig. 10 suggests that790

sympathetic strings can have a significant effect on791

the playability of the notes that are harmonically re-792

lated to them, so that it may be worth including their793

effect in the prediction of the minimum bow force.794

The qualitative effect of each sympathetic string and795

the magnitude of the effect depends on the proper-796

ties of the bridge admittance in that frequency range,797

and may vary from one instrument to another. As an798

example, an accurate relation for the minimum bow799

force should make a distinction between a cello that800

has its body resonance near G3 and one that has it801

near F3
#. Even if those modes were equally strong,802

the mode near G3 is more likely to be suppressed by803

the presence of harmonically-related open strings.804

4.3 Out-of-plane string vibration805

A string can vibrate transversely in two perpendicu-806

lar polarisations. Adding a body mode with the same807

frequency as an unperturbed pair of string modes, the808

string polarisation aligned with the body mode will be809
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Figure 10: The bridge admittance (a) and the min-
imum bow force calculated from it (b) for a single-
resonance body mode located at 172 Hz. The calcula-
tion of the minimum bow force is made from Eq. (11).
The black-solid curve is for the case where an open G2

string tuned at 98 Hz is supported on the same bridge,
and the red-dashed line shows the case without the
sympathetic string. The grey vertical lines in the top
plot show the frequency of the sympathetic string and
its 2nd harmonic, and in the bottom plot they show
the musical scale spaced by a semitone. The box in
the bottom plot is a zoomed version around 98 Hz.
The same line types apply to both plots.

effectively coupled, while the other string polarisation 810

will be unchanged. If the unperturbed frequencies of 811

the string and body do not exactly coincide, the cou- 812

pled modes will tend to retain string-like and body- 813

like properties, but some interaction still occurs. The 814

degeneracy of the string modes will be broken, and 815

each mode will have a particular polarisation direc- 816

tion. If the excitation from bowing is not perfectly 817

aligned with one of these special polarisations, some 818

vibration of the string will be induced in the plane 819

perpendicular to the bow. 820

Such out-of-plane string vibration might influence 821

minimum bow force through two quite different mech- 822

anisms. On the one hand, it will change the bowing- 823

point admittance, and it has already been argued that 824

this is a route for influence. On the other hand, the 825

perpendicular string vibration will induce fluctuations 826

in the normal force between bow and string. This 827

will influence the friction force via Coulomb’s law, or 828

whatever other friction model that is relevant. The 829

conditions leading to an additional slip will change, 830

and hence the minimum bow force will change. Both 831

effects will be briefly explored. 832

Looking first at the admittance at the bowing point, 833

the presence of the two coupled string-body modes in 834
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addition to an uncoupled string mode will result in835

three peaks where before there were only two. The836

peak that corresponds to the uncoupled vibration of837

the string will be rather sharp and occur at the un-838

perturbed string frequency, while the two others will839

be perturbed in frequency and more heavily damped.840

Gough [26] has argued that the existence of the un-841

coupled string mode might aid the formation and sta-842

bility of the Helmholtz motion as it is harmonically843

related to other string modes.844

Consider first the single-polarisation vibration of845

a finger-stopped C2 string with a constant Q factor846

of 500, and an unperturbed first mode frequency of847

172 Hz, coupled to a body mode with the same un-848

perturbed frequency, a modal mass of 120 g, a Q fac-849

tor of 40, and perfectly aligned with the bowing (i.e.850

admittance evaluation) direction. The red-dashed851

line in Fig. 11a shows the admittance evaluated at852

β = 1/13.3 according to Eq. (10). As expected, there853

are two split and heavily-damped coupled modes, rep-854

resenting the in-phase and out-of-phase motions of the855

string and the bridge.856

Now consider the dual-polarisation case: to give a857

“worst case”, suppose the body mode is inclined by858

θM= 45◦ with respect to the admittance evaluation859

direction. To make the two cases compatible the mass860

of the body mode is reduced to M = 120 cos2 θM =861

60 g, so that the bridge admittance in the bowing di-862

rection would remain the same in the absence of string863

coupling. To find the coupled admittance, the applied864

force must be resolved into the coupled and uncoupled865

polarisation directions of the string, and the resulting866

velocities projected back into the evaluation direction.867

The admittance calculated in this way is shown by868

the black-solid line in Fig. 11a. Exactly as argued869

by Gough [26], a sharp third peak appears at the un-870

perturbed frequency of the string. Furthermore, the871

coupled modes are repelled more widely than before872

because the effective body mass is smaller, resulting in873

a stronger coupling of the string and the body mode.874

A point that was neglected in Gough’s argument is875

that in order for such a sharp peak to appear in the ad-876

mittance, the string needs to be free to vibrate in the877

out-of-plane direction, as was the case in Gough’s ex-878

periments performed using electromagnetic excitation879

of the string in the bowing direction. However, this is880

not the case when a bow is in contact with the string:881

bow-hair coupling will significantly limit motion in882

the perpendicular-to-bow direction, and add damp-883

ing. A more relevant bowing-direction admittance884

would take into account a frictionless bow remain-885

ing in contact with the string at the bowing point.886

This is not, of course, a practical thing to measure,887

but it can be calculated quite readily (see [16] for the888

derivation).889

The blue dash-dotted line in Fig. 11a shows the890

result. The parameters used for the transverse vibra-891

tions of the bow-hair are extracted from [18]: a char-892

acteristic impedance of 0.79 kg/s and first mode fre- 893

quency of 75 Hz for the 0.59 m full length of the bow. 894

The Q factor is estimated at 20 for all bow-hair modes. 895

The distance between the contact point and the frog 896

normalised by the full length of the bow hair ribbon 897

is chosen to be 0.31. It can be seen that the sharp 898

uncoupled resonance has been moderately affected by 899

the coupling to the bow-hair: its normalised frequency 900

has been reduced from 1 to around 0.99, probably due 901

to the added mass from the bow-hair, and it is more 902

heavily damped as well. To put this extreme case in 903

perspective a comparable plot is shown in Fig. 11b 904

in which a finger-stopped D3 string with an unper- 905

turbed first mode frequency of 172 Hz is coupled to a 906

body mode with the same unperturbed frequency, but 907

this time with a modal mass of 300 g: a more realis- 908

tic value than the earlier case with mass 120 g. The 909

body mode is inclined by θM= 20◦ and the total mass 910

is reduced to M = 300 cos2 θM = 264.9 g when both 911

polarisations are considered. It can be seen that the 912

unperturbed string resonance visible in the black solid 913

line is heavily suppressed by the coupling to the bow- 914

hair ribbon (see the blue dashed-dotted line) and is 915

merged with the in-phase split mode near normalised 916

frequency 0.98. 917

The detailed shape of the coupled admittance at 918

the bowing point depends on many parameters, such 919

as the mode frequencies of the bow hair, the distance 920

of the contact point from the frog, and the static al- 921

teration of the bow-hair tension. Therefore, the par- 922

ticular set of parameters chosen here is not claimed 923

to represent the exact effect that the coupling to the 924

bow hair has on the admittance of the string. How- 925

ever, examination of many similar computed cases 926

suggests that the coupled response generally remains 927

more similar to the single-polarisation case than to 928

the dual-polarisation case when typical body proper- 929

ties are considered. Any large deviation of the coupled 930

case from the single-polarisation case would require a 931

significant out-of-plane motion of the string, result- 932

ing in energy loss into the heavily damped ribbon of 933

bow-hair. 934

Under extreme circumstances, like those shown in 935

Fig. 11a, the effect discussed here can have a signif- 936

icant influence on the behaviour of a bowed string. 937

Figure 12 investigates the influence of such changes in 938

input admittance on the playable range in the Schel- 939

leng diagram, as predicted by time-domain simula- 940

tions. The plot is directly comparable to Fig. 7 except 941

that the single body mode has again been rotated to a 942

spatial angle θM= 45◦ with respect to the bowing di- 943

rection, and the already very low modal mass of 120 g 944

has been reduced to 60 g as before, in order to pre- 945

serve the effective mass in the bowing direction. The 946

fluctuations of the bow force are not considered in the 947

calculation of friction. The simulated results are very 948

significantly changed as a result of including the sec- 949

ond polarisation, and the pattern no longer matches 950
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Figure 11: The real part of the input admittance
at the bowing point, evaluated at 1/13.3

th
of the

string length away from the bridge. Red-dashed line
shows the case for the single-polarisation vibration of
the string, black-solid line shows the case for dual-
polarisation, and the blue dashed-dotted line is the
same as the dual-polarisation case except that a fric-
tionless bow is kept in contact with the string. Both
unperturbed string and body resonances are located
at the normalised frequency of 1. (a) is for a C2 cello
string coupled to a body mode with an effective mass
of 60 g and a spatial angle of θM= 45◦, and (b) is for a
D3 cello string coupled to a body mode with an effec-
tive mass of 264.9 g and a spatial angle of θM= 20◦.
Note the different scaling of the two plots. The same
line types apply to both plots.

the prediction from the earlier analysis. The playable951

range still shows significant variation with β, but the952

details have been changed by the altered string-body953

coupling, associated with the reduced effective modal954

mass. There does not seem to be any simple way to955

derive a prediction for the minimum bow force in the956

dual-polarisation case, in the spirit of Schelleng’s for-957

mula and the earlier analysis, so for the moment at958

least, simulation is the only way to get information959

about this effect.960

As noted earlier, under more typical circumstances961

the second polarisation of the string appears to have962

only a small effect on the admittance at the bowing963

point via the mechanism discussed above. There is,964

however, a second mechanism for influence via fluctu-965

ations in the bow force. It was shown in an earlier pa-966

per [18] that adding the second polarisation resulted967

in fluctuations of bow force up to 10% of the nom-968

inal value, which in turn led to a significantly lower969

minimum bow force for the particular case studied.970

Qualitatively, the effect of the second polarisation on971

the minimum bow force would be expected to depend972

on the timing of the bow force oscillations relative to973

the moment within the cycle when the perturbation974
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Figure 12: Same as Fig. 7 except the body mode has a
spatial angle of θM= 45◦ with respect to the bowing
direction. The effective body mass is reduced from
120 g to 60 g so that the effective mass in the bowing
direction remains the same. The second polarisation
of the string is coupled to the bow hair ribbon in its
transverse direction, but the fluctuations of the bow
force are not considered in the calculation of friction.

force at the bowing point reaches its maximum value: 975

this is the critical moment for determining the mini- 976

mum bow force. 977

Time-domain simulations of four cases are com- 978

pared to investigate how this effect varies with the 979

properties of the body modes and over different fre- 980

quencies. The chosen base case relates to the single- 981

polarisation vibration of a damped but perfectly flexi- 982

ble D3 cello string, terminated at a body with a single 983

resonance at 172 Hz with an effective mass of 300 g 984

(consistent with the cases plotted in Fig. 11b). This 985

relatively lightly-coupled case is chosen to limit varia- 986

tions in bowing-point admittance and to focus instead 987

on the effects that bow force fluctuations have on the 988

friction force. For simplicity, the torsional motion of 989

the string is excluded. The results will be compared 990

with other cases that bring in the second polarisation 991

of string motion. The body mode is inclined with 992
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respect to the bowing direction by θM = +20◦ in993

one case, and by θM = −20◦ in the other, both with994

the same adjustment to maintain the effective mass in995

the bowing direction at 300 g. To monitor the effects996

caused by variations in bowing-point admittance, a997

fourth case is considered that is the same as the case998

with θM = +20◦ except the fluctuations of the bow999

force are not considered in the calculation of friction.1000

Given that for all dual-polarisation cases the cou-1001

pling happens via a single mode whose frequency is1002

also close to the played note, the second polarisation1003

of the string mainly responds to the fundamental fre-1004

quency of the string. Simulation results, not repro-1005

duced here, show that the bow force reaches its maxi-1006

mum at a time close to the stick-to-slip transition for1007

playing frequencies below the body mode, whereas it1008

reaches its maximum value at around the middle of1009

the sticking phase for frequencies above it. The same1010

pattern is expected for the perturbation force at the1011

bowing point: the body acts like a spring (in-phase1012

vibration) at frequencies below its mode frequency1013

and like a mass (out-of-phase vibration) at frequencies1014

above it. Based on the argument given above, a body1015

mode with θM > 0 should reduce the minimum bow1016

force at all frequencies (because it produces a larger1017

value for the effective bow force when the perturba-1018

tion force reaches its maximum). The corresponding1019

computations for the θM = −20◦ case resulted in an1020

exact reversal of the relative timing, so the prediction1021

would be an increase in minimum bow force at all1022

frequencies.1023

Figure 13 provides simulation results that show how1024

well those predictions work. The relative number of1025

double-slip/decaying occurrences for each played note1026

of the three dual-polarisation cases are compared to1027

that for the base case: a larger number of such sam-1028

ples indicates a relatively larger minimum bow force.1029

As expected, the θM = +20◦ case has a significantly1030

smaller number of double-slip/decaying samples than1031

the base case; the opposite holds for the θM = −20◦1032

case. The minimum bow force for the case with1033

θM = +20◦ but a constant bow force remains very1034

close to that of the single polarisation case except at1035

the relative frequency +1.99 Hz: this confirms the1036

suggestion that the influence of bow force fluctuations1037

is generally stronger than the effect of admittance1038

changes. The reader is warned not to over-interpret1039

these results: the range of simulations was obviously1040

the same for any given played note for the four dif-1041

ferent cases, but it was different for different played1042

notes. So, for example, green bars for different notes1043

should not be directly compared to one another.1044

It should be noted that the effect of θM will be1045

negated by reversing the bowing direction (i.e. from1046

up-bow to down-bow). For a real instrument at lower1047

frequencies, the center of rotation for the bridge is1048

usually close to the bridge foot on the treble side [27].1049

As a result, for ergonomically possible bow inclina-1050

tions the body modes generally have slightly positive 1051

angles for the lowest string (e.g. C2 for the cello) and 1052

negative angles for all other strings. 1053

5 Discussion and Conclusions 1054

The minimum bow force needed to sustain the 1055

Helmholtz regime on a bowed string has been ex- 1056

tensively studied as a useful measure of “playability” 1057

variations between instruments or between notes on 1058

a given instrument. Schelleng’s original formula gave 1059

a useful first approximation, but one that was hard 1060

to apply quantitatively to any specific instrument. 1061

Woodhouse [4] extended the argument to make use 1062

of the measured bridge admittance on a given instru- 1063

ment, resulting in quantitative note-by-note predic- 1064

tions. In this paper, that approach has been further 1065

refined to take account of observed changes in the 1066

waveform of force applied by the string at the bridge 1067

when playing a note close to a strong body resonance. 1068

Starting from an assumption of a perfect stick-slip 1069

velocity waveform at the bow, rather than a per- 1070

fect sawtooth force excitation at the bridge as be- 1071

fore, these waveform variations can be understood 1072

and predicted. The predictions, together with the 1073

corresponding revised relation for the minimum bow 1074

force, have been very successfully validated by exten- 1075

sive time-domain simulations. A striking feature of 1076

the new predictions is that the minimum bow force 1077

can depend on the bowing position β in a far more 1078

complicated way than in the earlier models: in ex- 1079

treme cases, it is even predicted that there might be 1080

a “playability gap”: a range of β where Helmholtz 1081

motion cannot be sustained, although it becomes pos- 1082

sible by bowing either nearer to the bridge or further 1083

from the bridge. 1084

A combination of analysis and simulation has also 1085

been used to investigate the influence on the minimum 1086

bow force of several aspects of bowed-string physics 1087

that were ignored in the simpler calculations. It had 1088

been previously suggested by various authors that tor- 1089

sional motion of the string might have an effect on 1090

minimum bow force, by modifying the characteristic 1091

admittance of the string felt by the bow. However, it 1092

has been shown that this modification is not appro- 1093

priate: detailed simulations agree more closely with 1094

estimates of minimum bow force that ignore torsion 1095

than they do with supposedly “improved” estimates 1096

incorporating the modified admittance. This can be 1097

attributed to the fact that the first torsional mode 1098

of a finite-length string has a much higher frequency 1099

than that of the first transverse mode, so the detailed 1100

admittance at the bowing point at low frequencies is 1101

very little perturbed by torsional effects. 1102

The effect of sympathetic strings and their inter- 1103

actions with the body modes has been examined. 1104

Modes of sympathetic strings can sometimes have a 1105

significant influence, usually confined to frequencies 1106
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Figure 13: The relative number of double-slip/decaying samples out of a total of 600 simulated samples for
each string frequency. The numbers are for the three cases of double-polarisation with respect to the single-
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without considering the fluctuations of bow force. The horizontal axis shows the frequency of the simulated
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where there is some close harmonic relation between1107

modes of the played and sympathetic strings. It is1108

easy to modify the bridge admittance to take ac-1109

count of the effect of sympathetic strings (including1110

the after-lengths of strings on the non-played side of1111

the bridge). That modified admittance can be incor-1112

porated directly in the calculation of the minimum1113

bow force.1114

Finally, the influence of the second polarisation of1115

transverse string has been examined. Such influence1116

can come by two routes: by modifying the admit-1117

tance of the string at the bowed point, or by causing1118

fluctuations in the force in the normal direction (on1119

top of the player’s imposed bow force). Both mech-1120

anisms can have effects that might, under some cir-1121

cumstances, be noticed by a player, but under normal1122

circumstances the effects seem to be quite minor.1123
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