
Under consideration for publication in J. Fluid Mech. 1

The minimal-span channel for rough-wall
turbulent flows

M. MacDonald1†, D. Chung1, N. Hutchins1, L. Chan2, A. Ooi1 and
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Roughness predominantly alters the near-wall region of turbulent flow while the outer
layer remains similar with respect to the wall shear stress. This makes it a prime candi-
date for the minimal-span channel, which only captures the near-wall flow by restricting
the spanwise channel width to be of the order of a few hundred viscous units. Recently,
Chung et al. (J. Fluid Mech., vol. 773, 2015, pp. 418–431) showed that a minimal-span
channel can accurately characterise the hydraulic behaviour of roughness. Following this,
we aim to investigate the fundamental dynamics of the minimal-span channel framework
with an eye towards further improving performance. The streamwise domain length of
the channel is investigated with the minimum length found to be three times the span-
wise width or 1000 viscous units, whichever is longer. The outer layer of the minimal
channel is inherently unphysical and as such alterations to it can be performed so long
as the near-wall flow, which is the same as in a full-span channel, remains unchanged.
Firstly, a half-height (open) channel with slip wall is shown to reproduce the near-wall
behaviour seen in a standard channel, but with half the number of grid points. Next,
a forcing model is introduced into the outer layer of a half-height channel. This re-
duces the high streamwise velocity associated with the minimal channel and allows for
a larger computational time step. Finally, an investigation is conducted to see if varying
the roughness Reynolds number with time is a feasible method for obtaining the full
hydraulic behaviour of a rough surface. Currently, multiple steady simulations at fixed
roughness Reynolds numbers are needed to obtain this behaviour. The results indicate
that the non-dimensional pressure gradient parameter must be kept below 0.03–0.07 to
ensure that pressure gradient effects do not lead to an inaccurate roughness function. An
empirical costing argument is developed to determine the cost in terms of CPU hours of
minimal-span channel simulations a priori. This argument involves counting the number
of eddy lifespans in the channel, which is then related to the statistical uncertainty of the
streamwise velocity. For a given statistical uncertainty in the roughness function, this can
then be used to determine the simulation run time. Following this, a finite-volume code
with a body-fitted grid is used to determine the roughness function for square-based
pyramids using the above insights. Comparisons to experimental studies for the same
roughness geometry are made and good agreement is observed.
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1. Introduction

Conventional Direct Numerical Simulations (DNS) of wall-bounded turbulent flows
represent a challenging computational problem, as both small and large scales need to
be represented. The former requires a fine grid to resolve the small viscous scales, while
the latter requires a large domain to capture the large outer-layer motions. However,
pioneering work by Jiménez & Moin (1991) and Hamilton et al. (1995) into minimal-
flow units showed that a small computational domain can be used to exclusively capture
the turbulent near-wall cycle, independent of the large outer scales. This is achieved by
simply restricting the domain of the channel to a small size, where the spanwise and
streamwise lengths are prescribed in terms of viscous units. Jiménez & Moin (1991)
showed that turbulence could be maintained in the form of the near-wall cycle of the
buffer layer when the spanwise domain width was only on the order of 100ν/Uτ ; here ν
is the kinematic viscosity and Uτ =

√
τw/ρ is the friction velocity, defined using the wall

shear stress τw and the fluid density ρ . This was further supported by future studies
into minimal-flow units (Jiménez & Pinelli 1999; Flores & Jiménez 2010; Hwang 2013;
Chung et al. 2015; Hwang & Bengana 2016). In particular the work of Flores & Jiménez
(2010) showed that the minimal-span channel can also capture the logarithmic layer of
turbulent flows.

An important aspect of minimal-span channels is that the near-wall flow is accurately
captured up to a critical wall-normal location, zc. Above this point, the streamwise
velocity increases compared to a full-span channel. This unphysical increase occurs as
the narrow spanwise domain width of the minimal-span channel acts as a filter which
limits the largest spanwise scale of energy-containing eddies. The flow does, however,
retain turbulent scales smaller than the spanwise domain width, so it is not laminar
(Jiménez & Pinelli 1999). The critical value where the minimal-span channel departs
from the full-span channel has been shown to scale with the spanwise domain width,
zc ≈ 0.4Ly (Chung et al. 2015), although a constant of 0.3 is suggested in Flores &
Jiménez (2010) and 0.3–0.4 in Hwang (2013). Following Flores & Jiménez (2010), we will
refer to the flow below zc as ‘healthy’ turbulence, as it is in a full-span channel.

In the context of roughness, the central question is how the geometry of a rough surface
is related to its hydraulic behaviour; namely, what value the (Hama) roughness function,
∆U+, takes (Hama 1954). This quantity reflects the flow retardation, or velocity shift,
that the roughness imposes on the flow when compared to a smooth wall, for matched
friction Reynolds numbers, Reτ = Uτh/ν (here h is the half-channel height, boundary
layer thickness, or pipe radius). For a given surface, ∆U+ can be obtained from various
semi-empirical models and approximations, or directly from full-scale experiments and
numerical simulations. The former are of varying accuracy and depend on the model se-
lected and the rough surface in question, while the latter can be prohibitively expensive.
In particular, full-scale numerical simulations suffer from the drawbacks mentioned above,
in which both small- and large-scale motions need to be captured. However, roughness is
thought to primarily alter only the near-wall flow, in a region called the roughness sub-
layer which typically extends 3–5k from the wall, where k is some characteristic height of
the roughness (Raupach et al. 1991). Well outside the roughness sublayer the flow is only
changed insofar as it depends on the friction velocity Uτ . This is the basis of Townsend’s
outer-layer similarity hypothesis (Townsend 1976) which has received significant atten-
tion and has been supported by several rough-wall studies (Flack et al. 2005; Leonardi &
Castro 2010; Chan et al. 2015) and also numerical simulations with modified boundary
conditions (Flores & Jiménez 2006; Mizuno & Jiménez 2013; Chung et al. 2014). If we
assume Townsend’s hypothesis holds, then it follows that the roughness only alters the



Numerical experiments with the rough-wall minimal channel 3

near-wall region of the flow which therefore makes it a prime candidate for use in the
minimal-span channel framework.

The equivalent sandgrain roughness, ks, is a single dynamic parameter that is used to
describe the hydraulic behaviour of roughness. It is defined so that the roughness func-
tion collapses for all data in the fully rough regime, when the friction factor no longer
depends on the bulk-velocity Reynolds number (Jiménez 2004, who called this ks∞).
However, each rough surface will have a unique behaviour in the transitionally rough
regime. It is an expensive process to determine the full hydraulic behaviour, as a range
of simulations need to be conducted for the different roughness Reynolds numbers, each
requiring a different body-fitted grid and its own initialisation period. It would there-
fore be desirable to conduct a simulation in which only a single computational grid is
used, and the bulk velocity is changed over time to sweep through a range of roughness
Reynolds numbers. This is a similar approach to how experimental studies are performed
in that a single rough surface with fixed k/h is tested at multiple flow speeds, so that
the roughness Reynolds number varies. In order to obtain statistics at a desired friction
Reynolds number in a temporally evolving flow, statistics are averaged over a small win-
dow in which the instantaneous friction Reynolds number is close to the desired one.
Within this window, the flow is assumed to be quasi steady. This would therefore gen-
erate a near-continuous curve of ∆U+ versus k+, rather than the conventional (steady)
approach which only generates a few data points. An important consideration which will
be investigated here is whether acceleration effects from the changing mass flux become
significant and distort the estimation of ∆U+, that is, how quickly can the bulk velocity
be varied such that the quasi-steady assumption remains approximately valid.

Recently, we have applied the idea of minimal-span channels to the roughness problem
in a proof-of-concept study (Chung et al. 2015). This study demonstrated the feasibility
of using the minimal-span channel to accurately compute the roughness function, when
compared to full-span channels. However, only the spanwise width was investigated, with
the roughness function being the primary quantity of interest. In this paper, we aim to
further investigate the fundamental dynamics of the minimal-span channel framework
for roughness. This will include analysing higher order flow statistics to identify and
understand the essential features of the minimal-span channel. Firstly, the streamwise
domain length of the minimal channel is investigated in §3.1 to identify the minimum
streamwise length required to maintain healthy turbulence. Second, given that the outer-
layer of minimal channels are inherently unphysical, then alterations to this region should
not alter the healthy near-wall flow. To assess this claim, two alterations consisting of
a half-height (open) channel and outer-layer damping are investigated in §3.2 and §3.3,
respectively. Finally, an investigation in §3.4 is conducted in which the bulk velocity
(and hence roughness Reynolds number) is varied with time, to see if the full hydraulic
behaviour of the rough surface can be obtained in one unsteady simulation. A costing
argument is then developed in §4 using the characteristic time and length scales of eddies,
so that the CPU hours can be estimated a priori. The insights gained in this paper are
then used in §5 to simulate the flow over square-based pyramids using a finite-volume
code with a body-fitted grid, which has been experimentally studied in the literature by
Schultz & Flack (2009) and others.

2. Numerical Method

The majority of Direct Numerical Simulations in this paper are conducted using the
same finite difference code as in Chung et al. (2015), which uses a fully conservative
fourth-order staggered-grid scheme. Time integration is performed using the third-order
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low-storage Runge–Kutta scheme of Spalart et al. (1991), and the fractional-step method
of Kim & Moin (1985) is used. The Navier–Stokes equations are

∇ · u = 0,
∂u

∂t
+∇ · (uu) = −1

ρ
∇p+∇ · (ν∇u) + F + G + K, (2.1)

where u = (u, v, w) is the velocity in the streamwise (x), spanwise (y) and wall-normal (z)
directions, t is time, and p is pressure. G = Gx(t)i is the spatially invariant, time-varying
streamwise forcing term which drives the flow at constant mass flux. The flow is solved
in a reference frame in which the mass flux is zero at all times, although all equations in
this paper are given in the stationary-wall reference frame. Solving in a zero-mass-flux
reference frame permits a larger computational time step (Lundbladh et al. 1999), as
well as reducing high-wavenumber convective disturbances produced by finite difference
schemes (Bernardini et al. 2013). The roughness model, F = −αF (z, k)u|u|i, is based
on the work of Busse & Sandham (2012), which applies a forcing in the streamwise
direction that opposes the flow. The roughness factor α = 1/(40k) is kept constant for
all simulations, with the roughness height k = h/40. The function F (z, k) is a simple
step function which applies the roughness forcing adjacent to the top and bottom no-slip
channel walls at z = 0 and z = 2h,

F (z, k) =

{
1, if z < k or 2h− k < z.

0, otherwise.
(2.2)

This roughness model removes any spanwise or streamwise roughness length scales from
the problem and allows for simpler computations as the same smooth-wall grid can be
used. This is a similar model to Borrell (2015), although there the author used an F ∝ −ui
scaling. The final term in (2.1), K, is a forcing function which damps the velocity in the
outer layer of the minimal channel. It has the form

Ki = −γΓ(z, zd)
(
ui(x, y, z, t)− 〈ui〉(zd, t)

)∣∣∣ui(x, y, z, t)− 〈ui〉(zd, t)∣∣∣, (2.3)

(no summation over i) where angled brackets denote the spatial average of the instan-
taneous velocity over a wall-parallel plane. The factor γ has units of inverse time and
in this study is set according to γh/Uτ ≈ 1. The parameter Γ(z, zd) is similar to the
function F (z, k) of the roughness forcing model in that it indicates where the damping
is applied, namely in the outer layer of the channel,

Γ(z, zd) =

{
1, if z > zd and z < 2h− zd.
0, otherwise.

(2.4)

The value of zd should be greater than the critical wall-normal location, zc, of the
minimal-span channel, so that the forcing does not contaminate the healthy turbulence
of the near-wall flow. A step function for Γ is used to minimise the parameter space, as
well as to ensure the location of zd is unambiguous. Several different values of zd are
tested and will be presented in the following section. In (2.3), the term 〈ui〉(zd, t) is the
wall-parallel spatially averaged velocity at zd. This is present to reduce the magnitude of
the streamwise velocity; the minimal channel has a very high streamwise velocity which
presents a time step restriction from the CFL number. The forcing is in this form so that
the velocity is forced to remain at the same level as at z = zd. This outer-layer damping
is similar to the masks employed in Jiménez & Pinelli (1999), which damp fluctuations
in the outer-layer region of minimal channels. The current forcing model simply sets the
streamwise velocity to be approximately that at z = zd, however it will be shown to work
reasonably well for the purpose of obtaining ∆U+. Note that the average velocity in the
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Figure 1: Half-height minimal-span channel, showing the roughness forcing zone (2.2)
and the outer-layer damping zone (2.3). No-slip wall at z = 0 and free-slip wall at z = h.

spanwise and wall-normal directions is zero, so that the forcing in these directions can
simply be Ki = −γΓ(z, zd)ui|ui|, for i = 2, 3. Figure 1 shows the two forcing regions that
are employed in the current study.

The streamwise and spanwise grid is evenly spaced, while the wall-normal grid is
stretched with a cosine mapping. Periodic boundary conditions are applied in the span-
wise and streamwise directions. In the case of standard-height channels, no-slip walls are
located at z = 0 and z = 2h. For clarity, the word ‘full’ will be used to refer to the
span (full span), while the case with two no-slip walls will be referred to as ‘standard’
height. For half-height (open) channels, a no-slip wall is still positioned at z = 0, however
now the top domain surface is a free-slip wall with ∂u/∂z = ∂v/∂z = 0, positioned at
z = h. This slip wall maintains the impermeability constraint, w = 0. The spanwise
width, Ly, of the minimal-span channel satisfies the guidelines of Chung et al. (2015),
namely that Ly & max(100ν/Uτ , k/0.4, λr,y), where λr,y is the spanwise length scale of
roughness elements. Because the homogeneous roughness forcing model has no spanwise
length scale then the final constraint can be ignored. Simulations are conducted at a
friction Reynolds number of Reτ ≈ 590, with a few additional simulations conducted at
Reτ ≈ 2000. Relevant simulations are introduced at the start of each section for each of
the investigations conducted in this study.

2.1. Temporal sweep

As discussed in the introduction, instead of conducting multiple steady simulations of
different roughness Reynolds numbers in order to determine the equivalent sandgrain
roughness, a single unsteady simulation is to be performed in which the bulk velocity is
varied. In particular, we will investigate different rates of change of the bulk velocity and
the effects that this acceleration has on the flow. The sweep will start with the highest
friction number to be tested, Reτ,start and will then be decelerated via an adverse pressure
gradient. This ensures an adequate grid resolution at the start of simulation. At the final
friction Reynolds number, Reτ,end < Reτ,start, the grid resolution would be finer than
necessary, which for the current simulations would have 4–5 times more cells than if a
conventional steady simulation were conducted at this final Reynolds number.

Presently, we vary the bulk velocity Ub(t) with time,

dUb
dt

= A =
Ub,end − Ub,start

∆T
= const., (2.5)

where Ub,end is the desired end point of the simulation (the bulk velocity corresponding
to Reτ = 180), and ∆T is a time scale which should be sufficiently long enough that
acceleration effects are not significant to the flow. The initial bulk velocity, Ub,start, is
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Figure 2: (a) Instantaneous Reynolds number and (b) pressure gradient parameter (2.6)
of the smooth-wall temporal sweep, against viscous time. The cases with faster sweeps
have multiple runs (shown by grey lines) and are ensemble averaged. A is the linear rate
of change of Ub (2.5).

set corresponding to a friction Reynolds number of Reτ,start = 590 and different values
of A are tested. An initial value of A is selected such that over the course of the sweep
∆TUτ0/h = 30 ⇒ U2

τ0/hA ≈ 30, with subsequent runs using 2A and 4A. In these cases
of a higher rate of change of Ub, multiple sweeps are run from different initial conditions
with the results ensemble averaged, to ensure that statistics are obtained over the same
amount of simulation time. For example, the case where the gradient is quadrupled, four
sweeps are conducted with four different initial conditions. This is visualised in figure
2(a), which shows the change in the friction Reynolds number as a function of time.
An important consideration with this technique is that the friction velocity and hence
the normalised spanwise domain width L+

y will vary with time. The domain width must
remain larger than 100 viscous units at all times to ensure the turbulent flow is sustained,
which may necessitate multiple stages in the sweep if L+

y becomes too small. Each stage
in the sweep should be set up such that L+

y & 100.
A dimensionless measure of the flow acceleration is the pressure gradient parameter,

∆p =
ν

ρU3
τ

dp

dx
. (2.6)

Various experimental studies of decelerating boundary layers show that mild decelerations
of ∆p < 0.01 have small (< 3%) errors in calculating Uτ from methods based on the
assumption of zero pressure gradients (Patel 1965; Jones et al. 2001). While we are
interested in channel flow as opposed to boundary layers, this value should still be useful
in providing an indication as to whether acceleration effects will be significant. Seddighi
et al. (2014), meanwhile, compared a step acceleration with a slow ramp up in which
the bulk velocity was linearly varied in a channel such that −∆p ≈ 0.73 (favourable
pressure gradient). Acceleration effects were still seen in this slow ramp up. Note that
for steady channel flow, the pressure gradient parameter is ∆p = −1/Reτ < 0, which
for the current simulations at Reτ = 590 takes a value of −0.0017. In the current study,
three different sweep rates are studied. As shown in figure 2(b), the linear variation in
Ub results in the pressure gradient parameter having a maximum value at the end of
the simulation, when Reτ ≈ 180. The different sweeps will therefore be referred to by
their maximum pressure gradient parameter, which are ∆p,Reτ=180 ≈ (0.03, 0.07, 0.15).
These values place the sweeps considered in this study into the range between negligible
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ID Reτ
Lx
h

L+
x L+

y
Lz
h

Nx Ny Nz ∆x+ ∆y+ ∆z+
w ∆z+

h ∆t+S ∆t+R

Full-span channel

FS 590 2π 3707 1854 2 384 384 256 9.7 4.8 0.04 7.2 0.26 0.29

Minimal-span channel with varying streamwise length

MS1 590 0.1π 190 118 2 24 24 256 7.7 4.9 0.04 7.2 0.28 0.32
MS2 590 0.16π 300 118 2 48 24 256 6.2 4.9 0.04 7.2 0.24 0.27
MS3 590 0.25π 460 118 2 48 24 256 9.7 4.9 0.04 7.2 0.36 0.42
MS4 590 0.5π 930 118 2 96 24 256 9.7 4.9 0.04 7.2 0.36 0.42
MS5 590 π 1850 118 2 192 24 256 9.7 4.9 0.04 7.2 0.36 0.41

Minimal-span channel with varying streamwise length (wider span)

MSW1 590 0.1π 190 354 2 24 72 256 7.7 4.9 0.04 7.2 0.37 0.45
MSW2 590 0.16π 300 354 2 48 72 256 6.2 4.9 0.04 7.2 0.31 0.40
MSW3 590 0.25π 460 354 2 48 72 256 9.7 4.9 0.04 7.2 0.46 0.52
MSW4 590 0.5π 930 354 2 96 72 256 9.7 4.9 0.04 7.2 0.43 0.46
MSW5 590 π 1850 354 2 192 72 256 9.7 4.9 0.04 7.2 0.38 0.40

Table 1: Description of the simulations performed with the finite difference code to inves-
tigate streamwise domain length. All simulations done as both smooth wall and modelled
rough wall. Entries: Reτ , nominal friction Reynolds numbers; L, domain length; N , num-
ber of grid points; ∆, grid-spacing in viscous units, subscript w and h refers to the wall-
normal grid spacing at the wall and channel centre; Lz/h = 2 denotes standard-height
(two no-slip walls), ∆t+S and ∆t+R is the smooth- and rough-wall time step. Roughness
height k = h/40 so k+ ≈ 15 at Reτ = 590.

(∆p < 0.01) and noticeable (−∆p > 0.73) pressure gradient effects, and are substantially
larger than the steady value (−∆p = 0.0017).

3. Results

3.1. Varying streamwise domain length (table 1)

Wall-bounded turbulent flows are often characterised by very long structures on the order
of tens of channel half heights (Kim & Adrian 1999; Lozano-Durán & Jiménez 2014).
This becomes very expensive to simulate for conventional full-span channel simulations,
so shorter domain lengths of Lx/h = 2π are often used (Chin et al. 2010; Munters et al.
2016). These seem to capture the majority of the outer-layer dynamics despite their
relatively short length. However, these lengths are only necessary due to the large outer-
layer structures which are present in the full-span simulations, which have streamwise
lengths on the order of the channel half-height, h.

The minimal-span channel only captures the inner-layer flow which is not dependent
on h, suggesting a shorter domain length can be used. The near-wall cycle of the buffer
layer produces streaky structures with streamwise lengths of 1000 viscous units (Kline
et al. 1967). However, these low- and high-speed streaks are nearly two-dimensional,
which suggests they could be represented in the infinite (kx = 0) mode and hence the
domain length doesn’t have to be this long. These streaks are accompanied by quasi-
streamwise vortices with streamwise lengths of 200–300 viscous units (Jeong et al. 1997).
The narrowest minimal-span channels with L+

y ≈ 100 therefore require L+
x ≈ 200–300

to capture the near-wall cycle in the buffer layer (Jiménez & Moin 1991). The inertial
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Figure 3: Streamwise velocity profile for varying streamwise length for (a,c) smooth- and
(b,d) rough-wall standard-height channels. Spanwise domain width is (a,c) L+

y ≈ 120
and (b,d) L+

y ≈ 350. Line styles are: black, full-span channel; grey, minimal-span channel
with varying streamwise length (dark grey is longer), refer table 1; vertical dashed line
indicates the roughness height k = h/40; vertical dotted line indicates critical height
zc = 0.4Ly. Insets of (b,d) shows difference in smooth and rough wall flows.

logarithmic layer also have similar vortex clusters (del Álamo et al. 2006), which scale
as 2–3 times their spanwise width (Flores & Jiménez 2010; Hwang 2015). Statistically
stationary and homogenous shear turbulence, which shows similarities to the logarithmic
layer in wall-bounded turbulence, also suggest a scaling of 2 times the spanwise length
(Sekimoto et al. 2016). Simulations with larger spanwise domain widths would produce
vortices with longer streamwise lengths, so that the largest captured eddy would have
spanwise and streamwise lengths of λy = Ly and λx = 2–3Ly.

Two different spanwise domain widths are investigated for varying the streamwise
length (table 1). Firstly, the smallest width of L+

y ≈ 120 would have the largest eddies
having streamwise lengths of λ+x = 240–350. Various streamwise domain lengths of L+

x =
(190, 300, 460, 930, 1850) are chosen to see how this affects the largest eddies. The second
spanwise domain width of L+

y ≈ 350 would be able to capture larger eddies, the largest
of which would have a streamwise length of approximately λ+x = 710–1100. The same
set of streamwise domain lengths are simulated for this wider domain. A standard-height
channel is used, with no outer-layer damping, Ki = 0.

Figure 3 shows the mean velocity profile for the two spanwise widths, for all the
streamwise lengths tested. The minimal channels (grey lines) tend to agree with the full-
span channel (black line) up until the critical wall-normal location zc = 0.4Ly (vertical
dotted line), at which point the velocity profile of the minimal channels increases. For
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the smaller domain width (figure 3a,b), the shortest streamwise lengths of L+
x ≈ 190 and

300 result in a reduction in the smooth-wall velocity above z+ & 20. There is also a slight
increase in the centreline velocity. As a result, the difference in smooth- and rough-wall
velocity (inset of figure 3b) decreases relative to the full-span and longer minimal-span
cases. This effect is not due to the differences in grid resolution of the two shortest
channels (table 1), as the wider channel has the same differences in grid resolution but
will be seen to not have this effect. Little discernible difference can be seen between the
longer streamwise lengths of L+

x > 460, in agreement with the scalings discussed above.
This also indicates that the low- and high-speed streaks, with lengths of 1000 viscous
units, do not need to be explicitly captured as they are aliased into the kx = 0 mode.
The case of L+

x ≈ 300 = 2.5L+
y produces an incorrect profile and this suggests that a

minimum streamwise length of L+
x = 3L+

y is required, especially for narrow channels in
which zc is closer to the buffer layer than log layer of the flow.

The smallest streamwise length of L+
x ≈ 190 was unable to sustain turbulence for a

prolonged period. It would decay to a laminar state after T+ = TU2
τ /ν ≈ 14.8 × 104 in

the smooth-wall channel, and after T+ ≈ 9.7× 104 in the rough-wall channel. The data
shown in the previous figures for this streamwise length is averaged only when the flow
is turbulent. This behaviour is similar to what was observed in Jiménez & Moin (1991),
who showed that turbulence could not be maintained in channels with streamwise lengths
of around 200 viscous units. As discussed above, this is because it is shorter than the
quasi-streamwise vortices which have streamwise lengths of λ+x ≈ 200–300.

The wider spanwise domain width of L+
y ≈ 354 (figure 3c,d) results in a centreline

velocity that is closer to the full-span channel, as these wider channels capture a wider
range of turbulent motions. However, the case with the shortest streamwise length of
L+
x ≈ 190 ≈ 0.54L+

y has a larger centreline velocity, with the critical wall-normal height
appearing lower than zc = 0.4Ly. This somewhat resembles the channels with a narrower
spanwise width of L+

y ≈ 120 (figure 3a,b), suggesting that the very short domain length
restricts the size of the largest eddies. Their spanwise width would now be smaller than
the width of the domain, i.e. the streamwise length is now the limiting length scale.
Interestingly, the streamwise length of L+

x ≈ 300 = 0.84L+
y appears to agree quite well

with the cases with longer lengths. This is in contrast to the narrow domain (figure
3a), which shows a clear difference for L+

x ≈ 300 ≈ 2.5L+
y . Even the case with L+

x ≈
460 ≈ 1.3L+

y is producing a velocity profile and roughness function comparable to that
of channels with longer streamwise lengths, despite not having the requisite scaling of
L+
x & 2–3L+

y discussed above. This is similar to the results of Toh & Itano (2005)
who looked at wide spanwise channels with very short streamwise lengths. The velocity
profiles they obtained look similar to a full-span, full-length channel, with no apparent
increase in streamwise velocity in the outer layer that is characteristic of minimal-span
channels. A possible explanation for the results seen here is that the wall-normal critical
location z+c ≈ 140 = 0.24h+ is outside the log layer, which is generally believed to end at
z ≈ 0.15h (Marusic et al. 2013). As such, the expected streamwise length scale of 2–3Ly
is no longer appropriate in the outer layer. In this case, the largest eddy at the edge of
the logarithmic layer would have a streamwise length of approximately λ+x ≈440–660,
which could explain why the simulation with L+

x ≈ 460 produces a reasonable velocity
profile.

Premultiplied one-dimensional streamwise energy spectra of streamwise velocity, kxE
+
uu,

are shown in figure 4, where u′2rms =
∫∞
0
kxEuu d log(kx). Only the smooth-wall flow is

shown as the rough-wall data exhibits the same qualitative trends as the smooth wall
and so is omitted. This occurs because the rough-wall flow is in the transitionally rough
regime, which leads to a weakening of the near-wall cycle (MacDonald et al. 2016). As it
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Figure 4: Smooth-wall premultiplied one-dimensional streamwise energy spectra of
streamwise velocity, kxE

+
uu, for varying streamwise lengths of (a,b) L+

x ≈ 190, (c,d)
L+
x ≈ 460, (e,f ) L+

x ≈ 930, and (g,h) L+
x ≈ 1850. Spanwise domain width (a,c,e,g)

L+
y ≈ 120, and (b,d,f,h) L+

y ≈ 350. Shaded contour is smooth-wall full-span channel
(same for all figures). Contour levels kxE

+
uu = 0.5, 1.0, 1.5, 2.0. Inset box gives channel

scale, arrow shows direction of streamwise flow. Vertical dashed line shows λ+x = 3L+
y ,

horizontal dashed line shows z+c = 0.4L+
y . Square dashed box of wider channel (b,d,f,h)

shows the additional captured region.
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Figure 5: Smooth-wall premultiplied one-dimensional spanwise energy spectra of stream-
wise velocity, kyE

+
uu, for varying streamwise lengths of (a,b) L+

x ≈ 190, (c,d) L+
x ≈ 460,
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y ≈ 350. Shaded contour is smooth-wall full-span channel (same for all

figures). Contour levels kyE
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uu = 1.0, 2.0, 3.0, 4.0. Inset box gives channel scale, arrow

shows direction of streamwise flow. Vertical dashed line shows λ+y = L+
x /3, horizontal
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hasn’t been destroyed, the buffer-layer streaks and quasi-streamwise vortices are active
and so the same trends as the smooth-wall flow are observed. Note that in the fully rough
regime, this cycle is believed to be destroyed with the inertial logarithmic region started
at the roughness crests (Jiménez 2004). However, the scaling of λx ≈ 2–3λy would likely
still hold as this is generated by a self-sustaining process in the logarithmic layer (Flo-
res & Jiménez 2010; Hwang 2015). The vertical dashed lines correspond to the longest
streamwise scale based on the log-layer scaling of 3L+

y discussed above, while the termi-
nation of the line contours of the minimal channels show the channel streamwise length.
The dashed square in the wider channels (figure 4b,d,f,h) shows the extra captured region
due to having a larger L+

y , compared to the narrower minimal channels (figure 4a,c,e,g).
It is clear that for the narrowest channel with L+

y ≈ 120, the shortest streamwise
length of L+

x ≈ 190 = 1.6L+
y (figure 4a) is too short. This is seen to result in an increase

in turbulent energy above z+c (horizontal dashed line), relative to the full-span channel
(shaded contour). A similar effect is observed for L+

x ≈ 300 = 2.5L+
y (not shown). This

increase in energy at smaller streamwise length scales above z+c is in agreement with pre-
vious minimal-channel simulations (Hwang 2013). When the streamwise domain length
exceeds the 3Ly scaling with L+

x ≈ 460 = 3.9L+
y (figure 4c) then reasonable agreement

with the full-span channel is observed, despite the narrow range of scales captured by
the minimal channel. Further increases to the streamwise length for this domain width
(figure 4e,g) do not improve the collapse with the full-span channel, especially near z+c ,
as no additional turbulent motions are captured according to the 3L+

y scaling discussed
above. The increased length is however able to capture the near-wall cycle with peak at
z+ ≈ 15 and λ+x ≈ 1000 (figure 4g).

A similar picture emerges for the wider minimal channel with L+
y ≈ 354. The shortest

domain length tested, L+
x ≈ 190 ≈ 0.54L+

y (figure 4b), is unable to capture much of the
turbulent motions, similar to that observed in the narrower minimal channel of figure
4(a). A streamwise domain length of L+

x ≈ 463 ≈ 1.3L+
y (figure 4d) has better agreement

with the full-span channel, although there is still some discrepancy. The 3Ly scaling is
almost reached in figure 4(f ) with Lx+ ≈ 927 ≈ 2.6Ly, and excellent agreement is
observed with the full-span channel, with only a slight increase in energy above z+c .
Further increasing L+

x above 3Ly (figure 4h) does not provide any improvement other
than capturing more of the near-wall cycle, further supporting this scaling argument.

The premultiplied spanwise energy spectra of streamwise velocity are shown in figure 5.
Here, the vertical dashed line now shows the widest spanwise length scale that can exist
based on the streamwise domain length using the λy = 3Lx scaling. For the narrower
channel with L+

y ≈ 120, the scaling is reached when L+
x ≈ 460 = 3.9L+

y (figure 5c), and
further increases to L+

x (figure 5e,g) do not result in any change to the turbulent energy.
Similarly for the wider channel with L+

y ≈ 350, the scaling is approximately reached in
figure 5(f ) with L+

x ≈ 930 = 2.6L+
y and increasing L+

x to 1850 viscous units (figure 5h)
does not result in any substantial change to the spectra. The cases with Lx . 2–3Ly
(figure 5a,b,d) result in enhanced turbulence energy, particularly in the near-wall peak
at z+ ≈ 15 and λ+y ≈ 100.

Given the above results, it is possible to restrict the streamwise length to Lx = 3Ly.
This is due to quasi-streamwise vortices that exist in the logarithmic layer (where neither
viscosity or the channel half height are relevant length scales), suggesting this scaling is
independent of Reτ . Smaller streamwise lengths than this scaling lead to poor agreement
between the minimal and full-span channel, as seen in figures 4 and 5. However, for very
narrow channels this can result in a streamwise domain length less than 1000 viscous
units. While it appears the buffer-layer streaks do not need to be captured in the domain,
having such a small streamwise domain exacerbates the bursty nature of the minimal-span
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ID Reτ
Lx
h

L+
x L+

y
Lz
h

Nx Ny Nz ∆x+ ∆y+ ∆z+
w ∆z+

h ∆t+S ∆t+R

Full-span channel

FS 590 2π 3707 1854 2 384 384 256 9.7 4.8 0.04 7.2 0.26 0.29
FSH 590 2π 3707 1854 1 384 384 128 9.7 4.8 0.04 7.2 0.29 0.32

Minimal-span channel

MS6 590 2π 3707 118 2 384 24 256 9.7 4.9 0.04 7.2 0.35 0.40
MSH6 590 2π 3707 118 1 384 24 128 9.7 4.9 0.04 7.2 0.36 0.41

Table 2: Full-span and minimal-span channel simulations, for standard-height (two no-
slip walls, Lz/h = 2) and half-height (one no-slip and one slip wall, Lz/h = 1) channels.
Entries are same as table 1.
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Figure 6: Mean streamwise velocity against wall-normal position for (a) full-span channel
and (b) minimal-span channel. Line styles are: black, standard-height channel; grey, half-
height channel; solid, smooth wall; dashed, rough-wall model. Vertical dashed line shows
roughness crest, k = h/40, vertical dotted line shows critical height, zc = 0.4Ly. Inset
shows difference in smooth- and rough-wall velocity, U+

S − U
+
R .

channel (Jiménez 2015). Only one or maybe two quasi-streamwise vortices are present
in the domain, which makes obtaining converged statistics difficult as the simulation
needs to be run for a significantly long time, an issue discussed in detail in §4. We
believe that a minimum streamwise length of approximately 1000 viscous units seems a
reasonable length in these cases, so that several of the smallest quasi-streamwise vortices
are present. As such, we recommend that Lx & max( 3Ly, 1000ν/Uτ , λr,x), where the
last requirement pertains to the streamwise length scale, λr,x, of the roughness which is
absent in the current roughness forcing model.

3.2. Half-height channel (table 2)

The previous section looked at the effect of the streamwise domain. Now we will consider
the effect of the wall-normal domain, particularly in terms of the outer-layer flow which
is unphysical in minimal channels. First, we will consider a half-height (open) channel
which consists of a slip wall positioned at the channel centreline. Intuitively, changing
the boundary condition at z = h is unlikely to effect the flow at z = zc, given the
distance between these two heights (zc/h ≈ 0.1 in this study). For efficient roughness
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styles are same as figure 6.

simulations, this has the benefit of reducing the size of the grid by a half when compared
to a conventional standard-height channel with two no-slip walls. The simulations are
detailed in table 2 and both full-span and minimal-span channels are simulated. Here,
the streamwise length is fixed at L+

x ≈ 3700 and there is no outer-layer damping, Ki = 0.
Figure 6 shows the effect of the half-height channel in terms of the mean velocity profile,

when compared to the standard-height channel. This is done for both full-span (figure
6a) and minimal-span (figure 6b) channels, for smooth and rough walls. For clarity, the
full-span and minimal-span channels are shown in different figures, however the near-
wall behaviour is identical up until zc = 0.4Ly ⇒ z+c ≈ 50, as observed previously (figure
3). Both sets of figures show that the use of the half-height channel with slip wall has
a negligible effect on the flow. The main difference is seen in the wake region, where
the half-height channel restricts the outer-layer structures, resulting in a slight decrease
in the mean velocity. Crucially, this difference is the same for both smooth and rough
walls, meaning that the difference between them, U+

S − U
+
R , is the same. Moreover, the

change in the half-height channel occurs above the critical wall-normal location, where
the minimal-span flow is already altered compared to the full-span flow.

The streamwise, spanwise, and wall-normal root-mean-squared velocity fluctuations
are shown in figure 7 for both full-span and minimal-span channels, comparing standard-
height and half-height channels. For the full-span channel (figure 7a), these velocity
fluctuations show very good agreement between the standard-height (black lines) and
half-height (grey lines) channels in the near-wall region, in agreement with previous
full-span half-height channel studies (Handler et al. 1999; Leonardi & Castro 2010). The
half-height channel has zero wall-normal velocity fluctuations at the channel centre due to
the impermeability constraint of the slip wall. The streamwise velocity fluctuations of the
half-height channels are slightly enhanced above z+ & 40 relative to the standard-height
channels, however the difference is relatively small. Moreover, outer-layer similarity is
still maintained between the smooth- and rough-wall channels, suggesting the effect on
the difference between the two flows will be minor.

For the minimal-span channel (figure 7b), a slightly different picture emerges. Firstly,
it should be noted that a standard-height minimal-span channel (black lines of figure 7b)
have enhanced streamwise and wall-normal velocity fluctuations compared to its full-span
counterpart (black lines of figure 7a) in the outer layer. This has been noted in other
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Figure 8: (a) Smooth-wall premultiplied one-dimensional streamwise energy spectrum of
pressure, kxE

+
pp. Shaded contour is full-span channel, line contour is minimal-span half-

height channel. Horizontal dashed line shows z+c = 0.4L+
y , vertical dashed line shows 3L+

y

(§3.1). Contour levels are logarithmically spaced over 8 intervals between 0.75 and 66. (b)
Pressure root-mean-squared fluctuations against wall-normal position. Line styles: black,
full-span channel; grey solid, minimal-span half-height channel; grey dashed, minimal-
span channel with altered velocity field ua (see text). Vertical dashed line shows z+c .

minimal-span channel studies (e.g. Hwang 2013; MacDonald et al. 2016), so will not be
discussed in depth here. However, when a half-height channel is used in a minimal-span
channel, the streamwise velocity fluctuations (grey lines of figure 7b) are damped from
z+ & 20 compared to the standard-height minimal-span channel. This is the opposite of
what occurred in a full-span channel. Interestingly, Hwang (2013) found that when the
spanwise uniform eddies (that is, the ky = 0 mode) were filtered out of a minimal-span
channel, a similar behaviour was observed in that the wall-normal and streamwise velocity
fluctuations were damped compared to the unfiltered channel. It is unclear whether the
half-height channel is performing a similar operation to this ky = 0 filtering, as this
would imply the impermeability constraint is limiting the infinite spanwise motions in
some way. However, it is clear that the near-wall flow is preserved, despite the imposition
of an outer-layer boundary condition. This shows that a half-height channel flow can be
simulated without significant near-wall detriment.

The pressure fluctuations, meanwhile, show a substantial increase in the minimal-
span channel compared to the full-span channel. The premultiplied streamwise spectra
of pressure is shown in figure 8(a), and it is clear that the fluctuations are larger at longer
wavelengths (λ+x ≈ 1000–2000) and at heights above z+c . The fluctuations at wavelengths
shorter than 3L+

y and below z+c are, however, in reasonable agreement with the full-
span channel. Despite this, because the root-mean-squared pressure fluctuations are the
integral of this spectrum (p′2rms =

∫∞
0
kxEppd log(kx)), then the profile is nearly an order

of magnitude larger in the minimal-span channel (grey line, figure 8b). Note that the
mean pressure is still correct, as this must obey the averaged wall-normal momentum
equation, w2 + p = C, where C is a constant.

A possible solution to this behaviour is to consider decomposing the pressure into its
rapid and slow parts (Kim 1989). Here, the rapid pressure emerges due to the mean
streamwise velocity gradient while the slow pressure is due to the velocity fluctuation
gradients. The mean velocity gradient dU/dz in the minimal-span channel is enhanced
above zc, which means the rapid pressure will also be larger. If we instead define an
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ID Reτ
Lx
h

L+
x L+

y
Lz
h

Nx Ny Nz ∆x+ ∆y+ ∆z+
w ∆z+

h z+
d ∆t+S ∆t+R

Minimal-span, half-height channel with outer-layer damping

MSHD1 590 2π 3707 118 1 384 24 128 9.7 4.9 0.04 7.2 100 0.48 0.59
MSHD2 590 2π 3707 118 1 384 24 128 9.7 4.9 0.04 7.2 150 0.46 0.54
MSHD3 590 2π 3707 118 1 384 24 128 9.7 4.9 0.04 7.2 200 0.44 0.51
MSHD4 590 2π 3707 118 1 384 24 128 9.7 4.9 0.04 7.2 300 0.41 0.47
MSH6 590 2π 3707 118 1 384 24 128 9.7 4.9 0.04 7.2 - 0.36 0.41

Minimal-span, half-height channel with outer-layer damping (wider span)

MSWHD1 590 2π 3707 236 1 384 48 128 9.7 4.9 0.04 7.2 200 0.43 0.48
MSWHD2 590 2π 3707 236 1 384 48 128 9.7 4.9 0.04 7.2 250 0.43 0.47
MSWHD3 590 2π 3707 236 1 384 48 128 9.7 4.9 0.04 7.2 300 0.42 0.46
MSWH6 590 2π 3707 236 1 384 48 128 9.7 4.9 0.04 7.2 - 0.40 0.43

Minimal-span, half-height channel with outer-layer damping (increased Reτ )

MSHRD1 2000 0.59π 3707 300 1 384 60 384 9.7 5.0 0.02 8.2 300 0.25 0.37
MSHRD2 2000 0.59π 3707 300 1 384 60 384 9.7 5.0 0.02 8.2 400 0.24 0.35
MSHR6 2000 0.59π 3707 300 1 384 60 384 9.7 5.0 0.02 8.2 - 0.24 0.31

Table 3: Minimal-span simulations with outer-layer damping. Refer to table 1 for def-
initions. z+d indicates location where damping starts (figure 1), cases with no damping
indicated by a hyphen.

altered streamwise velocity field whereby ua(x, y, z) = u(x, y, z) − (U(z) − U(zc)) for
z > zc where U(zc) is the mean streamwise velocity at z = zc, this will then set the mean
dUa/dz = 0. If the other two velocity components are unchanged and ua = u for z 6 zc,
then the rapid pressure would be zero above zc. The pressure field arising from this
altered velocity field, ∇2pa = −uai,juaj,i can then be computed and is seen to be in much
better agreement with the full-span channel (figure 8b). There is a slight difference in the
near-wall peak near z+ ≈ 30, however this may be due to the discontinuity in dUa/dz
at z = zc. This correction to pressure is an additional step that needs to be performed
whenever pressure statistics are to be outputted. The unaltered (discrete) pressure is still
necessary at each time step to ensure the flow remains divergence free.

3.3. Outer-layer damping (table 3)

The previous section showed that a half-height (open) channel did not significantly alter
the healthy near-wall flow. A more aggressive alteration is now attempted in which the
outer-layer flow is damped through use of the Ki forcing term (2.3) in a half-height chan-
nel. This will reduce the large centreline velocity (figure 6b) of the minimal-span channel,
which places a restriction on the time step due to the CFL number. The streamwise do-
main length is fixed at L+

x ≈ 3700, and other relevant parameters are detailed in table 3.
The height where the damping begins, zd, is varied in channels of two different spanwise
widths; L+

y ≈ 120 and L+
y ≈ 240. These minimal channels will have a healthy turbulence

region up to z+c ≈ 47 and z+c ≈ 94, respectively.
Figure 9 shows the mean streamwise velocity profile for smooth- and rough-wall minimal-

span channels, for both of the spanwise widths at Reτ = 590. The smallest spanwise
width, L+

y ≈ 120 ⇒ z+c ≈ 47 (figure 9a,b) has four different positions for zd examined,

with values of z+d = (100, 150, 200, 250). In all cases, the damping tends to limit the
streamwise velocity above z > zd to the value of U(z = zd). It is clear in the smooth-wall
flow (figure 9a) that the two smallest values of z+d = 100 and 150 are too close to the
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Figure 9: Streamwise velocity profile for outer-layer damping for (a,c) smooth- and
(b,d) rough-wall half-height channels. Spanwise domain width is (a,b) L+

y ≈ 120 and
(c,d) L+

y ≈ 240 (table 3). Line styles are: black, full-span channel; grey, minimal-
span channel with outer-layer damping (2.3) for varying damping heights of (a,b)
z+d = (100, 150, 200, 300) and (c,d) z+d = (200, 250, 300), shown by +++; light-grey, minimal-
span with no damping. Vertical dashed line indicates the roughness height k = h/40. Inset
of (b,d) shows the difference in smooth- and rough-wall velocity. Arrows indicates trend
of increasing zd.

wall, contaminating the healthy near-wall flow and resulting in an increase in the stream-
wise velocity below zd. In particular, z+d = 100 results in an obvious overestimation of
∆U+, as seen in the inset of figure 9(b). A value of z+d = 150 has a similar, although not
as strong effect. This is clearly not desirable and suggests that values of z+d > 200 are
necessary to avoid contamination of the healthy near-wall flow.

To investigate how the location of zd is related to zc will require cases with a larger
spanwise domain width, as zc ≈ 0.4Ly. This is done in figure 9(c,d), where the spanwise
width is now L+

y ≈ 240 ⇒ z+c ≈ 94. Here, three different positions for zd are analysed,

with values of z+d = (200, 250, 300). There is little difference in the near-wall profiles
of the three different zd positions. This suggests that, even though zc has doubled, we
still require the damping to begin at least 200 viscous-units away from the wall. Having
the outer-layer damping begin closer to the wall (i.e. reducing zd) leads to its effects
permeating the entire near-wall region, increasing the viscous stress in the log-layer and
even buffer layer. This results in an overestimation of the mean streamwise velocity. The
strong effect of the damping when zd is small could also be due to the strength of the
damping, γh/Uτ ≈ 1 in (2.3). Reducing the strength would likely reduce the strong
near-wall effects that the damping has, although this is not pursued here.
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Figure 10: Streamwise velocity profile for (a) smooth- and (b) rough-wall half-height
channels at Reτ = 2000 (table 3). Line styles are same as figure 9, however full-span
smooth-wall channel data taken from Hoyas & Jiménez (2006) and damping heights are
z+d = (200, 300), shown by ×××.
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Figure 11: Effect of the outer-layer damping on (a) the root mean squared velocity
fluctuations in the streamwise and wall-normal directions, and (b) the Reynolds stress.
Line styles: black, minimal-span, half-height channel (no outer-layer damping); grey,
minimal-span, half-height channel with outer-layer damping starting at z+d = 200 shown
by ×××; solid, smooth wall; dashed, rough wall. Vertical dashed line shows roughness crest,
vertical dotted line shows critical height zc = 0.4Ly.

Next, the friction Reynolds number is increased to Reτ = 2000. Since the roughness
height is fixed as a ratio of the channel half-height, k = h/40, then the roughness Reynolds
number increases to k+ = 50. The spanwise width also needs to be increased to submerge
the roughness sublayer in healthy turbulence (Chung et al. 2015); here it takes a value of
L+
y = 300 so that the critical wall-normal location is z+c ≈ 120 = 2.4k. Figure 10 shows

the mean velocity profile for these higher Reτ simulations in which z+d = (200, 300). Only
smooth-wall full-span channel data is available from Hoyas & Jiménez (2006) to compare
with the minimal-span channel, and good agreement is seen up until z+ ≈ 120 = 0.4L+

y

(figure 10a). Here, both positions of zd produce velocity profiles which compare well with
the minimal-span channel with no outer-layer damping, up to the forcing location zd.

It is also of interest to see what effect the outer-layer damping has on second-order
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turbulence statistics. This is shown in figure 11 for the streamwise and wall-normal
velocity fluctuations (figure 11a) and the Reynolds shear stress (figure 11b), for the case
of outer forcing with z+d = 200 and L+

y = 120. This is compared to the minimal-span
channel with the same spanwise width, but with no outer-layer damping. The turbulence
intensity up until z+ ≈ 30 agrees reasonably well between the case with forcing and
without, however because the forcing term scales as (ui − 〈ui〉)2, fluctuations are almost
zero above z > zd. The fact that they are not exactly zero is likely because only the
spatially averaged velocity 〈ui〉 is used in the forcing term, and so will vary slightly with
time given the small spatial averaging domain of the minimal channel.

The Reynolds shear stress (figure 11b) is almost zero above z+ > 300, meaning the
damping is not dissimilar to having a lower friction Reynolds number while keeping
the roughness Reynolds number the same. However, flow structures can enter into the
damping region and remain coherent for a period of time which likely depends on the
damping strength γ. This is different to a half-height channel at a lower friction Reynolds
number, in which the impermeability constraint confines the structures at the slip wall.
An advantage of higher Reτ with damping compared to lower Reτ without damping is
that the higher friction Reynolds number of the flow with damping will reduce the effect
of low friction Reynolds number flows. Chan et al. (2015) showed that the roughness
function ∆U+ was overestimated for Reτ ≈ 180 compared to Reτ ≈ 360 and Reτ ≈ 540
for matched roughness Reynolds numbers. This is due to there being a non-negligible
pressure gradient effect, which as discussed in §2.1 is ∆p = −1/Reτ . It would therefore
be preferable to conduct higher friction Reynolds number simulations with damping,
rather than a lower friction Reynolds number simulations. While not investigated here,
it also seems reasonable that the grid spacings above zd could be relaxed without altering
the near-wall flow.

This damping is similar to the masks, or sponge regions, employed in Jiménez & Pinelli
(1999). The authors explicitly filtered out disturbances in the outer layer, resulting in
laminar-like flow in the outer layer but still maintaining a healthy near-wall cycle. The
present damping is similar, although some fluctuations are still present in the outer layer
(figure 11a) and the velocity is fixed rather than forming a laminar velocity profile. A
benefit of this damping is that it reduces the computational time step, which is limited
by the CFL number, CFL = max16i63 (|ui|∆t/∆xi). Here |ui| is the maximum instan-
taneous velocity in the ith direction and ∆xi is the corresponding grid spacing at that
location. Note that the viscous time step restriction does not become significant in any
of the simulations performed here. For minimal-span channels at Reτ = 590 with no
outer-layer damping, the maximum CFL number occurs in the outer layer due to the
large streamwise velocity. We see the time step improves by approximately 20–24% with
the use of the outer-layer damping (table 3, L+

y ≈ 118) than without. This means the
simulations can be completed quicker and hence use less computational resources. How-
ever, for the present simulations at higher friction Reynolds numbers of Reτ = 2000,
the time step for the smooth wall with outer-layer damping is unaltered compared to
the case without damping. This is due to the use of the cosine mapping to define the
wall-normal grid, which produces an excessively fine grid near the wall especially for high
Reynolds number cases. As a result of such a small ∆z, the wall-normal CFL number
is now maximum and this occurs in the near-wall region, which is independent of the
outer-layer damping. This clustering of points near the wall is a known issue of the co-
sine mapping for high Reτ simulations (Lenaers et al. 2014), but is used here to ensure
a systematic, controlled study. If a more appropriate mapping was used for these high
friction Reynolds numbers (e.g. that in Lee & Moser 2015), we would expect a similar or
better improvement in time step as at Reτ = 590.
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ID Reτ
Lx
h

L+
x L+

y
Lz
h

Nx Ny Nz ∆x+ ∆y+ ∆z+
w ∆z+

h ∆t+S ∆t+R

Temporal sweep (at initial conditions)

MS6 590 2π 3707 354 2 384 80 256 9.6 4.4 0.04 7.2 0.38 0.43

Table 4: Initial conditions for temporal sweep in a minimal-span channel. Refer to table
1 for definitions.

The most appropriate position for zd is difficult to establish from the above data. A
minimum of z+d ≈ 200 seems necessary to ensure that the damping does not interact
with the near-wall flow. It also seems reasonable that zd should scale in some way on
zc, for larger domain widths. The three sets of simulations suggest that zd should be
approximately two times zc, so a tentative rule of thumb would be z+d & max(200, 2z+c ).
For an appropriate wall-normal mapping, this allows a 20–24% improvement in the com-
putational time step.

3.4. Temporal sweep (table 4)

In this section, the temporal sweep (§2.1) is performed in a standard-height channel,
with no outer-layer damping (Ki = 0) and a streamwise length of Lx/h = 2π (table 4).
The initial friction Reynolds number is Reτ = 590 which reduces to Reτ = 180 via an
adverse pressure gradient with different rates investigated. The roughness height is fixed
at k = h/40, so the roughness Reynolds number varies as 5 . k+ . 15. Three different
sweeps were conducted in which the pressure gradient parameter at the end of the sweep
is ∆p,Reτ=180 = (0.03, 0.07, 0.15).

Figure 12 shows the mean velocity profiles for the fastest and slowest sweeps, comparing
the sweep data with full-span steady-flow data at the highest and lowest friction Reynolds
numbers tested. Figure 12(a,b) shows the mean velocity for the slowest sweep, when the
pressure gradient parameter (2.6) at Reτ ≈ 180 was ∆p,Reτ=180 = 0.03. Figure 12(c,d)
shows the mean velocity for the fastest sweep, with∆p,Reτ=180 = 0.15. To obtain statistics
for a desired Reτ , time-averaging is performed over a window of ±10% of that value. At
the initial friction Reynolds number of the simulation, Reτ = 590, both the sweeps (figure
12a,c) show good agreement with the full-span channel in the near-wall region. As the
spanwise width is Ly/h = 0.6, then the critical wall-normal location is approximately
z+c ≈ 0.4L+

y = 142 which agrees well with the figure. As ∆p is not significant yet (figure
2b) then there is little difference between the two sweeps.

Differences start to emerge at the end of the sweep when the friction Reynolds number
is close to Reτ = 180 and the ∆p is maximum. The slowest sweep (figure 12b) has
reasonable agreement very close to the wall below z+ . 15, but the pressure gradient
has reduced the streamwise velocity compared to the full-span steady flow. However, the
difference between the smooth and rough-wall sweep flows (inset of figure 12b) agrees
quite well with the full-span steady data. Taking the difference between two flows with
the same weak pressure gradient ostensibly still produces a correct estimate of ∆U+.
However, when the pressure gradient is increased to to ∆p,Reτ=180 = 0.15 (figure 12d)
then larger differences are seen. The near-wall region has been noticeably changed, and
the difference in smooth and rough wall velocity (inset) is seen to overestimate the full-
span data. Note that the data have been ensemble averaged over four runs, so that
the amount of time the flow is averaged over is the same as in the slowest sweep. This
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Figure 12: Mean streamwise velocity profile for (a,c) Reτ ≈ 590 and (b,d) Reτ ≈ 180,
from full-span steady flow (black line) and temporal sweep (grey line). (a,b) slowest sweep
(∆p,Reτ=180 = 0.03) and (c,d) fastest sweep (∆p,Reτ=180 = 0.15), §2.1. Line styles: Solid
line, smooth wall; dashed line, rough wall; vertical dashed line, roughness crest, k = h/40.
Inset shows difference in smooth- and rough-wall velocity.

therefore indicates that the overestimation of ∆U+ is a direct result of the stronger
(adverse) pressure gradient.

The roughness function ∆U+ is now computed from the difference in smooth and
rough-wall flows at matched Uτ values. As seen in the insets of figure 12, the smooth-
and rough-wall velocity difference is not constant with z+ as in the steady data. This
indicates that the flow has not been averaged for long enough at the desired Reτ value.
As such, multiple sweeps from different initial conditions would need to be conducted to
obtain a converged outer region. However, for the purposes of this investigatory study,
the velocity difference is averaged from the crest of the roughness to the channel centre to
obtain an estimate of ∆U+. This is done for a range of friction Reynolds numbers, with
the resulting data plotted in figure 13 against the equivalent sandgrain roughness, k+s .
Ideally, the temporal sweep data (lines) should agree with the steady flow data (black
symbols). Indeed, the temporal sweep does show promise in this regard, especially for
the weaker pressure gradient cases. If we interpolate the steady roughness function data
from Chung et al. (2015), then an overall relative error term can be approximated as
ε =

∫
|1 − ∆U+

steady/∆U
+
sweep| dk+s . The two slowest sweeps, with ∆p = 0.03 and 0.07

have similar relative errors of ε ≈ 12% and 13%, respectively, while the fastest sweep is
noticeably larger with an error of ε ≈ 26%.

It appears that the sweep approach could work for determining the hydraulic behaviour
of roughness. A pressure gradient parameter of ∆p 6 0.03–0.07 is required, which is not
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Figure 13: Hama roughness function for the temporal sweep with modelled roughness at
fixed k = h/40, where k+s ≈ 1.6k+. Symbols: black symbols, steady flow data for the same
modelled roughness (Chung et al. 2015); , sweep data for ∆p,Reτ=180 = 0.03 (slowest
sweep); , sweep data for ∆p,Reτ=180 = 0.07; , sweep data for ∆p,Reτ=180 = 0.15
(fastest sweep).

too far from the recommendation in Patel (1965) that zero pressure gradient conditions
can be assumed when ∆p 6 0.01. A value of ∆p & 0.15 results in pressure gradient effects
that lead to inaccuracies in ∆U+. Future studies could prescribe a constant value of ∆p

rather than linearly varying the bulk velocity, as this would ensure pressure gradient
effects remain negligible, while efficiently traversing the range of roughness Reynolds
numbers.

4. Cost and Convergence

Quantifying the cost of the simulations is extremely important when it comes to eval-
uating the benefit of minimal-span channels. There are two important costs to consider
in these simulations; the cost of memory (or the number of processors required) and the
cost of simulation time. The memory cost can be readily described by the size of the grid:

the number of spatial degrees of freedom for full-span simulations scale as Re
9/4
τ (Pope

2000, §9.1.2) which for Reτ & 103 requires national-level high-performance computing

facilities. The minimal channel, meanwhile, scales as k
+9/4
s (Chung et al. 2015), making it

feasible for smaller facilities at the university and industry level, or potentially high-end
desktop computers.

The cost of the simulation runtime is conventionally given in terms of CPU hours,
however an obvious question emerges; does a minimal channel with a domain volume that
is, say, 10 times smaller than a full-span channel require the simulation runtime to be 10
times longer? This would imply a similar cost in terms of CPU hours, but to answer this
question definitively we need to know how long it takes to obtain converged statistics,
particularly in the first-order statistics necessary to obtain the roughness function. A
benefit of this analysis is that it will enable us to predict how many CPU hours are
required for a minimal-span simulation before actually performing the simulation.

Generally, full-scale turbulence simulations are run for approximately 10 large-eddy
turnover times, where the largest eddy captured in the domain are of characteristic
size h and velocity Uτ . This implies a simulation run time of TsimUτ/h ≈ 10 (see, for
example, Hoyas & Jiménez 2006; Lozano-Durán & Jiménez 2014; Lee & Moser 2015) and



Numerical experiments with the rough-wall minimal channel 23

this long runtime is why DNS of full-span channels are so expensive. However, the largest
captured eddies in the minimal-span channel will be of characteristic size zc, implying we
need TsimUτ/zc ≈ 10 eddy turnover times of this zc-sized eddy. In this study, these are
generally of the size h/zc ≈ 10, implying that TsimUτ/zc ≈ 10 would be only 1 turnover
time of the h-sized eddy (if it existed), representing an order of magnitude saving in time.

This argument, however, does not make reference to the wall-parallel size of the domain.
Lozano-Durán & Jiménez (2014) suggested that channels with smaller domain sizes need
to be run for proportionately longer, and showed that the statistical uncertainties in
u′(z = h) of full-span channels decrease in a manner inversely proportional to the
square root of the wall area. However, this result was for two channels that, from the
point of view of the current study, were full-span channels. The largest characteristic
eddies in both channels were of size h, which explains the simple relationship between
channel domain size and simulation runtime. In contrast, the largest characteristic eddies
in minimal channels are of size zc which varies depending on the width of the channel.
This means that such a simple relationship between channel domain size and run time
is unlikely to hold. In the context of these zc-sized eddies, a full-span simulation could
potentially have hundreds of eddies distributed throughout the domain, while a minimal-
span simulation will only have a few. For this minimal-span channel to obtain the same
level of converged statistics as a full-span channel would presumably require the same
number of these zc-sized eddies to pass through the domain. It therefore becomes useful to
count the number of zc-sized eddies present in the domain. These eddies have a spanwise
width of λy,zc = Ly ≈ zc/0.4 = 2.5zc and, as discussed in the previous section, a
streamwise length of approximately three times the span, λx,zc ≈ 3λy,zc = 7.5zc. Hence,
the number of zc-sized eddies at any instant is

Ninstant =
Lx
λx,zc

Ly
λy,zc

· Lz
h

=
Lx

7.5zc

Ly
2.5zc

· Lz
h
. (4.1)

The first factor is an approximation of the number of zc-sized eddies present on one wall
of the channel. The other factor, Lz/h, is present as a half-height channel (Lz/h = 1)
will have half as many zc-sized eddies as a standard-height channel (Lz/h = 2).

Over the course of the simulation, these zc-sized eddies will grow and decay in a process
termed ‘bursting’, so it becomes necessary to consider the time scale of these eddies. The
bursting process in the buffer layer was investigated by Jiménez et al. (2005), who showed
that the time scale depended on the friction Reynolds number. Low Reynolds number
flows have a long bursting period of T+

b ≈ 1000 for Reτ ≈ 100, however this saturates to
T+
b ≈ 400 for Reτ & 1000. This was determined for minimal channels with small spanwise

widths such that they only captured the buffer layer, i.e. L+
y . 125–200⇒ z+c . 50–80.

Figure 14(a) shows this buffer-layer bursting period, along with the current data for
buffer-layer minimal channels (L+

y . 125–200) at Reτ = 590. Good agreement is seen,

with the bursting period at this friction Reynolds number being approximately T+
b ≈ 540.

The bursting period was determined in the same manner as Jiménez et al. (2005), defined
as the weighted logarithmic average of the frequency spectra of the wall-shear stress.

In the logarithmic layer, Flores & Jiménez (2010) determined that the bursting period
scales with distance from the wall according to TbUτ/zc = 6, which was supported by
Hwang & Bengana (2016). The bursting period of the largest eddies in the minimal
channel, T+

b , therefore depends on both zc and Reτ . Narrow minimal channels which
only capture the buffer layer (z+c . 50–80) have an Reτ -dependence on the bursting
period (figure 14a), while wider minimal channels which capture part of the logarithmic
layer (z+c & 50–80) have a bursting period that depends on zc. This is summarised in
figure 14(b), which also shows the present data. The behaviour for intermediate z+c
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Figure 14: (a) Buffer-layer bursting period T+
b against friction Reynolds number. Solid

line denotes data of Jiménez et al. (2005), symbols are current data for buffer-layer mini-
mal channels. (b) Bursting period T+

b against wall-normal critical height z+c . Symbols: ×××,
Reτ = 590 standard-height channel; +++, Reτ = 590 half-height channel; ⊕⊕⊕, Reτ = 2000
half-height channel. Lighter grey symbols denote shorter streamwise channel lengths.
Line styles: , buffer-layer bursting period at different Reτ ; , log-layer bursting
period TbUτ/zc = 6 (Flores & Jiménez 2010; Hwang & Bengana 2016).

values between buffer and logarithmic flows (grey band) is unknown and likely depends
on both z+c and Reτ . Here, the inertial motions of the logarithmic layer are scarce and
are likely competing with the Reτ -dependent motions of the buffer layer, with neither
completely dominating. This distinction becomes irrelevant for higher Reτ channels as
the buffer-layer bursting period saturates to T+

b ≈ 400.
The product of the bursting timescale, Tb, and the instantaneous number of zc-sized

eddies, Ninstant, gives the total number of zc-sized eddies that exist over the simulation
runtime Tsim,

C? =
Tsim
Tb

Ninstant =
Tsim
Tb
· Lz
h
· Lx

7.5zc

Ly
2.5zc

. (4.2)

C? is simply a running count of how many zc-sized eddies have been sampled, and
increases with simulation runtime. To investigate whether this is the correct measure
for statistical convergence, the statistical uncertainty of streamwise velocity in different
minimal channels is analysed. There are various ways of quantifying the statistical
uncertainty; here we will estimate it using the standard error of the mean. Instantaneous
snapshots of u(x, y, z, ti) at time ti 6 Tsim are spatially averaged in the wall-parallel plane
to get 〈u(z, ti)〉. The temporal average of these N snapshots gives the overall mean,

U(z, Tsim) =
1

N

N−1∑
i=0

〈u(z, ti)〉 (4.3)

The standard error of this mean for statistically independent samples can be computed
as ε = s/

√
N , where s is the unbiased standard deviation of the signal 〈u(z, ti)〉. The

quantity ε has the same units as u, so can be non-dimensionalised to ε+. A 95% confidence
interval can then be given in which we are 95% certain the true mean falls within U+ ±
1.96ε+ (Benedict & Gould 1996). The roughness function, being the difference in two
estimated velocities, therefore has a 95% probability of falling within the range ∆U+ ±
1.96

√
ε+2
s + ε+2

r , where subscripts s and r refers to the uncertainties in the smooth-wall
and rough-wall velocities.
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Figure 15: Standard error of the velocity 〈u〉 at z+ ≈ 47 as a function of (a) large-eddy
turnover time TsimUτ/h and (b) number of zc eddies C? (4.2). Line styles: black, full-
span channel; grey, minimal-span channel with z+c ≈ 47 where darker grey line indicates
increasing length L+

x (table 1). Dashed line in (a) shows (TsimUτ/h)−1/2, the expected
trend in standard error, and dashed line in (b) shows 0.75(C?)−1/2

In turbulence simulations the samples may not necessarily be statistically independent,
so the assumption that ε = s/

√
N would not hold. Following Trenberth (1984) and Oliver

et al. (2014), an effective number of statistically independent samples Neff = N/T0 can
be defined, where

T0 = 1 + 2

N−1∑
k=1

(
1− k

N

)
ρ(k) (4.4)

is the decorrelation separation distance, ρ being the autocorrelation function of 〈u(z, t)〉
normalised on its variance. The standard error can then be estimated as ε = s/Neff ,
where

s2 =
1

N − T0

N−1∑
i=0

(〈u(z, ti)〉 − U(z, Tsim))
2
. (4.5)

If the samples were truly independent, then the autocorrelation ρ should be near zero,
resulting in T0 = 1 ⇒ Neff = N and the familiar unbiased standard deviation for s
is obtained (with divisor N − 1) . The autocorrelation function can be noisy, especially
for small N , prompting Oliver et al. (2014) to develop an open-source code to fit an
autoregressive time series model to a given signal. However we have found that for min-
imal channel simulations N is sufficiently large such that the autocorrelation definition
appears to be adequate, with T0 usually being O(1). The coarse-graining approach for
estimating the standard error for correlated samples, detailed in the appendix of Hoyas
& Jiménez (2008), was also attempted although no appreciable differences were detected,
again because the samples are nearly independent.

Increasing the simulation runtime Tsim reduces the statistical uncertainties as evi-
denced in figure 15(a), which shows the standard error of the velocity at a representative
wall location z+ = 47. The very short minimal-span channels (light grey lines) only have
one or two zc-sized eddies present, and the bursting nature of only a few eddies greatly
increases the statistical uncertainties, requiring a very long runtime. The dashed line
shows (TsimUτ/h)−1/2, indicating that the uncertainties decrease inversely proportional
to the square root of time. This is essentially the same result as Hoyas & Jiménez (2008)
and Lozano-Durán & Jiménez (2014) who argued the decrease was inversely propor-
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Figure 16: Standard error of the velocity as a function of the number of zc-sized eddies
eddies C? (4.2) for (a) z+c ≈ 94, Reτ = 590 (table 3), (b) z+c ≈ 142, Reτ = 590 (table 1),
(c) z+c ≈ 120, Reτ = 2000 (table 3). Line styles are same as figure 15. Dashed line shows
ε+ = K(C?)−1/2, where (a) K = 0.37, (b) K = 0.23, and (c) K = 0.23. Coefficient K is
shown in (d) as a function of z+c . Symbols: +++, Reτ = 590; ×××, Reτ = 2000. Dashed line
shows K = 33/z+c .

tional to the square-root of wall area, the difference here being that we have considered
the snapshots as a sampling of time rather than multiples of wall area.

When the standard error is instead considered as a function of C? (figure 15b) we obtain
a better collapse, indicating that counting zc-sized eddies as in the C? formulation is
indeed an appropriate measure to use. The data show a collapse with ε+ = K(C?)−1/2,
where here it was determined K = 0.75 for z+c ≈ 47. This relationship shows that
obtaining a desired error tolerance requires capturing a certain number of zc-sized eddies
(C?). Increasing the streamwise domain length does not affect this measure, other than
to simulate more eddies at once.

Figure 16 shows that there is not a universal number of zc-sized eddies that need to
be simulated to obtain a desired ε+, that is, the coefficient K in ε+ = K(C?)−1/2 is
a function of z+c . Figure 16(a) shows that for z+c ≈ 94, K = 0.37, while figure 16(b)
with z+c ≈ 142 has K = 0.23. Figure 16(d) shows that this coefficient decreases with z+c ,
which implies that a wider minimal channel will have a smaller statistical uncertainty
than a narrower one, for the same C? value. This is possibly due to the way in which
eddies aggregate in wider channels. As the channel widens and z+c increases, the largest
zc-sized eddy increases, however there remains a hierarchy of smaller eddies below this
largest eddy. The uncertainty ε+ of the mean velocity would have contributions from all
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of these eddies and so would depend on z+c . The reason this effect is not already captured
in C? is that this quantity only considers the largest zc-sized eddy, whereas ε+ ostensibly
considers all eddies up to and including those of zc size. The data in figure 16(d) show
what appears to be a −1 power law, in which case a fit gives K(zc) = 33/z+c .

Recall that the 95% confidence interval of the roughness function is ∆U+±1.96
√
ε+2
s + ε+2

r .
If both smooth- and rough-wall simulations were to have the same uncertainty, then this
interval can be rewritten as

∆U+ ± 2.77ε+ ≈ ∆U+ ± 2.77K(C?)−1/2 ≈ ∆U+ ± 91.4(C?)−1/2/z+c . (4.6)

The advantage of this formulation is that setting a desired error tolerance in ∆U+ en-
ables the simulation run time (and hence CPU hours) to be determined a priori. To see
this, the spanwise channel width, Ly & max(100ν/Uτ , k/0.4, λr,y) (Chung et al. 2015),
and streamwise channel length, Lx & max(3Ly, 1000ν/Uτ , λr,x) (§3.1), must first be de-
termined, which sets zc = 0.4Ly. The user must then determine a desired error tolerance,
ζ, for ∆U+±ζ. This error tolerance will depend on the application; riblets have a rough-
ness function −∆U+ . 1 (Spalart & McLean 2011), which would require a smaller level
of statistical uncertainty, than say an engineering roughness problem where ∆U+ ≈ 10.
Once set however, this can be related to C? through ∆U+±91.4(C?)−1/2/z+c . From here,
(4.2) can be solved for the simulation time Tsim using the minimal channel dimensions
and bursting period Tb. The number of CPU hours is then

CPU hours =
T+
sim

∆t+
T1NCPU , (4.7)

where ∆t+ is the computational time step, so T+/∆t+ is the number of time steps
performed during the simulation. T1 is the average wall clock time taken to perform a
single step and NCPU is the number of processors employed in the computation. The time
step ∆t+ can be estimated if the streamwise CFL number at the channel centre is unity,
i.e. Uh∆t/∆x = CFL = 1, which gives ∆t+ = ∆tU2

τ /ν = ∆x+Uτ/Uh. If ∆x+ ≈ 10 and,
for a full-span channel, the centreline velocity is Uh/Uτ ≈ 25 then we have ∆t+ ≈ 0.4,
which agrees with that recommended in Choi & Moin (1994). Body-fitted roughness
grids may have a smaller time step due to having a finer grid to resolve the roughness
geometry. T1 and NCPU will depend on the code being used. The full-span channel used
in this study, run for TUτ/h = 10 large-eddy turnover times with ∆t+ ≈ 0.18, T1 ≈ 26.4
seconds and Ncpu = 64 requires approximately 15800 CPU hours. For a minimal channel
with h/zc ≈ 10 and 95% confidence interval of ∆U+ ± 0.1, the above analysis leads to
a requirement of only 1420 CPU hours (for NCPU = 64 and T1 = 2.4 seconds, based on
case MS6 of table 2), which is over ten times less than the full-span channel.

5. Minimal channel applied to pyramids

5.1. Computational setup

Following the insights discussed in this paper, a finite-volume code is used to determine
the roughness function of square-based pyramids. This is the same code as in Chan et al.
(2015) and Chung et al. (2015), based on the work of Mahesh et al. (2004) and Ham
& Iaccarino (2004). No outer-layer damping will be used (K = 0) and since a body-
fitted grid is used, no roughness forcing is required (F = 0). Three different pyramids
are simulated with different heights, but all with slope angles of α = 22◦ and nominal
Reτ = 840. Each pyramid will be referred to by its nominal trough-to-peak height, k+t
and wavelength λ+, as a unique identifier given by the notation k+t λ+. Hence the case
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Case Reτ k+
t λ+ α L+

x L+
y Nx Ny Nz ∆x+ ∆y+ ∆z+

w ∆z+
h Cf,mod ∆U+

Sm 198 834 - - - 1180 197 288 48 320 4.1 4.1 0.14 6.2 0.0053 -
Sm 313 850 - - - 1201 316 288 72 320 4.2 4.4 0.14 6.3 0.0051 -
Sm 396 851 - - - 1204 401 288 96 320 4.2 4.2 0.14 6.3 0.0050 -
40 198 848 40.4 200 22 1200 200 288 48 320 4.2 4.2 0.14 6.3 0.015 8.0
40 198 f 837 39.2 197 22 1184 197 504 84 560 2.3 2.3 0.24 3.6 0.015 7.9
40 198 2 879 41.7 207 22 1243 414 288 96 320 4.3 4.3 0.15 6.5 0.015 8.3
63 313 883 66.3 329 22 1249 329 288 72 320 4.3 4.6 0.24 6.5 0.021 10.2
80 396 868 82.4 409 22 1227 409 288 96 320 4.3 4.3 0.24 6.4 0.024 11.0

SF09 4020 39.9 198 22 - - - - - - - - - - 6.4
SF09 3900 62.7 310 22 - - - - - - - - - - 7.0
SF09 4290 87.5 433 22 - - - - - - - - - - 8.7
DCO16 670 39 147 28 - - - - - - - - - - 8.9
HKS11 3520 63.3 442 16 - - - - - - - - - - 8.2

Table 5: Description of the simulations performed with the finite volume code for the
square-based pyramids. k+t is the trough-to-peak pyramid height, λ+ the pyramid wave-
length, α the pyramid slope angle, and Cf,mod = 2U2

τ /U
2
b,full the predicted full-span skin

friction coefficient (see text). Other entries are same as table 1. All simulations conducted
using a half-height channel with no outer-layer damping. SF09 refers to Schultz & Flack
(2009), HKS11 to Hong et al. (2011), and DCO16 to Di Cicca & Onorato (2016).

40 198 has a height k+t ≈ 40 and wavelength λ+ ≈ 198. The other two cases are 63 313
and 80 396. These three cases match the pyramids studied in Schultz & Flack (2009),
herein referred to as SF09. The smallest pyramid also has a similar k+t to Di Cicca &
Onorato (2016), herein referred to as DCO16, who had k+t = 39. Their pyramid slope
angle was α = 28◦ and their pyramids were separated from each other by a small gap of
32 viscous units. However, given that the roughness height is matched, these difference
shouldn’t result in a substantially different roughness function. Additionally, the case
63 313 matches the roughness height of Hong et al. (2011) (herein HKS11), although
the authors had pyramid slope angles of α = 16◦. The cases that are simulated here,
and those available in the literature, are summarised in table 5. The expected full-span
skin-friction coefficient, Cf,mod = 2U2

τ /U
2
b,full, is also given in this table. Due to the

altered outer-layer velocity profile of the minimal-span channel, the composite profile of
Nagib & Chauhan (2008) is fitted to estimate the full-span velocity profile for z > zc.
This therefore allows for an estimate of the full-span bulk velocity Ub,full to be obtained.
The estimated smooth-wall coefficient value of Cf,mod ≈ 0.005 is in good agreement
with the empirical fit of Dean (1978), in which Cf = 0.073(Reb)

−1/4 = 0.0054 where
Reb = 2hUb/ν is the bulk Reynolds number. This shows that the minimal-span channel
framework can still be used to estimate the full-span skin-friction coefficient, which is
commonly used by engineers.

Now that the dimensions of the roughness are known, the channel domain size can
be determined. Following the guidelines of Chung et al. (2015), the spanwise domain
width must satisfy Ly & max(100ν/Uτ , kt/0.4, λr,y). For the smallest pyramids (case
40 198), we have L+

y & max(100, 100, 198) so it is the large wavelength which necessitates
Ly = λ. An additional case with the same channel dimensions as 40 198 is simulated (case
40 198 f), but with a finer computational grid to ensure that all the turbulent scales are
resolved. This spanwise width of Ly = λ means that the critical wall-normal location
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Figure 17: Pyramid geometry and body-fitted mesh for pyramid with k+t = 40, λ+ = 198
at Reτ = 840 for (a) normal mesh 40 198 and (b) finer mesh 40 198 f. Only every (a) fifth
or (b) tenth wall-normal node is shown, and only every second spanwise and streamwise
node in (b). Contour shows time-averaged total drag (viscous + pressure) force per unit
area.

zc = 0.4Ly for these pyramids is set at z+c = 80 ≈ 2k+t . The roughness sublayer may
be larger than 2kt, so a channel with a larger width of Ly = 2λ is also simulated (case
40 198 2), so that the critical location is now zc = 4kt. For the larger pyramids (cases
63 313 and 80 396), the pyramid wavelength is again the limiting constraint, so Ly =
λ. The streamwise domain length was investigated in §3.1, where the recommendation
was Lx & max(3Ly, 1000ν/Uτ , λr,x). For the smaller pyramids (40 198), we have L+

x &
(594, 1000, 198) so it is the second constraint that is the limiting one. To ensure we
have complete a number of pyramids in the domain, a streamwise length of Lx = 6λ is
selected which in viscous units is L+

x = 1188. Case 63 313 is also limited by the second
constraint. For the largest pyramids (L+

y = 396), the first constraint (Lx & 3Ly) requires
a streamwise length of Lx = 3Ly ⇒ L+

x = 1188.
The length of time to achieve a converged result can now be estimated since the

spanwise width Ly and hence critical wall-normal location zc = 0.4Ly have been set. For
the smallest pyramid case (40 198), the spanwise width is L+

y = 198 so z+c = 79. If we wish
to be 95% confident that the roughness function is in the range ∆U+±0.1, then from (4.6)
the number of zc-sized eddies that must be observed are C? = (91.4/(0.1z+c ))2 ≈ 134. We
want to use this to determine the simulation runtime Tsim through (4.2), which requires
estimating the bursting period Tb. Since the channel is relatively wide and z+c = 79, it’s
likely to have the beginnings of a logarithmic layer (figure 14b), which implies TbUτ/zc =
6 ⇒ T+

b = 6z+c ≈ 475. All that remains is to substitute this value and the channel
dimensions into (4.2) to determine that T+

sim ≈ 3.1 × 104. As the nominal streamwise
grid spacing is known to be ∆x+ ≈ 4.2, and if we assume a centreline velocity of U+

h ≈ 30,
then the time step ∆t+ = ∆x+/U+

h ≈ 0.14 for a CFL number of unity at the centreline.
Finally, using (4.7) with an assumed wall clock time per step of T1 = 6.4 seconds and
NCPU = 128, we expect to use around 52,000 CPU hours. A similar computation for
cases 63 313 (z+c ≈ 125, C? ≈ 53) and 80 395 (z+c ≈ 158, C? ≈ 33) predicts 53,000 and
100,000 CPU hours, respectively. For comparison, a single full-span channel (Lx = 2π,
Ly = π, Lz = 2h and TsimUτ/h = 10) with pyramids would likely require at least 2×106

CPU hours using the current code, more than a full order of magnitude greater than the
minimal channel.

The pyramids are aligned so that the trough between neighbouring pyramids is 45◦ to
the mean flow direction. However, because hexahedral cells are used which are aligned



30 M. MacDonald, D. Chung, N. Hutchins, L. Chan, A. Ooi and R. Garćıa-Mayoral
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Figure 18: (a–c) Mean velocity profile for pyramid roughness. Line styles: full-span
channel, Reτ = 950 (Chung et al. 2015); , minimal span. Solid line, smooth wall;
dashed line, rough wall with pyramid height (a) k+t ≈ 40, (b) k+t ≈ 63, (c) k+t ≈ 80. +++

indicate wall-normal critical location zc = 0.4Ly. Inset shows difference in smooth-wall
and pyramid-roughness velocity. (d) Roughness function against trough-to-peak pyramid
height, k+t . Symbols: N, SF09 data in table 5;444, other SF09 data for α = 22◦ pyramids;
�, DCO16 data; �, HKS11 data; , Nikuradse (1933) sandgrain data; N, current data
(40 198, 63 313, 80 396); I, 40 198 2; J, 40 198 f.

with the mean flow direction, the trough line falls across opposite vertices of the cell.
This would mean the cell needs to be split into two pentahedrals to fit the roughness
geometry. To mitigate this issue, the trough of the pyramids are rounded off and faceted.
The resulting trough has a radius of curvature of approximately half the pyramid crest-
to-peak height, R = 0.53kt. The crest of the pyramid retains its sharp edge, as evidenced
in figure 17. The total volume of fluid in the channel with pyramids matches that of a
smooth-wall channel, which would ensure a collapse of flow statistics in the outer layer,
if it existed (Chan et al. 2015). In other words, the hydraulic half height (the channel
equivalent to the hydraulic radius of a pipe) matches the smooth wall, which implies the
virtual origin is at one third the height of the pyramid.

5.2. Pyramid results

Figure 18(a–c) shows the mean velocity profile for the pyramid roughness data. The insets
show the difference in velocity between smooth-wall and pyramid-roughness channels, and
it can be seen to be relatively constant from the pyramid crest to the channel centre.
This indicates that the velocity profile for the smooth-wall and rough-wall are matched
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from the crest (apart from the offset ∆U+), or that the roughness sublayer for pyramids
is small. The roughness function is obtained by averaging the difference in smooth- and
rough-wall velocities over k+t + 5 < z < z+c .

For the smaller pyramids (k+t = 40) in a narrow channel, we obtained a roughness
function of ∆U+ = 8.0 which agrees well with the refined mesh (∆U+ = 7.9). This
indicates that both meshes are resolving all the relevant scales in the roughness sublayer.
When the channel is widened to include two repeating pyramids in the spanwise direction
(40 198 2), we achieve a similar result of ∆U+ = 8.3. While slightly larger than the
previous two values, this difference is predominantly due to the increase in Reτ for this
channel. The roughness Reynolds number, k+t ≈ 41.8, is almost 5% over the target value
of k+t = 40, which means the roughness function would also be larger. The otherwise
good agreement between this case and the narrower case 40 198 supports the conclusion
that the roughness sublayer is less than 2kt in height above the pyramid crest. If the
roughness sublayer was larger than 2kt, then the narrower minimal channel with zc = 2kt
could not fully capture the roughness effects and hence would have a different roughness
function to the wider minimal channel. Moreover, this agreement with case 40 198, when
Ly = λy, suggests that the interaction of flow structures generated between neighbouring
roughness elements is small, as this case only has a single repeating element in the
spanwise direction. This agrees with our previous study (MacDonald et al. 2016), which
compared a three-dimensional sinusoidal roughness in a full-span channel and a minimal-
span channel in which there is only one repeating roughness element in the spanwise
direction. It would only be when the spanwise roughness wavelength was very large, or
infinite, as in the case of two-dimensional spanwise bar roughness and d-type surfaces
that these spanwise effects would become significant. However, this would require further
study and is outside the scope of this paper. The above three values of the roughness
function can be compared with values of 6.4±10% from SF09 and 8.9 from DCO16. The
current data therefore falls between these two sources (figure 18d).

For the case with k+t ≈ 63, the roughness function was found to be ∆U+ = 10.2, which
is larger than 7.0±10% from SF09 and 8.2 from HKS11. For the largest pyramids, where
k+t ≈ 80, the roughness function was found to be ∆U+ = 11.0, which is again larger
than the value of 8.7± 10% from SF09. As a result, the equivalent sandgrain roughness
appears to be ks ≈ 3.5kt, compared to ks ≈ 1.5kt from SF09. Note that DCO11 would
predict an even larger equivalent sandgrain roughness than ks ≈ 3.5kt, given their larger
∆U+ at k+t ≈ 40.

To show some of the higher order statistics that can be obtained from these simula-
tions, the difference between sweep and ejection Reynolds stress contributions are shown
in figure 19. This difference, ∆S0 = ({u′w′}4,0 − {u′w′}2,0)/〈u′w′〉, was developed in
Raupach (1981) in which the Reynolds shear stress is conditionally averaged on sweeps
(u′ > 0, w′ < 0, quadrant 4) and ejections (u′ < 0, w′ > 0, quadrant 2), where {·}
denotes the conditional average. The hyperbolic hole region H = 0. From this statistic,
it can be seen in figure 19(a) that sweeps are the dominant means of momentum transfer
within the roughness canopy, in agreement with Raupach (1981). These sweeps are much
more dominant than in a smooth wall, which has a slight preference for sweeps very close
to the the wall (z+ . 12), with ejections dominant above. Above the roughness crest,
both rough-wall and smooth-wall flows collapse with ejections being slightly larger than
sweeps. The outer-layer is associated with ejections being dominant, with ∆S0 tending
to −1 at z = h. However, in the minimal-span channel this statistic stays approximately
constant above z > zc, with ∆S0 being close to zero. If instead the wall-normal coordi-
nate is normalised on kt (figure 19b) then we see that all three rough-wall flows nearly
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z
+

∆S0

−0.5 −0.25 0 0.25 0.5
−30

0

30

60

90

120

150

z
/
k
t

∆S0

−0.5 −0.25 0 0.25 0.5

0

0.5

1

1.5

2
(a) (b)

6
Inc. k+

t

Figure 19: Difference ∆S0 between sweep and ejection stress contributions (Raupach
1981) as a function of (a) z+ and (b) z/k. Line styles: , smooth wall (sm 396); ,
k+t ≈ 40 (40 198); , k+t ≈ 63; , k+t ≈ 80. Symbols: +++, z+c ; ×××, pyramid crest.
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Figure 20: Standard error of the velocity as a function of the number of zc-sized ed-
dies eddies C? (4.2) for (a) z+c ≈ 79, and (b) z+c ≈ 158. Line styles: , smooth wall;

, k+t ≈ 40 pyramid; , k+t ≈ 80 pyramid. Horizontal dashed line shows ε+ =
0.1/2.77 = 0.036, the desired tolerance level, vertical dashed line shows C? =
(91.4/(0.1z+c ))2, the expected C? value required to obtain this tolerance level (4.6).

collapse, although the case with the smallest height (k+t ≈ 40, red dashed line) there is
a slight difference, with sweeps remaining dominant at the roughness crest.

Figure 20 shows the statistical uncertainty of U+(z = zc) as a function of C?, the
number of zc-sized eddies. This is the same format as figure 16(a–c). Importantly, the
predicted number of zc-sized eddies that need to be observed to obtain an error tolerance
of ∆U+ ± 0.1 using (4.6) is indicated by the vertical dashed lines. The current data
for both smooth and rough walls show reasonable agreement with this prediction, albeit
the prediction tending to overestimate the necessary C? value. While this means an
overestimated number of CPU hours from the number given in §5.1, this is more desirable
than underestimating the required number of CPU hours. It is worthwhile mentioning
that the current data is for a different Reτ and roughness geometry then what the
predicted C? empirical relation was developed with, showing a certain robustness to the
method.

The roughness function values of 8 . ∆U+ . 11 measured here place these pyramid
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cases in the fully rough regime, while the results and recommendations from the previous
sections (§3–4) were conducted in the transitionally rough regime. Given that the pyramid
cases were set up using these recommendations without any modifications and achieved
reasonable agreement with the literature, this suggests that the results of this study can
apply to both transitionally and fully rough flows.

6. Conclusions

A series of numerical experiments were conducted to investigate the fundamental dy-
namics of the minimal channel, with an emphasis on more efficiently simulating rough-
wall flows in order to obtain the roughness function ∆U+. These experiments were per-
formed using a finite difference code.

The streamwise length was investigated in §3.1 for a minimal channel. It appears that
the largest log-layer eddy scales as Lx = 3Ly, where the spanwise width is obtained from
the guidelines in Chung et al. (2015), Ly & max(100ν/Uτ , k/0.4, λr,y). However, for very
narrow channels this implies a very short streamwise domain length, which may not be
able to sustain the turbulent motions. The small spatial domain also makes obtaining
converged statistics a very time-consuming process. As such, minimal channels would
benefit from a minimum streamwise domain length of around 1000 viscous units and so
a guideline for setting Lx is Lx & max(3Ly, 1000ν/Uτ , λr,x), where λr,x would be some
characteristic streamwise length scale of the roughness.

Two alterations to the outer-layer flow were investigated to see whether they affected
the healthy near-wall flow. A half-height (open) channel was used in §3.2 which a slip-
wall is positioned at the channel centre. This resulted in only a slight change to the
mean velocity profile and turbulence intensities in both minimal and full-span channels,
primarily affecting the wake region. The pressure fluctuations in the minimal channel were
shown to be nearly an order of magnitude larger than in a full-span channel, however
this was suggested to be as a result of the rapid pressure term which is related to the
mean velocity gradient, dU/dz. When dU/dz was instead artificially set to zero in the
unphysical region above zc, the pressure fluctuations from this altered velocity field were
then in much better agreement with the full-span channel. A benefit of using a half-height
channel is that only half the number of gridpoints are required, at the cost of running
the simulation for twice as long to reach the same level of statistical convergence. It is
up to the user to balance this trade off between memory and time.

A forcing model was applied to the outer layer in §3.3 to damp the fluctuations and re-
duce the centreline velocity. The near-wall flow was unaltered even though the Reynolds
shear stress is zero above the location where the damping starts, zd. This is similar to
the filtering employed by Jiménez & Pinelli (1999), although the present damping model
forces U(z > zd) = U(z = zd). This allowed for an improvement in the computational
time step of around 20–24%, although this did not extend to higher friction Reynolds
numbers in the present simulations due to the grid using a cosine mapping in the wall-
normal direction. The present data suggest that the location where the forcing starts
should be zd & max(200ν/Uτ , 2zc). The first constraint is present for very narrow chan-
nels where z+c is close to the wall, as the forcing will interfere with the near-wall flow
otherwise.

A temporal sweep was conducted in §3.4 to see if the full roughness behaviour could be
obtained by varying the roughness Reynolds number with time. A simple linear variation
in the bulk velocity was attempted, with three different rates of change investigated. It
was shown that the two slowest rates of change, with final pressure gradient parameter
values of ∆p,Reτ=180 = 0.03 and 0.07 could reasonably predict some of the ∆U+ vs k+s
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curve. The largest value of ∆p = 0.15 resulted in substantial flow changes compared
to the steady flow and so are not feasible. The early work of Perry & Joubert (1963)
showed that ∆U+ was independent of an applied pressure gradient, and the present
work goes on to provide a bound on ∆p for when this holds. This also suggests that
pressure gradients, normally applied by a spatial acceleration of the flow in experimental
facilities, can equally be simulated by a temporal acceleration. This is similar to the
approach of Kozul et al. (2016) who represented a spatially developing boundary layer
as temporally developing instead.

An eddy-counting argument was developed in §4 to analyse the statistical uncertainties
of numerical simulations in minimal channels. The total number of zc-sized eddies, C?, are
counted over the duration of the simulation, which involves estimating their characteristic
length and time scales. For a desired level of uncertainty, ζ, in the roughness function,
∆U+±ζ, the expected number of zc-sized eddies that need to exist over the course of the
simulation was estimated as C? = (91.4/(ζ ·z+c ))2 as in (4.6). This means that for a known
z+c , the user can determine how many zc-sized eddies need to be observed through this
empirical relation. The simulation run time, and hence number of CPU hours required,
can then be estimated a priori. This would enable researchers to determine beforehand
how best to allocate a limited number of CPU hours when studying rough-wall flows.

A case study of square-based pyramids (§5) was used to illustrate the minimal-span
channel framework and the insights gained in this paper. The viscous dimensions of the
pyramids were set to match those of Schultz & Flack (2009). The roughness functions
from these simulations were overestimated compared to those of Schultz & Flack (2009),
although underestimated compared to that of Di Cicca & Onorato (2016) who had a
similar roughness geometry. The predicted C? value required to obtain a desired level of
statistical uncertainty was shown to be in reasonable agreement, if not somewhat conser-
vative, with the data from the pyramid simulations. As such, the estimated CPU hours
required for the simulation can be predicted reasonably accurately before performing
the simulation. For this pyramid roughness, the minimal-span channel used nearly 20
times less CPU hours than the estimated cost of a full-span channel, as well as using
substantially fewer CPUs.
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