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Abstract: We demonstrate a method for reliably determining the electrical properties of 
graphene including the carrier scattering time and carrier drift mobility from terahertz time-
domain measurements (THz-TDS). By comparing transients originating from directly 
transmitted pulses and the echoes from internal reflections in a substrate we are able to extract 
electrical properties irrespective of random time delays between pulses emitted in a THz-TDS 
setup. If such time delays are not accounted for they can significantly influence the extracted 
properties of the material. The technique is useful for a robust determination of electrical 
properties from terahertz time-domain measurements and is compatible with substrate 
materials where transients from internal reflections are well-separated in time. 
© 2016 Optical Society of America 
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1. Introduction 

Terahertz time-domain spectroscopy (THz-TDS) is a non-contact measurement technique that 
can be used to determine electrical properties of conducting thin films such as graphene  [1–
4]. The non-contact approach is advantageous for in-line characterization and quality-control 
for industrial integration of graphene, especially when compared to standard field-effect 
measurements on graphene that require additional and intrusive fabrication steps for device 
processing. Non-gated rapid spatial mapping of the carrier drift mobility (µdrift) and carrier 
density (Ns) of graphene by THz-TDS was recently reported  [5], which presents a step 
forward compared to earlier reports which mainly gauges the conductivity [6,7] or extracts 
the mobility through back-gated THz-TDS measurements requiring special substrates [8,9].   
 An accurate and reliable determination of the electrical properties of graphene is required 
for THz-TDS to become an industry standard for rapid in-line characterization. In order to 
robustly determine the electrical properties such as µdrift and Ns from non-gated measurements 
we would like to fit both the real and imaginary parts of the frequency dependent sheet 
conductivity to the Drude model. The electrical properties extracted from such fits were found 
to vary significantly depending on the choice of reference point on a sample. We attribute 
those point to point variations to time shifts (timing jitter and drift) between individual pulses 
transmitted in the setup.  Various sources of possible artifacts from THz-TDS measurements 
have been identified and dealt with [10,11], but there are still no reports on a systematic 
correction for waveform to waveform timing jitter. Here we show a method for reliably 
extracting electrical properties from graphene by comparing the information that is available 
from transients that are directly transmitted through the substrate and transients originating 
from internal reflections in the substrate. 
 

2. Methods 

Chemical vapor deposited graphene was grown according to a published method [12] and 
subsequently transferred [13] onto high resistivity silicon with 90 nm SiO2 for optical 
visibility of the graphene layer [14]. THz-TDS measurements were conducted using a 
commercial fiber-coupled spectrometer described in detail elsewhere [4]. Samples were raster 



scanned with 200 µm step size in the focal plane of the THz beam to form spatial maps with 
~300 µm resolution (at 1 THz).  

An incident pulse leads to transients from a directly transmitted pulse and echoes from 
internal reflections in the substrate, see Fig. 1(a). The THz beam interacts strongly with free 
carriers in the graphene film [4,15] which means that the sheet conductivity of the graphene, 
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fσ can be extracted from the frequency-dependent complex transmission function 
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where /
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dn cδ ω=  is the phase and attenuation in a substrate with refractive index 
sub

n and 

thickness d where c is the speed of light in vacuum and ω = 2πf is the angular frequency. The 
transmission coefficients t between air and substrate are calculated from the Fresnel equations
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vacuum impedance. The transmission function for the first internal reflection contains 
additional terms from internal reflections but is similar in structure. 
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where 1,

A Si
n n= + 1,

B Si
n n= − and

Si
n = 3.417. Electrical parameters such as the DC sheet 

conductivity, σDC, carrier scattering time, τsc, Ns, and µdrift can be extracted after fitting 
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σDC and τsc are determined directly from the fit to the Drude model as shown in Fig. 1(b), 
whereas Ns and µdrift are evaluated from the relations [5] 
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where νF is the Fermi velocity with a value of 106 m/s [16]. The carrier density and drift 

mobility calculated from the fit in Fig. 1(b) is 132.25 10× cm-2 and 1621.5 cm2/Vs, 
respectively. 
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obtained from full fits after jitter correction, however always with a larger standard deviation. 
A possible explanation for the difference between the uncorrected data from the directly 
transmitted pulse and the first echo could be the fact that the directly transmitted pulse has 
interacted less with the graphene film, thus having lower sensitivity compared to the first 
reflected echo. 

There are differences between the values obtained from real-part fits to ( 0 )

s
σ and (1) ,

s
σ  

since small variations in the slope of σ1 will have a larger impact when the fit is not also 
dependent on σ2. This shows that acquiring electrical properties by only fitting to the real part 
of 

s
σ is generally less reliable compared to full fits to corrected data.  

The results shown here highlights the importance of compensating for time delays during 
THz-TDS measurements due to both pulse-to-pulse timing jitter or long-time drift as there 
can be significant variations in the extracted electrical properties from a graphene film when 
using different reference areas on the same sample. We expect that this kind of compensation 
will be generally useful for all THz-TDS systems based on mechanical scanning of the time 
delay. 
 

4. Conclusion 
THz-TDS mapping measurements were conducted on graphene films. The determination of 
the electrical properties from the graphene film by full fits to the Drude model is extremely 
sensitive to small, unintentional time delays in the arrival time of pulses at the sample.  

We have shown a robust and automated method for compensating for time delays between 
individual waveforms during THz-TDS measurements, which are for instance caused by any 
timing jitter and slow drift of the time delay scanning mechanics of the system. A small time 
shift is iteratively added to the sample time domain trace in order to minimize the difference 
between the frequency dependent sheet conductivity extracted from the directly transmitted 
pulse and that extracted from the first reflected echo. By applying such compensation, we are 
able to reliably extract the same electrical properties for the graphene film irrespective of the 
chosen reference point on a sample in a self-consistent and automated manner. Under realistic 
conditions we find that the correction is crucial in order to obtain meaningful statistics of the 
distribution of scattering times and mobility across a scanned area. 

The method is expected to work for all conducting thin film materials where there are 
clear transients from a directly transmitted pulse and subsequent echoes that can be compared. 
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