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Abstract— Simultaneous Localisation and Mapping (SLAM)
systems that recover the trajectory of a robot or mobile device
are characterised by a front-end and back-end. The front-end
uses sensor observations to identify loop closures; the back-end
optimises the estimated trajectory to be consistent with these
closures. The GraphSLAM framework formulates the back-end
problem as a graph-based optimisation on a pose graph.

This paper describes a back-end system optimised for very
dense sequence-based loop closures. This arises when the front-
end generates magnetic loop closures, among other things.
Magnetic measurements are fast varying, which is good for lo-
calisation, but the requirement for high sampling rates (50 Hz+)
produces many more loop closures than conventional systems.
To date, however, there is no study optimising GraphSLAM
back-end for sequence-based magnetic loop closures. Hence we
introduce a novel variant of the Stochastic Gradient Descent-
based SLAM algorithm called MSGD (Magnetic-SGD). We use
high-accuracy groundtruth system and extensive real datasets
to evaluate MSGD against state-of-the-art back-end algorithms.
We demonstrate MSGD is at least as good as the best competitor
algorithm in terms of quality, while being faster and more
scalable.

I. INTRODUCTION

Joint estimation of the trajectory of a robot (or mo-
bile device) and the map of an unknown environment is
the core idea of Simultaneous Localisation and Mapping
(SLAM) [21]. SLAM systems find the most probable tra-
jectory and/or the model of the environment given the
sensor observations. This problem is often formulated as
an optimisation problem on a pose graph—GraphSLAM is
the dominant framework, where features and/or robot poses
are represented by nodes and constraints resulting from
observations or odometry/pedometry are modelled by edges.
A SLAM system is typically split into two components:
the front-end (which identifies constraints) and the back-end
(which optimises the trajectory/map given those constraints).

Conventional SLAM systems are based on vision, which
brings with it high computational costs. They typically
produce a low density of constraints that the back-end must
then optimise for. In this paper we present a GraphSLAM
back-end that can handle a far greater density of constraints.

Our motivation for this is the use of magnetic signals
in the front-end. Magnetic signals are attractive because
they are ubiquitous and typically have rapid spatial variation
indoors, which is ideal for accurate localisation. The sensors
are also small, inexpensive and readily available. However,
this fast variation demands fast sampling (50 Hz+), which
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produces dense sequence-based loop closures for the back-
end. Although we focus on magnetic data here, we emphasise
that the back-end we introduce is applicable for any signal
producing a high density of sequence-based constraints. We
make following contributions in this paper:
• We describe the design of an appropriate SLAM back-

end, which uses a modified stochastic gradient-descent
method (SGD [20]) we call MSGD;

• We use extensive real datasets to evaluate MSGD
against state-of-the-art GraphSLAM algorithms on op-
timising the pose graph with sequence-based magnetic
loop closures;

• We open source our implementation of MSGD
with all the datasets (https://github.com/
chaogao-cam/MSGD).

II. RELATED WORK

SLAM Applications. SLAM techniques were developed
for robot navigation [21], where loop closures are conven-
tionally derived from feature tracking in vision [18]. They
have also been applied to tracking people using pedestrian
dead reckoning (PDR) [5]. In this context, video is unattrac-
tive due to privacy concerns.

Other signals have been investigated, most notably WiFi.
WiFi GraphSLAM [11] uses WiFi signal strength data to
optimise pedestrian trajectory. It achieved a mean accuracy
of 2.23 m1 using pedometry and a GraphSLAM formulation.

Magnetic SLAM. Magnetic signals can be used to gen-
erate loop closures by analysing temporal sequences of
measurements (a single magnetic measurement is not spa-
tially unique). This has been demonstrated by Jung et al.
in robotics [12] and by the authors in PDR [8]. In both
cases sub-metre accuracy was achieved, although back-end
efficiency was not considered.

Our technique [8] is used to generate loop closures to
test our back-end. We take windows of the magnetic field
vector and search for similar magnetic windows in the
history of the path (e.g. Figure 1). The detection of a loop
closure introduces a group of constraints (loop closure
constraints herein). The back-end then applies the Graph-
SLAM framework to estimate the trajectory most consistent
with all the constraints. Because of the high frequency of
magnetic measurements, a 10-minute trajectory can generate
a graph with 30,000+ nodes, making back-end efficiency very
important.

1The metric used to compute the accuracy is the subjective-objective error,
which measures how accurately the resultant trajectory meets the constraints.
Please refer to [11] for more details.

https://github.com/chaogao-cam/MSGD
https://github.com/chaogao-cam/MSGD
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Fig. 1: Each loop closure gives rise to a set of loop closure
constraints. The magnified portion shows the loop constraints
(red lines) derived from four distinct loop closures.

GraphSLAM. The GraphSLAM framework formulates
the SLAM problem as a graph optimisation problem. Let
C be the set of all constraints in the pose graph, X be the
state vector of all the poses. The chi-squared (χ2) errors of
the whole pose graph can be formulated as

F (X) =
∑
i∈C

Fi =
∑
i∈C

eTi Ωiei (1)

where Ωi is the information matrix that encodes the con-
straints between poses of a constraint i and and ei is the
residual error of this constraint. The GraphSLAM goal is
to find a configuration of X (X∗) that minimises F i.e.
X∗ = arg minX F (X).

Many algorithms utilise the sparsity of the information ma-
trix of the pose graph to efficiently optimise the graph [22],
[4]. However, they irrevocably introduce linearisation error
that can lead to poor estimates. Lu and Milios [16] sug-
gested a brute-force nonlinear least squares implementation
to optimise the pose graph, which iteratively solves a linear
system of size proportional to the number of nodes. More ef-
ficient approaches have since been introduced: Gauss-Seidel
relaxation [3], [6]; Stochastic Gradient Descent (SGD) [20];
tree-parameterised SGD [9]; and the use of modern linear
solvers [17], [13], [14], [15].

III. STATE-OF-THE-ART GRAPHSLAM SOLVERS

We compare our algorithm to three state-of-the-art Graph-
SLAM solvers: g2o [15], SGD [20], and Toro [9]. All three
linearise the error ei at the current state X to get

Fi(X + ∆X) = eTi Ωiei + 2eTi ΩiJi∆X + ∆XTJT
i ΩiJi∆X

(2)
where Ji is the Jacobian of ei at the current state. At the
minimum X∗ = X + ∆X .

g2o This is a conventional non-linear least square method
that iteratively linearises the error F at current state X . It
computes ∆X = −(JT ΩJ)−1JT Ωe (which is derived by
differentiating Equation 1 with respect to ∆X and setting
the result to zero). It uses modern linear solvers such as
sparse Cholesky decomposition to solve the linear system
efficiently. The prerequisite is that JT ΩJ is sparse and
positive definite.

SGD An iterative solver that computes ∆X based on
a randomly-selected single constraint. The update equation
becomes:

X∗ = X + λH−1JT
i Ωiei (3)

where H = JT ΩJ , and λ is a learning rate that decreases
with each iteration. λ allows the system to converge to an
equilibrium point when antagonistic constraints exist. H acts
as a pre-conditioner to scale and distribute errors according to
the importance of each constraint and node. For simplicity in
the inversion it is approximated as H ' diag(H). Solving
a given constraint distributes weighted residual errors to a
sequence of consecutive poses. For example, if a constraint
connects two poses with indices a and b respectively, then
solving this constraint distributes the error among poses
[a + 1, a + 2, ...b]. Thus a naı̈ve implementation requires
O(N) (assume the graph contains N poses) time to perform
the update of a single constraint. A special binary tree was
proposed to speed up this process to O(logN) time [20],
[19]. We describe this in more detail later since we extend
it for our system.

Toro The Toro algorithm is based on the same principle as
SGD, but it adopts a tree parameterisation of the pose graph.
With this parameterization, the number of nodes involved in
the update of each constraint depends only on the topology
of the environment, and the interactions between antagonistic
constraints are kept small. Toro will typically converge much
faster than SGD.

IV. THE MSGD ALGORITHM

Our tests with the three algorithms outlined above revealed
that they did not scale well with increasing constraints. We
therefore developed a novel variant (MSGD) that adapts SGD
to handle large numbers of (sequence-based) constraints
efficiently. A viable alternative would be to focus on reducing
the number of nodes and edges (constraints), either by
discarding samples or using graph sparsification techniques
([2]). However, the dense magnetic loop closure constraints
provide very rich information about how parts of the pose
graph should be stretched, compressed or aligned, and any
sparsification is only likely to reduce the trajectory accuracy.
We believe it is better to optimise the back-end first.

A. Optimising the Pre-conditioner (H) Calculation

1) Optimising by Tree Operation: The SGD method re-
quires us to compute H in equation 3 at each iteration
(lines 6 to 15 of Algorithm 1). We assume a graph with N
nodes and E constraints (edges). Then the cost to compute
H is O(EN). The original SGD computes M only at
iterations 1, 2, 4, 8, ... to reduce the cost [20]. But for
our dense graph E can be seen as O(N) so the cost is
nearly O(N2), where N can be 30,000+ for only a 10-minute
trajectory (Section I). Therefore, the time complexity needs
to be further reduced for scalability. We have optimised the
original SGD algorithm (Algorithm 1) for our dense graph
as shown in Algorithm 2. We briefly analyse both algorithms
for comparison.



Algorithm 1 Pre-Conditioner Estimation in SGD
1: iters = 0
2: loop
3: iters++
4: ...
5: // Compute M = diag(H) = diag(JT ΩJ)
6: M = zeros(numPoses, 3)
7: for all a, b, tab,Ωi in Constraints do
8: posea = getPose(a) // O(logN)
9: R = rotation matrix of posea

10: W = RΩiR
T

11: for i = a+1 to b do
12: Mi,1:3 = Mi,1:3 + diag(W )
13: ...
14: end for
15: end for
16:
17: // Modified Stochastic Gradient Descent
18: for all a, b, tab,Ωi in Constraints do
19: ...
20: totalWeight = zeros(1, 3)
21: for i = a+1 to b do
22: totalWeight = totalWeight+ 1/Mi

23: end for
24: ...
25: end for
26: end loop

The original algorithm (Algorithm 1) computes M (which
is used to approximate H) with E calls to function getPose.
Given two poses, a and b, and a constraint between them, it
will distribute weighted errors across the poses [a + 1, a +
2, ...b]. This can be done naı̈vely in O(N) but Olson showed
how to use a binary tree to speed up this process [19]. Each
node i (0 ≤ i < N ) of the tree holds a node value ni and
maintains a pose value vi. The pose value vi is defined as
the sum of the node value nj from node i up to the root of
the tree along the ancestry chain. Each vi can be computed
in O(logN) time, and adding some amount to each vi with
i ≥ I (where I is an arbitrary index and 0 ≤ I < N ) can
be done in O(logN) time. Thus getPose can be computed
in O(logN). The cost to compute M is then given by E
calls to getPose (costing O(ElgN ) and E calls to a O(N)
subloop (lines 11 to 14 of Algorithm 1). The total cost is
then O(EN + ElgN) = O(EN).
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Fig. 2: Example of linear-time pose computation.

Our optimised algorithm (Algorithm 2) speeds up both

Algorithm 2 Improved Pre-Conditioner Estimation

1: iters = 0
2: loop
3: iters++
4: ...
5: // Compute M = diag(H) = diag(JT ΩJ)
6: M = zeros(numPoses, 3)
7: {Compute all poses in linear time}
8: for all a, b, tab,Ωi in Constraints do
9: posea = getPose(a) // This is O(1) now

10: R = rotation matrix of posea
11: W = RΩiR

T

12: // Distribute values in O(log(N)) time by tree
13: {Distribute diag(W ) over Mi, i ∈ [a+ 1, b]}
14: ...
15: end for
16:
17: {Recover Mi, i ∈ [1, numPoses] in O(N) by tree}
18:
19: // Compute cumulative weight
20: cmWeight1 = 1/M1

21: for i = 2 to numPoses do
22: cmWeighti = cmWeighti−1 + 1/Mi

23: end for
24:
25: // Modified Stochastic Gradient Descent
26: for all a, b, tab,Ωi in Constraints do
27: ...
28: totalWeight = cmWeightb − cmWeighta
29: ...
30: end for
31: end loop

the getPose and the O(N) subloop. First we compute all
of the poses before the estimation of H . Recall that each
node of the tree represents a pose in the graph (and holds
the pose value vi), and computing a pose value is to sum the
node value nj from node i up to the root along the ancestry
chain. Taking the tree shown in Figure 2 as an example, the
pose value v5 is the sum of node values n5, n4 and n0, i.e.
v5 = n5 + n4 + n0. Similarly, we have v4 = n4 + n0. Then
we can get v5 = n5 + v4—i.e. computing a pose value vi
can be seen as adding the node value ni to its parent node’s
pose value. Therefore we compute the poses using a breadth
first search, which ensures that the parent pose is always
computed before the child pose. This requires a O(N) step
(line 7 of Algorithm 2) but thereafter makes getPose O(1).

By careful inspection, we find that when estimating M ,
each constraint causes the same amount of error distributed
to a continuous part of the diagonal elements of H (Line 11
to 14 of Algorithm 1). This is a similar process to updating
the poses when solving a constraint and we therefore apply
the tree-based mechanism to maintain the elements of M and
speed up the M estimation. Now the subloop is replaced with
a O(lgN) process (line 13 of Algorithm 2). The total cost



to compute M (H) is thus O(N) + O(E(lgN + lgN)) =
O(ElgN) vs the original O(EN).

Similar savings apply to the gradient descent. In the
original algorithm M is used to compute totalWeight for
each constraint (Line 17 to 23). Each totalWeight requires
O(N) time to compute, so a single iteration requires O(EN)
time to compute totalWeight for all the constraints.

In the optimised algorithm, M is maintained using a tree,
which allows us to speed the process up. We first recover
each element of M (Mi, i ∈ [1 : numPoses]) in linear
time. Then, define cmWeighti =

∑
j∈[1,i] 1/Mj , so that the

totalWeight for each constraint can be computed in O(1)
time as shown in Algorithm 2. Now, each iteration needs only
O(N +E) time to compute totalWeight for all constraints,
versus the original O(EN)

2) Optimising by Approximation: We can speed up the
estimation of H by exploiting the fact that each loop closure
results in a group of loop constraints. In Algorithms 1 and
2 we compute W = RΩiR

T for each constraint to estimate
M . W is the information matrix of the constraint in the
global reference frame, which takes two matrix operations
to compute. However, we can use the W of any constraint
in a group to approximate the W for the other constraints in
that same group. Since a typical group contains hundreds of
constraints in our context, this is a significant saving.

B. Error Propagation Over Selected Constraints Only

MSGD reduces the processing cost by considering a mini-
batch of all constraints at once. More specifically, it considers
a single loop closure at a time, solving only a small selected
subset of the hundreds of loop constraints it introduces. In
fact, only two or three constraints are selected per group and
the selection is based on the type of loop closure. Figure 3
shows how loop closures are classified as either Type I or
Type II based on the order (ascending or descending) of the
pose indices.
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Fig. 3: Loop closure classification. The pose graph showed
here is typical for the moving trajectory in a corridor. Two
loop closures are shown: a Type I loop closure with k
constraints I1 to Ik; a Type II loop closure with k constraints
II1 to IIk. The rule to classify loop closures is: write the
index number of poses in the older sequence (i.e. the pose
sequence with smaller index numbers) in ascending order
(i.e. i, i + 1, ...i + k − 1), if the index number of poses in
the later sequence (i.e. the pose sequence with larger index
numbers) is increasing (i.e. j, j+1, ..., j+k−1), then this is
a Type I loop closure; otherwise (i.e. l+k−1, l+k−2, ..., l),
this is a Type II loop closure.

Solving a constraint in SGD is equivalent to distributing
the error over a consecutive sequence of poses. For example,
in Figure 3, solving the constraint I1 in Type I loop closure
spreads the error of I1 over Posei+1, Posei+2,..., ,Posej−1,
Posej . Similarly, solving the constraint II1 in Type II loop
closure spreads the error of II1 over Posei+1, Posei+2,...,
Posel+k−2, Posel+k−1. In Figure 4, we draw the poses
affected by solving a certain constraint on each row, and
align the poses with the same indices vertically, to emphasise
that solving constraints within the same loop closure group
affects many common poses. For instance, solving I1 in the
Type I loop closure affects Posei+1 to Posej and solving
I2 affects Posei+2 to Posej+1. So, the poses affected by
solving I1 and solving I2 respectively have Posei+2 to Posej
overlapped.

The loop closure constraints within a loop closure group
can be consistent or antagonistic to each other, and the poses
affected by different constraints in the same loop closure
group overlap heavily. So solving a constraint can affect
the states of other constraints within the same loop closure
group. For example, solving a constraint C may cause other
constraints consistent with C to be solved or nearly solved,
but it might cause antagonistic constraints to be pushed
off their solved states (if they have been solved or nearly
solved). SGD uses a decreasing learning rate to modulate
the interactions between constraints. During an full iteration,
each constraint within a loop closure group will be solved.
In contrast MSGD identifies a small subset of constraints
within each loop closure group that can be used to give a
good result without requiring that all group constraints be
solved.

Our constraint selection process is as follows. For a group
of constraints, first solve the constraint with the max χ2 error
(denote this constraint as Cmax). This step requires us to
compute the χ2 errors for all constraints and find the one
with the max χ2 error. The χ2 error e of a constraint is:

e = rTWr ' rT r (4)

where r is the residual error of this constraint and W =
RΩiR

T , which is assumed constant for a given group as per
Section IV-A.2. Please note that approximating e as rT r is
not appropriate in theory because different components of r
need to be scaled properly. But this makes little difference
to the converged results we tested.

Next, we solve a very small set of constraints that are
consistent with Cmax. We define the consistency between
two constraints as: a constraint Ca with residual error ra is
consistent with another constraint Cb with residual error rb
when ra ∗ rb > 02. We then select the set of constraints that
needs to be solved based on these rules:

1) All constraints in this set are consistent with Cmax;
2) The constraints in this set cover as many poses as

possible;

2Here we assume r is a scalar for simplicity. In practice, r is a vector
(e.g. r = x, y, heading) and solving a constraint requires distributing errors
separately for each component. In this case, our method can be applied in
the same way for each component.
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Fig. 4: Illustration of solving selected constraints in Type I and Type II loop closure respectively.

3) This set contains as few constraints as possible.
Solving these selected constraints can push the solution in

the same direction, and the conflicting effects of antagonistic
constraints can be attenuated. Since very few constraints need
to be solved for a loop closure group, the computational cost
can be lowered. The selection process is trivial:
• For the Type I loop closure, loop from the first con-

straint to Cmax until a constraint that is consistent with
Cmax is found (denoted by CIa ); then loop from the
last constraint to Cmax until a consistent constraint is
found (denoted by CIb ).

• For the Type II loop closure, loop from the first con-
straint to Cmax until a consistent constraint is found
(denoted by CII ).

Thus, when solving the Type I loop closure, we first
solve Cmax, and then solve CIa and CIb ; when solving
the Type II loop closure, we first solve Cmax and then
CII . However, it should be noted that, when solving CIa ,
CIb and CII (after Cmax is solved), we do not distribute
errors over the poses that overlapped with the poses affected
by Cmax, because this will disturb the solved state of
Cmax. Instead, we distribute errors only over the poses
that are not covered by Cmax (Figure 4). To avoid over
optimisation we bound the residual errors conservatively
before distribution. Algorithm 3 shows how the residual error
of CIa is bounded and distributed over specific poses after
Cmax is solved when solving the Type I loop closure. More
specifically, we distribute the residual error er over poses

with indices a + 1, a + 2, ..., amax (the poses covered by
CIa but not by Cmax). Here we briefly described how er is
determined. Because the amount of error distributed to a pose
is proportional to the weight of this pose, we can determine
how much error of a constraint is distributed over a specific
pose sequence. We define er1 as the error e of CIa minus the
amount of error distributed by Cmax over the poses covered
by both Cmax and CIa (Line 19). Define er2 as the portion
of e that should be distributed over poses only covered by
CIa but not by Cmax (Line 24). Then er is set to one of er1
and er2 with smaller absolute value (Line 25)

The method to solve CIb and CII is similar so omitted
here. In summary, instead of solving all the constraints in
a loop closure group, only two or three selected ones are
solved so as to greatly reduce the computational cost.

V. EVALUATION

To evaluate the performance of MSGD we compare it to
open source implementations of g2o3, Toro4, and SGD. We
implemented the latter using C++ to provide a direct com-
parison with MSGD. The SGD implemented here randomly
selected a constraint to process each time (as in [19]) rather
than iterating through all constraints in a fixed order (as
in [20]) because we found randomisation (which is better
for escaping local minima) gave much better performance
for all our datasets.

3https://openslam.org/g2o.html
4https://www.openslam.org/toro.html



Algorithm 3 Error Propagation

1: iters = 0
2: loop
3: iters++
4: ...
5: // Modified Stochastic Gradient Descent
6: // Each loop closure introduces a mini-batch (group)

of constraints into the system
7: for all Mini-batch of Constraints do
8: {Find max error constraint Cmax =
{amax, bmax, emax, tmax,Ωmax}}

9: wmax = cmWeightbmax
− cmWeightamax

10: Solve Cmax

11: // Find and solve CIa

12: for C = {a, b, e, tab,Ωi} from first constraint to
Cmax do

13: if !consistent(C,Cmax) then continue; end if
14: wovlp = 0 // the overlapped weight
15: if b > amax then
16: wovlp = cmWeightb − cmWeightamax

17: end if
18: eovlp = emax ∗ wovlp/wmax

19: er1 = e− eovlp
20: // Check consistency again
21: if e ∗ er1 < 0 then continue; end if
22: totalWeight = cmWeightb − cmWeighta
23: wresidual = totalWeight− wovlp

24: er2 = e ∗ wresidual/totalWeight
25: er = (|er1| < |er2|)?er1 : er2 // Bound error
26: W = RΩiR

T

27: d = 2Wer
28: λ ∝ 1

iters // the learning rate
29: β = (amax − a) ∗ λ ∗ d
30: if |β| > |er| then β = er end if
31: {Distribute β over posea+1 to poseamax

}
32: break;
33: end for
34:
35: // Find and solve CIb ...
36: end for
37: end loop

A. Datasets

We collected a series of datasets using pedestrians carrying
smartphones in different testbeds, which are described in de-
tail in [7], [8]. Table I gives statistics on the various datasets
(where each ‘pose’ is associated with a magnetic mea-
surement). Note that high accuracy (3cm) location ground
truth ([1]) was available in the WGB2a testbed. Figure 5
illustrates two sample inputs to the back-end: each detected
and validated loop closure constraint (thus we assume no
false positive ones) from the front-end is indicated by a red
line.

Please note that we do not use relative motion constraints
for SGD and MSGD since this overconstrains the system.
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Fig. 5: Two sample datasets (WGB2a-1 and WGB2-3) used
for evaluation of SLAM back-end algorithms.

However, both g2o and Toro require these constraints. For
SGD (and MSGD), it adopts an incremental state space so it
does not rely on the relative motion constraints to maintain
the topology of the trajectory. For g2o, it needs the relative
motion constraints to keep the information matrix positive-
definite and to maintain the trajectory topology. For Toro, the
special tree parameterisation it adopts requires the relative
motion constraints to keep the connectivity of the input pose
graph thus to ensure the success of its tree building process.

TABLE I: Statistics of all datasets

Dataset Poses Relative Motion
Constraints

Loop Closure
Constraints

Loop
Closures

WGB2a-1 26262 26261 10382 29
WGB2a-2 3982 3981 596 2
WGB2a-3 8177 8176 996 4
WGB2a-4 20671 20670 7221 29
WGB1-1 18551 18550 1370 26
WGB1-2 25958 25957 16213 109
WGB1-3 14639 14638 2820 19
WGB1-4 13353 13352 1338 9
WGB1-5 29941 29940 790 5
WGB2-1 7490 7489 152 5
WGB2-2 15692 15691 2690 27
WGB2-3 17645 17644 9690 130
WGB2-4 16195 16194 401 5
ENG-1 4314 4313 237 4
ENG-2 12748 12747 1125 7

RUTH-1 7218 7217 7200 60
RUTH-2 7980 7979 4117 23

KX-1 16402 16401 1165 20
KX-2 21499 21498 6094 41

B. Metrics

To evaluate the performance of back-end algorithms quan-
titatively, we adopt the State-Squared Error (SSerror)
proposed in [19] as the metric. For a graph with N
poses, denote the configuration of the result trajectory by



X , where X = {(x1, y1), (x2, y2), ..., (xN , yN )}, and de-
note the groundtruth configuration by X̄ , where X̄ =
{(x̄1, ȳ1), (x̄2, ȳ2), ..., (x̄N , ȳN )}. Then :

SSerror = mean{dis2i | dis2i = (xi− x̄i)2+(yi− ȳi)2} (5)

To give an unambiguous comparison, rigid-body trans-
form T that minimises SSerror is computed and applied
to either the result trajectory or the groundtruth trajectory
beforehand [19]: we compute T using the algorithm in [10].
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Fig. 6: Sample SLAM results. The trajectories (the red is the
transformed groundtruth and the blue the slam result) and the
SS errors are the results of the 100th iteration.

C. Results and Analysis

We ran 100 iterations of g2o, Toro, SGD and MSGD on
each dataset. Sample results are shown in Figure 6. 5 We
found that g2o and Toro failed to converge to acceptable
results in most cases, but SGD and MSGD worked well on
each dataset. As described before, all the algorithms explic-
itly minimise the system χ2 error defined in Equation 1,
and the χ2 error of all the algorithms would converge to
zero after enough iterations. However, whether an algorithm
converges to the minimum SS error (a result that has the
best quality from a practical perspective) depends on how it
approached the minimum χ2 error. Generally speaking, the
methods based on Cholesky decomposition like g2o can find
the lowest χ2 error because they usually take the path leading
directly to it. However, these methods can easily get stuck
in local minima because the state space of the non-linear
optimisation problem have long valleys with small χ2 error.
Randomised algorithms like SGD and MSGD are capable
of escaping local minima and finding the path leading to
the global minimum. Despite Toro having a very similar
error distribution mechanism to SGD, it iterates over each
constraint in a fixed order (due to its tree parameterisation),
making it much less randomised in practice.

For most of the datasets tested, MSGD gave equivalent
or better trajectories to SGD does (according to the final
SS errors). The difference between the resultant trajectories
of both algorithms is subtle. Note that the SS errors of
both SGD and MSGD vary within a small range after
convergence (Figure 6(k) and 6(l)). This is because both
of them take stochastic steps in the state space around a
minimum. However, the amplitude of the fluctuations in the
SS errors of MSGD is larger than that of SGD because
MSGD is ‘more randomised’ than SGD. SGD simply solves
every constraint in the system, while MSGD solves only
a few selected constraints based on their importance. In
different iterations MSGD solves different constraints, which
causes different changes to the SS error, and that is where
the large fluctuation comes from. So long as the amplitude
of the fluctuation is within a small range (not exceeds 1 m2

in most cases), the final result is still stable and approaches
the groundtruth.

In terms of scalability, however, MSGD has the advantage
over SGD. Figure 7 illustrates how the iteration time changed
with constraint number for the algorithms. For comparison,
we include the results for a version of MSGD that uses
only the optimisations described in Section IV-A (i.e. no
constraint selection). This variant is labelled MSGD−. We
see that even without the constraint selection, MSGD is
notably more scalable. With the constraint selection, full
MSGD gains up to 40% improvements in execution time
compared with MSGD−. Please note that this improvement
also increases as the number of constraints increases, which
demonstrates the scalability of MSGD. The full MSGD
algorithm is 3 to 8 times faster than SGD and the time per

5Please refer to Chapter 5 of [7] for detailed results and analysis of all
the datasets.



iteration of MSGD increases much more slowly than that
of SGD when the number of constraints is increasing. In
fact, the computational cost of MSGD is proportional to the
number of loop closures but not the number of constraints,
giving it a significant advantage in the context of the high-
frequency magnetic measurements.
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Fig. 7: CPU time per iteration of SGD, MSGD− and MSGD
(by running each algorithm on every dataset in Table I).
Relative motion constraints are discarded.

We also found that SGD exhibited slight divergence on
WGB2-3 (Figure 6(l)) and nine other datasets (WGB2a-
2, WGB2a-3, WGB2a-4, WGB1-2, WGB1-3, WGB2-2,
WGB2-4, RUTH-1 and RUTH-2). MSGD did not have the
same problem despite a larger amplitude of fluctuation. This
can again be attributed to the constraints selection strategy of
MSGD (Section IV-B). By solving only the most important
constraints it keeps the interaction between antagonistic
constraints small, achieving better consistency in the system
states. So, the solution will not be pushed away from the
minimum area. However, SGD simply solves every constraint
within a loop closure group regardless their impacts to the
stability of the system states, which causes divergence in
these results.

VI. CONCLUSION AND FUTURE WORK

We have evaluated the performance of three state-of-the-
art SLAM back-end algorithms (g2o, Toro, SGD) on solving
the pose graphs with magnetic sequence-based constraints.
We demonstrated SGD achieves the best performance but is
not optimised for the specific problem. We then introduced
a novel variant of the SGD algorithm that is optimised for
magnetic sequence SLAM, MSGD. It has been demonstrated
that although MSGD has slightly larger fluctuations in the SS
errors (after convergence) than SGD, they achieve equivalent
trajectory quality. MSGD is also found to be more efficient
and scalable when dealing with much larger datasets. In
addition, MSGD does not have the problem of divergence
as the SGD does. Therefore, for large magnetic sequence
SLAM, we believe MSGD is a better solution.

We should note that the prerequisite for magnetic field-
based SLAM systems is that the trajectory contains long loop
closures in order for robust sequence-based matching. But
compared with more flexible systems like the vision-based
SLAM, the cost of magnetic field-based SLAM is much

lower. So, it could be a complementary technique integrated
into other SLAM systems. We leave this for future work.
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