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Learning Bases of Activity
for Facial Expression Recognition

Evangelos Sariyanidi, Hatice Gunes, and Andrea Cavallaro

Abstract—The extraction of descriptive features from se-
quences of faces is a fundamental problem in facial expression
analysis. Facial expressions are represented by psychologists as
a combination of elementary movements known as action units:
each movement is localised and its intensity is specified with
a score that is small when the movement is subtle and large
when the movement is pronounced. Inspired by this approach, we
propose a novel data-driven feature extraction framework that
represents facial expression variations as a linear combination
of localised basis functions, whose coefficients are proportional
to movement intensity. We show that the linear basis functions
required by this framework can be obtained by training a
sparse linear model with Gabor phase shifts computed from
facial videos. The proposed framework addresses generalisation
issues that are not addressed by existing learnt representations,
and achieves with the same learning parameters state-of-the-art
results in recognising both posed expressions and spontaneous
micro-expressions. This performance is confirmed even when the
data used to train the model differ from test data in terms of
the intensity of facial movements and frame rate.

I. INTRODUCTION

The recognition of facial expressions from image se-
quences is fundamental in various applications including so-
cial robotics, human-computer interaction and healthcare [1],
[2], [3], [4], [5]. Facial expression recognition methods can
be dynamic (sequence-based) or static (image-based). While
dynamic approaches generally outperform static approaches
especially in recognising subtle expressions [5], [6], a key
problem for dynamic facial expression analysis is to convert
the input sequence into a useful representation. Most ap-
proaches use engineered representations, such as Gabor motion
energy [7], Local Binary Patterns from Three Orthogonal
Planes (LBP-TOP) [8] or Local Phase Quantisation from
TOP (LPQ-TOP) [9]. However, representations learnt from
data [10], [11], [12], [13] may achieve higher performance
without requiring domain expertise [11], [13].

A learnt representation needs to address three important
generalisation challenges. First, facial expressions manifested
by real-world emotions cause a wide range of movements and
therefore the representation should be able to cover a wide
range of expression intensities, from subtle to pronounced
expressions [3]. Micro-expressions are a sub-class of subtle
expressions that are characterized by small facial appearance
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changes and short duration — they can be as short as 1/25
seconds [14]. However, existing learnt (dynamic) represen-
tations [10], [13], [12], [11] have not been validated for
recognising subtle expressions, even though the recognition of
such expressions is an important motivation in using a dynamic
representation instead of a simpler static representation [5].
Second, learning a representation usually requires image se-
quences labelled with expressions and the applicability of the
features learnt for a particular set of expressions may not
extend to the recognition of other expressions. For example,
features learnt for the six basic emotions (happiness, sadness,
surprise, disgust, fear and anger) [3] may not be useful for
recognising other emotion categories, such as contempt or
boredom, or when emotions are represented with a continuous
affect model [15]. Third, training and test sequences may
contain temporal inconsistencies, that is, there may be mis-
matches in terms of frame rate, the speed at which expressions
evolve, or the temporal phases contained in the sequences. For
example, training sequences may contain all the phases of an
expression (i.e. neutral, onset, apex, offset [16]), whereas test
sequences may contain only some of them (e.g. neutral, onset,
apex).

In this paper, we propose an unsupervised learning frame-
work that addresses the afore-mentioned generalisation chal-
lenges when producing a dynamic representation. Our rep-
resentation is inspired from FACS (Facial Action Coding
System), which is developed by psychologists to analyse
expressions for various purposes [16] including the recognition
of emotions [16], depression [17] or pain [18]. FACS is similar
to a dictionary of elementary facial movements, termed Action
Units (AUs), that can be used to represent more complex
facial expressions. The AUs describe localised movements
(e.g. AU1 is inner brow raising, AU4 is brow lowering),
and each AU is associated with an intensity score. These
two properties are fundamental for an effective representation:
localised movements promote a compact representation, as
different facial expressions may contain some common move-
ments (e.g. AU1 occurs both in expressions of sadness and
fear); and intensity scores enable the usage of the same AU to
represent a subtle or an pronounced version of the same facial
movement. Furthermore, since our framework is unsupervised,
the representation learnt on a specific set of expression labels
(e.g. pronounced six basic expressions [19]) can be used on
a test set with other expression labels (e.g. three classes of
micro-expressions [20]).

We learn a linear model whose basis functions correspond
to localised facial movements and basis coefficients are pro-
portional to movement intensity. The model can therefore
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TABLE I
DYNAMIC FACIAL REPRESENTATIONS IN THE STATE OF THE ART. †REPRESENTATIONS THAT CAN BE TRAINED WITHOUT LABELS, BUT ACHIEVE LOWER

PERFORMANCE IN THIS CASE. N/A: NOT APPLICABLE. LBP-TOP: LOCAL BINARY PATTERNS FROM THREE ORTHOGONAL PLANES; DTAGN: DEEP
TEMPORAL APPEARANCE-GEOMETRY NETWORK; 3DCNN-DAP: 3D CONVOLUTIONAL NEURAL NETWORK DEFORMABLE ACTION PARTS.
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[21] Non-negative Matrix Factorisation 3 3 3† N/A 3
[22] Deep Learning 3 3 3 N/A 3
[23] Deep Generative Learning 3 3 N/A 3
[8] LBP-TOP 3 3 N/A N/A N/A 3 3
[7] Gabor Motion Energy 3 3 N/A N/A N/A 3 3
[10] DTAGN 3 3 3 3

[12] Expressionlets 3 3 3† 3
[11] Spatio-temporal RBM 3 3 3 3
[13] 3DCNN-DAP 3 3 3 3
Proposed: Facial Bases (F-Bases) 3 3 3 3 3 3

represent facial activity as a (linear) combination of localised
movements. Specifically, we show that to learn a linear
model where basis coefficients are proportional to movement
intensity, we must convert sequences into a representation
where monotonic increases in movement intensity correspond
to monotonic variations. For this purpose we use Gabor phase
shifts [24]. Then, we show that basis functions that correspond
to localised facial activity can be learnt by training a sparsity-
imposed linear model with Gabor phase shift data computed
from facial videos. The proposed model is generative, which
enables us to synthesise facial expression sequences and
discuss the properties of the learnt bases. Our framework
is inspired by developments in human vision research and
is similar to that of Cadieu and Olshausen [25] in that it
models higher-level structure from the phase and magnitude
of (complex) local coefficients. However, their model produces
global basis functions rather than localised bases. Global basis
functions are suitable for arguing for the existence of motion-
sensitive but shape-insensitive representation in the human
visual cortex. On the contrary, our localised bases are shape-
selective as each basis pertains to a specific facial region.

In summary, the contributions of this paper are as follows.
To the best of our knowledge, we propose the first learnt
facial expression representation that has been designed for
analysing expressions at a range of intensities, and has been
validated for recognising both pronounced expressions and
micro-expressions; and the first learnt dynamic facial expres-
sion representation that addresses the temporal inconsistencies
that may exist between the training and test sequences. More-
over, we show that learning a sparseness-imposed generative
linear model from Gabor phase shifts of facial expression
sequences yields basis functions that correspond to localised
facial movements.

The paper is organised as follows. Section II reviews ex-
isting approaches for learnt facial expression representations.
Section III presents the problem formulation. Section IV
describes the framework for learning bases of facial activ-
ity. Next, Section V presents a qualitative analysis of the
learnt bases and describes how they are used for automatic

expression recognition. Experimental results are discussed in
Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

In this section we review learnt representations for auto-
matic facial expression recognition. We focus our discussion
on the generalisation issues discussed in the previous section,
namely (i) the ability to recognise expressions of different
intensities, (ii) whether expression labels are required for
learning, and (iii) the sensitivity to temporal inconsistencies.
We also discuss the difficulties inherent to automatic AU
recognition, which is an alternative approach that relates to
our work.

The development of learnt facial expression representa-
tions started with static representations, which encode the
expression in each frame of a sequence independently from
neighbouring frames [5]. A variety of approaches are explored,
such as non-negative matrix factorisation [21], deep learn-
ing [23], [26], [22] or sparse representation [27]. Most of
these approaches also learn localised bases [21], [22], [26].
However, static representations are inherently limited in their
ability to recognise subtle expressions [6], which are very
informative in recognising and modelling real-world affective
interactions [5].

Subtle expressions are better recognised when the temporal
variation among the frames of a sequence is encoded [6]. Re-
searchers exploited this finding by using (engineered) dynamic
representations, such as LBP-TOP [8], [20] or Gabor motion
energy [7]. Subsequent studies questioned the optimality of
engineered dynamic representations, and aimed to learn repre-
sentations from video volumes. Liu et al. [13] proposed a deep
architecture that learns deformable facial parts. Jung et al. [10]
proposed a deep architecture that comprises two networks –
one that learns from facial appearance and another that learns
from facial feature points – and showed that the joint learning
of the two generally improves performance. Elaiwat et al. [11]
proposed a restricted Boltzmann machine (RBM) network
that, unlike typical deep models, is shallow and therefore
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easier to optimise. The key feature of this RBM network is
to disentangle expression-related image transformations from
transformations that are not related to expressions. Liu et al.
[12] proposed the so-called Expressionlets, which are based
on clustering cuboids of pre-defined sizes extracted from facial
sequences in order to model the manifold of facial expression
variations.

The learnt representations listed so far outperform en-
gineered features in datasets with large (i.e. pronounced)
and posed facial activity, such as CK+ [28] or MMI [19].
Moreover, those representations are validated only through
within-dataset tests, i.e. the representations are learnt and
tested on the same dataset, where the temporal order of
the facial expression phases (i.e. neutral-onset-apex for CK+
and neutral-onset-apex-offset-neutral for MMI) and the frame
rate of the sequences are the same. Further validation is
needed to test whether the learnt features produce meaningful
representations on test sequences with different frame rate or
order of temporal expression phases compared to the training
sequences. In addition to the above, those representations are
tested on six basic expressions and use the training labels of
sequences during learning. Therefore, their usefulness in other
facial expression recognition tasks such as the recognition
of arousal-valence labels and micro-expressions also requires
further validation. (Note that while Expressionlets can be used
without labels, their performance drops considerably when
done so [12].) Finally, the long-standing open issue in facial
expression recognition is that pipelines trained on pronounced
expressions do not generalise to subtle expressions [3], [2],
[5] and none of the learnt dynamic representations addressed
this issue by validating on sequences with subtle expressions.

Table I summarises the above discussion and compares
existing representations. Table I also highlights some advan-
tages of engineered representations. Owing to their simplicity,
engineered representations require no labelled sequences and
therefore are generic in terms of the final task (e.g. micro-
expression recognition [29] or six basic expressions [8]).
Moreover, inconsistency in frame rate or temporal order of
expressions is not an issue for engineered representations as
they require no training sequences. Also, engineered represen-
tations have been validated for subtle facial expression analysis
[29], [7]. It is therefore desirable for learnt representations to
possess these advantages.

An alternative approach to facial expression analysis is to
develop pipelines that recognise AUs automatically, and to use
the output of those pipelines as an intermediate representation
for higher-level recognition tasks, such as the recognition of
six basic emotions [5] or pain [18]. However, recognising
AUs automatically is a challenging problem and each AU
requires a dedicated supervised machine learning pipeline.
The first challenge is data annotation: AU labelling is a time
consuming task as it can take up to 100 minutes to label
one minute of video [30]. At least two FACS coders who
have undergone a specialised training are required and labels
cannot be used without inter-coder agreement, which can be
particularly low for low-intensity AUs [31]. To learn different
intensities of the same AU, statistical learning algorithms
need AU labels across a range of intensities, thus increasing

HIGH SAMPLING RATE LOW SAMPLING RATE

Fig. 1. Illustration that depicts how a basis can provide useful information on
videos with different frame rates. Let a basis Ak model the lip corner pulling
that occurs during a smile. When a sequence is recorded at a lower rate,
the apparent motion speed increases and the expression-related movement
occurs at a higher intensity. If the basis coefficient ut,k is proportional to
movement intensity as in Eq. (1), then the basis Ak can help recognise the
smile independently of whether it is collected at a high or low frame rate.
The only difference the frame rate change causes is the rate at which ut,k
increases.

exponentially the need for data. Moreover, even if algorithms
could recognise each AU perfectly, it is not guaranteed that a
new AU combination will be recognised as AU combinations
are not always additive [32]. Discovering useful mappings via
statistical learning from annotated data is another challenge,
due to data imbalance between positive and negative samples
[33] or to generalisation across subjects (i.e. identity bias) [5].
As a result, the recognition of AUs, and their intensities in
particular, is still an open problem.

III. PROBLEM FORMULATION

Let I ∈ RX×Y×T be an image sequence that contains
either a whole face or part of a face (e.g. the mouth). Let us
assume that rigid registration errors have been removed with
a registration technique (e.g. [46]). Moreover, let us assume
that the motion between two consecutive frames, It−1 and It,
is due to facial expression variations only. Let f(It−1, It) be
a function that represents the motion between It−1 and It at a
local level (e.g. an optical flow function) with a D-dimensional
vector.

We aim to find a linear transformation that can reconstruct
the overall facial activity in terms of local movements. Let
{Ak}KA

k=1 be the set that contains the KA basis vectors of this
transformation. Then, we can represent the linear transforma-
tion we seek as:

f(It−1, It) =

KA∑
k=1

Akut,k+εt, (1)

where εt represents reconstruction error. We want the basis
coefficients, ut,k, to be proportional to movement intensity.
For example, if the basis vector Ak corresponds to an eyebrow
raising, then a small (large) ut,k value should mean that the
pair It−1, It contains a small (large) eyebrow movement.

This linear transformation has two advantages: (i) it enables
the separation of subtle and large facial motions through the
magnitude of coefficients; and (ii) the bases {Ak}KA

k can be
used independently from the video frame rate, as variations in
video frame rate (i.e. apparent motion speed) cause variation
only in the rate at which the coefficients ut,k change over time
(Fig. 1).
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IV. BASES OF FACIAL ACTIVITY

A. The learning framework

Facial expressions increase in their intensity gradually and
monotonically until they reach their apex [16]. To capture
this aspect via Eq. (1), the magnitudes |ut,k| should vary
gradually and monotonically as t increases. The bases Ak
are fixed, which implies that for Eq. (1) to hold we must
use a motion representation f(It−1, It) whose elements are
also changing gradually and monotonically as t increases.
Therefore, we cannot simply use the difference between the
frames (i.e. derivative, It−It−1) as derivatives undergo abrupt
changes. One representation can be computing motion vectors
via optical flow. However, motion vectors can be erroneous,
particularly when representing subtle movements [34] or when
computed from untextured regions such as cheeks [35].

To encode local motion without requiring the computation
of motion vectors explicitly we chose to infer local motion
through Gabor wavelets [24]. A frame It can be recovered
from D complex Gabor wavelets {Wd}Dd=1 as [36], [37]:

It =

D∑
d=1

<{z∗t,dWd}, (2)

where <{·} is the real part of the argument, ∗ denotes
conjugation, and zt = (zt,1, zt,2, . . . , zt,D) is the vector of
complex Gabor coefficients. Each zt,d can be decomposed into
its phase, φt,d, and magnitude, ρt,d, as:

zt,d = ρt,de
jφt,d . (3)

Gabor wavelets have limited spatial support. The magnitude
ρt,d and phase φt,d take non-zero values when a visual element
(e.g. an edge) within the wavelet’s spatial support causes
texture variation. The phase φt,d is sensitive to the position
of the element and, compared to the magnitude ρt,d, is less
sensitive to the intensity of the element (see Fig. 2). Since
phase is sensitive to position, the phase shift

φ̇t,d = φt,d − φt−1,d (4)

is sensitive to motion [36]. Importantly, phase varies propor-
tionally with the position, as shown in Fig. 2d. Since a Gabor
wavelet Wd has local spatial support and is tuned to a specific
orientation [37], the phase of one wavelet, φt,d, can represent
motion only locally and has limited ability to represent motion
in arbitrary orientations. A complete motion representation can
be obtained with a set of wavelets, {Wd}Dd=1, that span the
whole image and are tuned to various orientations [37]. Such
a representation allows us to encode rigid (e.g. global rota-
tions, translations) or non-rigid motions (e.g. local rotations,
translations) across the image [24].

We can now rephrase our objective as follows. We
aim to learn a generative linear model that can repre-
sent any expression-induced phase shift pattern φ̇t =
(φ̇t,1, φ̇t,2, . . . , φ̇t,D) as:

φ̇t =

KA∑
k=1

Akut,k + εut = Aut + εut . (5)
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Fig. 2. Illustration that highlights the ability of Gabor phase to encode motion.
(a) Exemplar sequence that contains a horizontal bar moving vertically with
a constant speed. (b) A sequence that is identical to the one in (a) except
that the pixel intensity of the bar is multiplied by 0.5. (c) The magnitude,
ρt, computed from a Gabor wavelet that is located in the center of the
moving images. (d) The phase computed from the same Gabor wavelet. Note
that the magnitude changes non-monotonically over time and is sensitive to
the intensity of the bar. The phase of the Gabor coefficient, φt, increases
monotonically and is not sensitive to the intensity of the bar.

Note that this equation is a special form of (1). The term εut ,
which accounts for modelling errors, is assumed to be drawn
from a (circular) Normal distribution whose random variables,
εut,d, are independent from one another and are modelled
as P (εut,d) ∝ exp[κ cos(εut,d)] where κ is the concentration
parameter.

In generative learning, the basis transformation (i.e. A) that
best describes a given dataset of N i.i.d. samples, Dφ̇ =

{φ̇
n
}Nn=1, is the one that maximises the likelihood [38]:

P (Dφ̇|A) =

N∏
n=1

P (φ̇
n
|A)

=

N∏
n=1

∫
P (φ̇

n
|A,u)P (u)du. (6)

However, maximising P (Dφ̇|A) alone may not necessarily
yield localised bases.

We guide the maximisation process to learn localised bases
by incorporating prior distributions on coefficients ut,k and
by imposing constraints on bases Ak. A facial expression
generally involves a small proportion of all possible atomic
movements that a face can produce. For example, FACS
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represents any of the six basic expressions with at most 7
out of the 46 AUs [16]. Therefore, only a small proportion
of coefficients ut,k must have large values, and the remaining
coefficients must be zero or relatively very small. This can
be enforced by using a prior distribution on ut,k that favours
ut,k being zero with a high and kurtotic peak, such as a
zero-mean Cauchy distribution [38]. Also, the prior should
favour small differences in ut,k−ut−1,k as expressions evolve
gradually over time. This can be incorporated with a Gaussian
distribution centred on ut,k − ut−1,k [39]. Then the overall
prior on ut,k becomes:

P (ut|ut−1) =
1

Zu
e−λu log(1+ut)e−βu(ut−ut−1)

2

, (7)

where λu and βu are the scale and precision parameters of the
Cauchy and Gaussian distribution, respectively, and Zu is the
normalisation coefficient ensuring that the distribution sums to
1. Note that the subscript k is dropped for clarity.

For a basis Ak to be localised, most of its elements must be
zero, and non-zero elements should pertain to spatially nearby
regions. Hoyer [40] proposed a technique to produce such
localised bases by enforcing the following sparseness metric:

S (Ak) =

√
D − ||Ak||1

||Ak||2√
D − 1

, (8)

where ||·||1 and ||·||2 denote the L1 and L2 norms, respectively.
The sparser Ak, the higher the S (Ak). Sparse and localised
bases are obtained by pre-defining a sparseness rate SA and
enforcing all bases to follow this rate (i.e. S (Ak) = SA)
during optimisation (see Section IV-C).

B. Static vs. Dynamic Bases

When there is no expression variation in a sequence, there
is no motion and the phase shifts φ̇t become zero. The
model must therefore be capable of analysing the expression
from the facial configuration; that is, the appearance variation
that has already been generated by the expression (Fig. 3).
This can be achieved by learning static bases, in a similar
fashion to learning dynamic bases. Dynamic bases were learnt
from phase shifts φ̇t, whereas static bases are learnt from
magnitudes:

ρt = (ρt,1, ρt,2, . . . , ρt,D), (9)

which relate to the persistent structure in images [25]. While
a dynamic basis pertains to a localised facial movement (e.g.
raising an eyebrow), a static basis describes a particular facial
configuration localised in space (e.g. a raised eyebrow).

We seek to learn a generative linear model that can represent
a magnitude pattern, ρt, generated by any facial configuration.
Specifically, we use the log-magnitudes, as taking logarithm
linearises the dependencies between magnitudes [25]:

logρt =

KB∑
k=1

Bkvt,k + εvt = Bvt + εvt , (10)

where {Bk}KB

k=1 are the static bases, vt,k are the static coeffi-
cients and εvt is a noise term that is drawn from a Normal
distribution, i.e. p(εvt ) ∼ N (0, σρ). During learning, we

(a) (b) (c)

Fig. 3. Example of the importance of the magnitude to recognize an
expression. For clarity, magnitude and phase responses are illustrated only for
one Gabor filter. (a) The phase shift provides useful information when there
exist expression variations between consecutive frames. (b) The phase shifts
are not informative in the absence of expression variations. (c) The magnitude
computed from a (static) frame provides useful information to recognise the
expression in the absence of expression variations.

Compute
Gabor

Coefficients

Decompose
Phase & 

Magnitude

Learn
Dynamic

Bases

Learn
Static
Bases

Fig. 4. Illustration of how bases are learnt from a dataset, D = {In}Nn=1.
The subscript n is dropped in later stages for clarity. The depicted variables
are listed in Table II along with their dimensionality.

impose priors and constraints similar to the dynamic bases.
We assume that logρt can be recovered sparsely, that is, using
a small proportion of bases, and that the facial appearance
changes gradually over time.

The resulting prior P (vt,k|vt−1,k) is identical to Eq. (7) in
form but differs in its parameters; the scale of the Cauchy dis-
tribution, the precision of the Gaussian and the normalisation
coefficient are denoted respectively with λv, βv and Zv . The
overall pipeline of the proposed model is illustrated in Fig. 4.
The variables referred to in Fig. 4 are listed in Table II along
with their dimensionality.

C. Optimisation

We can formulate the learning of static and dynamic bases
as the following optimisation problem.

Problem 1: Given a dataset of phase shifts, Dφ = {φ̇
n
}Nn=1,

a dataset of magnitudes, Dρ = {ρn}Nn=1, the number of
dynamic and static bases, KA, KB , and sparseness ratios SA,
SB , find A∗ ∈ RD×KA and B∗ ∈ RD×KB that satisfy:

A∗ = arg max
A

[
logP (Dφ̇|A)

]
, (11)

B∗ = arg max
B

[
logP (Dρ|B)

]
, (12)
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TABLE II
LIST OF VARIABLES WITH THEIR SYMBOLS AND THEIR DIMENSIONS.

I ∈ RX×Y×T An image sequence
It ∈ RX×Y tth frame of I
D = {In}Nn=1 Dataset to learn the bases from
z ∈ CD×T Gabor coefficients of an I

φ̇ ∈ RD×(T−1) Phase shifts computed from z
ρ ∈ RD×T Magnitudes computed from z

φ̇t,ρt ∈ RD Phase shift, magnitude for tth frame
A ∈ RD×KA Dynamic basis transformation matrix
Ak ∈ RD kth dynamic basis (i.e. kth column of A)
SA ∈ R[0, 1] Sparseness ratio of bases Ak

u ∈ RKA×(T−1) Dynamic basis coefficients of I
ut ∈ RKA Dynamic basis coefficients of It
B ∈ RD×KB Static basis transformation matrix
Bk ∈ RD kth static basis (i.e. kth column of B)
SB ∈ R[0, 1] Sparseness ratio of bases Bk

v ∈ RKB×T Static basis coefficients of I
vt ∈ RKB Static basis coefficients of It

under the constraints

S (Ak) = SA, ∀k ∈ {1, 2, . . . ,KA}, (13)
S (Bk) = SB , ∀k ∈ {1, 2, . . . ,KB}. (14)

Maximising the likelihoods in Eq. (11–12) is equivalent to
minimising the negative log-likelihoods, denoted as Eφ =
− logP (Dφ̇|A) and Eρ = − logP (Dρ|B).

To minimise Eφ and Eρ, we need their closed-form ex-
pressions, which are intractable due to the integrals such as
those in (6). We simplify the integrals by assuming that the
integrands are highly peaked around the coefficients u (or v)
that maximise the integrands, and by replacing the integrals
with the maximal value of their integrands [38]. Then, using
the fact that εut,d, ε

v
t,d are generated from circular Normal and

Normal distributions, and using the priors P (ut|ut−1) and
P (vt|vt−1), we can approximate Eρ, Eφ as [25]:

Eφ ≈
N∑
n=1

T∑
t=2

D∑
d=1

[
κ cos(φ̇nt,d − [Aunt ]d)+

λu log(1 + unt,d) + βu(unt,d − unt−1,d)2
]
, (15)

Eρ ≈
N∑
n=1

T∑
t=1

D∑
d=1

[ 1

σ2
ρ

(log ρnt,d − [Bvnt ]d)
2+

λv log(1 + vnt,d) + βv(v
n
t,d − vnt−1,d)2

]
, (16)

where [·]i indicates the ith element of its (vector) argument.
Since the approximations above use only the u,v values that

maximise the integrands in Eq. (6), we must follow a two-fold
optimisation scheme [38]: First, fix A (or B) and minimise
w.r.t. u (or v), and then vice versa. This two-fold minimisation
is carried out until a maximal number of iterations τmax

A (or
τmax
B ) is reached. This minimisation requires the gradients of

Eq. (15–16) with respect to the basis functions, ∆Adk,∆Bdk,
and with respect to the coefficients, ∆unt,k,∆v

n
t,k. The former

Algorithm 1 Learn dynamic bases
Input: Dataset of facial videos D = {In}Nn=1, τmax

A , τmax
u

Output: Dynamic basis transformation A ∈ RD×KA

1: Compute Gabor coefficients Dz = {zn}n from D
2: Compute phases Dφ = {φn}n from Dz
3: Compute phase shifts from Dφ̇ = {φ̇

n
}n from Dφ

4: Initialise Ak with random values ∀k ∈ {1, 2, . . . ,KA}
5: Initialise un with random values ∀n ∈ {1, 2, . . . , N}
6: τA ← 0
7: repeat
8: for each sample φ̇

n
do

9: τu ← 0
10: repeat
11: un ← un + α

(τu)
u ∆un

12: τu ← τu + 1
13: until τmax

u is reached
14: end for
15: for each Ak do
16: Ak ← Ak + α

(τA)
A

17: Ak ← project(Ak;SA)
18: end for
19: τA ← τA + 1
20: until τmax

A is reached

are (up to constant divisive factors):

∆Adk =κ

N∑
n=1

T∑
t=2

sin(φ̇nt,d − [Aunt ]d)u
n
t,k, (17)

∆Bdk =

N∑
n=1

T∑
t=1

2

σ2
ρ

(log ρnt,d − [Bvnt ]d)v
n
t,k. (18)

The gradients with respect to the coefficients are (up to
constant divisive factors):

∆unt,k =κ

D∑
d=1

(sin φ̇nt,d − [Aunt ]d)Adk

− λu
1

2 + 2(unt,k)2
− 2βu(unt,k − unt−1,k), (19)

∆vnt,k =
2

σ2
ρ

D∑
d=1

(log ρnt,d − [Bvnt ]d)Bdk

− λv
1

2 + 2(vnt,k)2
− 2βv(v

n
t,k − vnt−1,k). (20)

Using these gradients, we compute ut, A by updating them
iteratively, where the update rules for an iteration τ are:

unt,k ← unt,k + α(τ)
u ∆unt,k, (21)

Adk ← Adk + α
(τ)
A ∆Adk, (22)

where α(τ)
u , α

(τ)
A are the learning rates for iteration τ . (Similar

update rules are defined for vt,B.) While the learning rates
can simply be set to fixed values, this may cause very
slow convergence [41]. Efficient algorithms use learning rates
defined automatically at each update step [41]. To this end,
we use the Barzilai-Borwein method [42] for estimating α(τ)

u
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and adaptive steepest descent for estimating α(τ)
A . We use the

two respective algorithms while also computing the learning
rate for static bases, α(τ)

B , and the learning rate for static
coefficients, α(τ)

v .
The constraints in Eq. (13–14) can be satisfied with a

number of L1 regularisation algorithms [43]. We use the
projection algorithm proposed by Hoyer [40] as it has already
proved successful in creating localised bases for facial data.
While the algorithm was originally used to create bases in the
space of (static) raw pixels, we can report that it also creates
localised dynamic and static bases that live in the space of
Gabor phase shifts and magnitudes, respectively. We denote
this projection algorithm as project(·) and use it to update
Ak, Bk in order to satisfy Eq. (13–14) as:

Ak ← project(Ak;SA), (23)
Bk ← project(Bk;SB). (24)

Note that this projection algorithm is originally developed for
non-negative matrix factorisation. To obtain a basis function
with negative values too, we keep the signs of a basis func-
tion’s values before sparsifying the basis, and then apply these
signs to the sparsified basis [40].

Once the basis transformations A,B are learnt, we compute
the coefficients u,v for a new sequence I as follows. First
we compute the sequence’s Gabor coefficients, z. Then, we
compute φ̇ and logρ from z. To obtain u, we initialise u
with random values as in step 5 in Algorithm 1, and finally
compute u iteratively as in steps 8–11 of Algorithm 1. A
similar procedure follows for computing v.

V. SYNTHESIS AND ANALYSIS WITH BASES

In this section we visualise the bases (i.e. synthesis) and
discuss how to use them for automatic facial expression
recognition (i.e. analysis).

A. Visualisation of Learnt Bases

An advantage of a generative framework is its ability to
synthesise sequences. This ability is useful for visualising
and interpreting the information encoded in the bases. To
visualise a basis Ak, we first select a facial image, I0k, and
then synthesise frames that reflect the movement encoded in
Ak. Using Eq. (2–3), we can represent I0k as:

I0k =

D∑
d=1

<{ρ0k,de−φ
0
k,dWd}. (25)

Synthesising an image amounts to altering the phase pattern,
φ0
k, using phase shifts generated through Eq. (5) as:

Î0k(u) =

D∑
d=1

<{ρ0k,de−j(φ
0
k,d+[Aku]d)Wd}. (26)

We can also synthesise a sequence that visualises a combi-
nation of bases, for example, a pair of bases as:

Î0k+i(u) =

D∑
d=1

<{ρ0k,de−j(φ
0
k,d+[Aku]d+[Aiu]d)Wd}. (27)

For representative purposes, we visualise bases learnt from
the MMI dataset [19], which contains facial actions with their
entire temporal evolution. We set the number of bases to KA =
60 (see Section VI-D for a discussion on the choice of the
number of bases for automatic facial expression recognition
experiments). To test whether the bases learnt on one dataset
enable meaningful inference on another dataset, we choose the
frames that are used for synthesising, I0k, from the CK+ dataset
[28]. We learn separate sets of bases for the left eye, right eye
and mouth, rather than learning one set of bases for the whole
face. The main advantage of this part-based representation is
to reduce the temporal texture variation caused by out-of-plane
head variations [5] that may interfere with the modelling of
facial activity.

Let us consider for example the bases for the left eye and
the bases for the mouth. With KA = 60 bases per part, the
total number of bases is 120. Let A1−60 denote the bases for
the left eye and A61−120 denote the bases for the mouth.

Fig. 5 visualises the bases learnt by the proposed model.
We synthesise three images with three coefficients, u, 2u and
3u. To highlight where the movement occurs, we show the
difference between consecutive frames, i.e. Î0k(2u)−Î0k(u) and
Î0k(3u)− Î0k(2u). The difference images show that movement
occurs only in a limited spatial region (i.e. bases are localised).
Furthermore, localised bases are additive in terms of appear-
ance; that is, when a combination of bases is visualised, the
appearance variation caused by each basis is identical to that
caused by basis alone, given that the bases in the combination
are not overlapping spatially. Examples of combinations of
bases are illustrated in the two bottom rows of Fig. 5.

It is interesting to notice similarities between some AUs
of FACS and the bases Ak shown in Fig. 5. For example,
the bases A11, A13, A110, A116 resemble the onset phases of
AU 45 (blink), AU 1+2 (inner, outer brow raiser), AU 11
(nasolabial deepener) and the lip corner pulling that occurs
with AU 6+12+25 (cheek raiser, lip corner puller, lips part),
respectively. We illustrate more bases in supplementary mate-
rial1.

Fig. 5 also highlights correlations among bases, which
correspond to redundancy in the information provided by some
bases. For example, A11 and A19 represent a similar eyelid
movement. Such correlations are due to person-specific differ-
ences in the location of the facial features (e.g. eyebrow) or
the fact that different bases are modelling different fragments
of the same movement (e.g. one basis models the onset of a
movement while another models a later phase). Nearly half of
the bases are not directly linked to a specific facial region or
location (i.e. are not localised, see Fig. 6). Note that learning
a generative model aims at reconstructing training samples and
non-localised bases may be employed by the generative model
to produce the residuals that are needed for the reconstruction
of some training samples. In other words, non-localised bases
may facilitate the creation of localised bases by producing
the residuals that cannot be captured efficiently with localised
bases.

Fig. 7 illustrates the variations of the coefficients ut,k for

1Please see ftp://spit.eecs.qmul.ac.uk/pub/es/supp.zip.

ftp://spit.eecs.qmul.ac.uk/pub/es/supp.zip
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Fig. 5. Illustration of the movement encoded in some of the dynamic bases. To illustrate a basis, Ak , or a combination of bases, Ak+i, we synthesise three
images with three coefficients: Î0k(u), Î

0
k(2u) and Î0k(3u). (Note that we drop the subscript k and superscript 0 for clarity.) We encircle the regions with

facial movements, and provide the difference images of consecutive frames that also highlight those regions.

Fig. 6. Sample bases that model non-localised texture variations.

sequences of the MMI dataset [19]. In each sequence we
ignore for clarity the initial frames (where there is no facial
activity) and the frames after the apex. Moreover, we illustrate
only the coefficients produced with the four most activated
bases Ak only. Most of the remaining coefficients are very
small — the ratio of coefficients that are smaller than 0.1
are 90.2%, 86.5%, 86.3%, and 84.6% for the sequences in
Fig. 7a,b,c,d, respectively. The coefficients have small values
in the first frames when the expressions are subtle and then
get larger as the expressions reach their apex.

B. Automatic facial expression recognition

The learnt bases can be used to extract features for recog-
nising the facial expression in a sequence I. The features can
be used as input to a multi-class classifier trained from a set
of sequences, {In}Nn=1 (see Fig. 8).

The first step is computing the static, v = (v1,v2, . . . ,vT ),
and dynamic, u = (u1,u2, . . . ,uT ), basis coefficients for all

frames of I, as described in the last paragraph of Section IV-C.
Since the facial expression in I may not be temporally aligned
with the training sequences {In}Nn=1, we do not use those
coefficients directly as features. Instead, we extract features
by applying temporal pooling to introduce tolerance against
delays or other sources of temporal inconsistencies among test
and training sequences.

To extract features from dynamic coefficients u, we
first split the coefficients into TA slices over time,
(u1,u2, . . . ,uTA), where each slice uτ is a set that contains
QA = d TTA

e coefficient vectors, i.e.:

uτ = {u(τ−1)QA+1,u(τ−1)QA+2, . . . ,uτQA
}. (28)

Then, we compute histograms for each uτ . Specifically, we
compute a histogram of HA bins per basis k such that:

hτ,k = hist({ut′,k : ut′,k = [ut′ ]k, ∀ut′ ∈ uτ}), (29)

where hist(·) is the operator that computes the histogram of its
input set. We use histogram pooling as it outperformed simpler
approaches (e.g. mean, max or standard deviation pooling) in
our experiments. We concatenate the histograms computed for
all τ = 1, 2, . . . , TA and k = 1, 2, . . . ,KA. The length of the
concatenated histograms is HA ×KA × TA.

We extract features from static coefficients v in a sim-
ilar manner, by splitting v into TB slices over time,
(v1,v2, . . . ,vTB ). However, in this case we use mean and
standard deviation pooling, which have lower dimensionality
than histogram pooling and generally achieved comparable
performance to histogram pooling in our experiments. Specifi-
cally, we compute the mean and standard deviation on each of
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(a) Left eye sequence,

fear expression

(b) Left eye sequence,

happiness expression

(c) Mouth sequence,

fear expression
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happiness expression

Fig. 7. The dynamic coefficients ut,k computed on four exemplar sequences that depict two facial parts (left eye, mouth) for two different expressions (fear,
happiness). Note that the coefficients are small in the early (i.e. subtle) stages of the expression, and they grow larger as the expressions reach their apex.
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Fig. 8. Block diagram of the proposed end-to-end process to predict ŷ, the
expression in a sequence I, with a pre-trained classifier.

the sets vτ for each basis k. We denote the output of these two
pooling operators as µτ,k and στ,k, respectively. The vector
of the static features is obtained by concatenating the pooling
output for all τ = 1, 2, . . . , TB and k = 1, 2, . . . ,KA. The
length of this vector is 2×KB × TB .

Finally, Φ, the feature vector of I, is obtained by con-
catenating the pooling output of the dynamic coefficients
and the static coefficients. The performance of the proposed
facial expression classification process is validated in the next
section.

VI. EXPERIMENTS AND RESULTS

To validate the proposed representation, we test its general-
isation ability with the recognition of two extreme situations,
namely pronounced expressions and micro-expressions. We
also evaluate the ability of the learnt bases to recognise facial
expressions and to generalise across tasks and databases with
different frame rates.

A. Datasets

We validate the generalisation ability of the learnt bases
on the Cohn-Kanade (CK+) dataset, the MMI dataset and the

TABLE III
DATASETS USED FOR VALIDATION AND THEIR PROPERTIES. NE:

NEUTRAL, ON: ONSET, AP: APEX, OF: OFFSET.

Dataset CK+ MMI SMIC
Frame Rate (fps) 12 25 100
Temporal Phases Ne-On-Ap Ne-On-Ap-Of-Ne Mixed
Expression
Intensity Pronounced Pronounced Micro-

expression

Expression Classes
Six-basic
emotions

+contempt

Six-basic
emotions

Surprise, Pos-
itive, Negative

SMIC micro-expression dataset, which differ in frame rate,
temporal phases of the facial expressions, and magnitude of
the expressions (see Table III and Fig. 9).

The CK+ dataset [28] is useful to rank a technique compared
to the state of the art as many facial expression recognition
systems are evaluated on this dataset. CK+ includes the six ba-
sic emotions (anger, disgust, fear, happiness, sadness, surprise)
and a non-basic emotion (contempt). We follow the standard
protocol of the dataset, i.e. leave-one-subject-out (LOSO) cross
validation [28]. We use 327 sequences of 118 subjects, i.e. all
emotion-labelled sequences. The sequences start with a neutral
expression and finish at the apex. The MMI dataset [19] is
commonly used for the recognition of the six basic emotions.
The sequences contain all phases of facial expressions (i.e.
neutral-onset-apex-offset), and the apex frame is unknown. We
use all frontal sequences that are labelled with an emotion. 205
sequences from 31 subjects fit these criteria. We also perform
LOSO cross validation. The SMIC micro-expression dataset
[20] is useful to evaluate a model’s ability to recognise subtle
expressions. There are two tests: micro-expression detection,
which aims to identify whether or not a micro-expression
exists in a given sequence, and micro-expression recognition,
which aims to classify the micro-expression in a sequence as
positive, negative or surprise (3-class problem) [20]. We use
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Fig. 9. Examples from the CK+, MMI and SMIC datasets with a neutral frame
and a frame with surprise expression, depicting that an emotion can be shown
with expressions of different intensities. In the rightmost example, surprise is
manifested with a subtle expression that involves an eyebrow movement.

the data collected with a high-speed (100 fps) camera: 164
sequences with micro-expressions and 164 sequences with no
micro-expressions.

B. Protocols

We use a C-SVM classifier with linear kernel [44] for CK+
and MMI tests by fixing the C parameter to 103 with no
further optimisation. The baseline method in SMIC [20] uses
a polynomial-kernel SVM, and we also use this kernel when
testing on SMIC. We use the same kernel parameters, and learn
the C parameter on SMIC with cross-database validation.

As the evaluation metric we use the classification accuracy
in all tests:

α =
|{yn : yn = ŷn}Nn=1|

N
, (30)

where | · | denotes set cardinality, N is the number of test
sequences, and yn, ŷn are respectively the ground truth and
predictions for the nth sequence.

C. Implementation Details and Computation Time

We learn a part-based representation to reduce the effect of
out-of-plane head pose variations, as discussed in Section V-A.
We first crop the left eye, the right eye and the mouth
components in each frame of a sequence after localising the
center of each component with the SDM technique2 [45]. We
crop each component as a square and avoid overlap among
different components. The edge size of squares, relative to the
inter-ocular distance, δiod, is set to 1.9δiod (as Fig. 10a suggests,
smaller squares may reduce performance on CK+ and MMI).
Then we register temporally the cropped sequences with the
technique in [46], which achieves sub-pixel accuracy. Finally,
we re-scale the patches in the registered sequences to 32× 32
pixels. As Fig. 10b shows, 32 × 32 achieves a good balance
among the CK+, MMI and SMIC datasets. .

We use the Gabor wavelet set in [47] with 4 orientations
and 5 scales, which yields D = 4468 Gabor wavelets for
frames of size 32 × 32. We use 4 orientations, instead of
the more commonly used 8 [37], to reduce the dimension-
ality D, as the reconstruction performance with 4 and 8
orientations is similar on our images (see Fig. 11). The
noise and prior parameters needed in Eq. (17–20) are set
as λvs , λus

= 10;κ = 4;σρ = 0.25;λv, λu = 0.2. We set
λvs , λus

, κ and σρ based on previous research [25], and λv, λu
based on experiments after noticing little sensitivity to them

2The SDM technique provides the corners of the left eye, the right eye and
the mouth. We compute the center of those components as the average of the
corner positions.
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(a)

(b)

Fig. 10. Performance variation with the dynamic bases with respect to (a)
the size of the cropping rectangle in terms of inter-ocular distance, δiod, and
(b) the size of the cropped patches after re-scaling (KA = 60 for the MMI
dataset and KA = 100 for the CK+ and SMIC datasets).

(a) (b) (c) (d)

Fig. 11. Reconstruction performance of sets that contain wavelets at 2, 4 and
8 different orientations. (a) Facial image from the CK+ dataset. (b), (c), and
(d) show the reconstruction performance of wavelet sets that contain wavelets
at 2, 4 and 8 orientations, respectively. Note that when increasing the number
of orientations from 2 to 4 there is a significant improvement in reconstruction
quality, whereas there is little improvement when increasing the number of
orientations from 4 to 8.

within the range of 0.1 − 0.4. We limit maximum iterations
as τmax

v , τmax
u = 1000 and τmax

A , τmax
B = 250, which are

generally sufficient for convergence. SA and SB , are set to
0.75, and we observed qualitatively similar results for the
range of 0.65−0.85. We learn separate linear models for each
facial part (i.e. left eye, right eye and mouth). The learning
parameter that has the most significant effect on performance
is the number of bases, KA,KB . For simplicity, we always
set those two quantities to be the same (i.e. KA = KB) rather
than optimising them separately. We perform experiments for
various values of KA and analyse its effect in our discussion.
For gradient descent optimisation we use [48] and for the
project(·) algorithm we use [40].

We process all sequences to have the same length of frames.
In CK+, where the sequences end with the apex of the
expressions, we use the last 8 frames as all sequences have at
least 8 frames. In MMI and SMIC, the apex of the expressions
is unknown and we use all frames; for those datasets, we
resize training sequences via temporal interpolation (similarly
to [20]) to 10 frames when learning the bases. Temporal inter-
polation effectively changes the frame rate of the sequences.
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Fig. 12. Performance with respect to (resized) sequence length T indicates
sensitivity to frame rate, as the apparent motion speed changes when a
sequence is resized temporally. Results are obtained with dynamic bases only.

We analyse sensitivity to frame rate by experimenting on test
sequences that are resized to various numbers of frames T .
Whenever unspecified, T is set as T = 8 for CK+ and T = 20
for MMI and SMIC. We set HA = 6 for the tests on CK+ and
MMI, and HA = 12 for SMIC. The parameter TA is set based
on the sequence length as TA = bT5 c. TB is set as TB = 1.

The training for all the facial components (i.e. left eye,
right eye, and mouth) takes approximately 90 minutes in total
(MATLAB implementation running on a laptop with an Intel-
i5 CPU). The average computation time for our representation
is 0.432 seconds per frame. The bottleneck in this process is
the computation of the Gabor coefficients (0.354 seconds).
Once the Gabor coefficients are obtained, computing the
dynamic coefficients, u, takes 0.042 seconds and computing
the static coefficients, v, takes 0.036 seconds. For comparison,
the average computation time of the standard LBP-TOP [8]
representation on the same sequences is 0.023 seconds per
frame. The MATLAB R© code of our method is provided in
ftp://spit.eecs.qmul.ac.uk/pub/es/supp.zip.

D. Discussion

We first analyse how the frame rate of test sequences and the
number of bases affect performance. During these tests we use
only dynamic bases. Then, we compare the performance of our
method with that of state-of-the-art dynamic representations.

The length of the original MMI sequences varies from 32
to 244 frames. Fig. 12 (top) shows how performance varies
on the MMI dataset when the sequences are downsampled to
various lengths T . We report performance for various temporal
pooling windows TA, as the optimal value of this parameter
may depend on the sequence length. The lowest performance
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Fig. 13. Performance of the dynamic features our method with respect to the
number of bases KA on the CK+, MMI and SMIC datasets.

TABLE IV
PERFORMANCE OF OUR METHOD ON CK+, MMI AND SMIC, WHEN

BASES ARE LEARNT IN A WITHIN-DATABASE MANNER.

Test
Dataset KA,KB

Performance
with Static

Features

Performance
with Dynamic

Features

Performance
with Both

Features Types
CK+ 100, 100 94.81 89.01 96.02
MMI 60, 60 57.56 73.66 75.12
SMIC 100, 100 17.79 65.64 60.74

occurs when test sequences are resized to 5 frames. There
is limited variation when sequences are resized to 20 frames
or longer, which suggests that the performance has little
sensitivity to the frame rate of the sequences that are used
while learning the bases. The best performance is not attained
when T takes the value used while learning the bases (i.e.
T = 10, see Section VI-C). The original SMIC sequences
vary between 13 and 60 frames. The performance on SMIC
becomes particularly low when sequences are downsampled
to short lengths such as T = 5 frames. The micro-expressions
in SMIC are fleeting, and therefore difficult to recognise when
the frame rate is too low [20]. However, the performance of our
method shows little variation for sequences of T = 20 frames
or longer. This suggests that the proposed method has little
sensitivity to frame rate variations when recognising micro-
expressions, given that the frame rate is not too low.

Fig. 13 shows the performance variation with respect to
the number of bases, KA. The performance saturates with
relatively small KA values for the CK+ and MMI datasets,
such as KA = 40, and there is little improvement, or even a
decrease in performance, for larger KA values. Higher values
such as KA = 80 or KA = 100 achieve better performance
on the SMIC dataset. Table IV lists the best results obtained
by our method on all datasets for within-database learning
with LOSO cross-validation, and reports the performance of
static features as well. Static features are sufficient to achieve
high performance on the CK+ dataset. This is not surprising
as other static representations (e.g. [49], [15]) achieve similar
performance on this dataset. The dynamic features are use-
ful on the more challenging MMI and SMIC datasets. The
high performance achieved with dynamic features on SMIC
is consistent with the findings in psychology that highlight
the importance of temporal variation for recognising subtle
expressions [6].

Finally, we report results on all datasets with a unified

ftp://spit.eecs.qmul.ac.uk/pub/es/supp.zip
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TABLE V
CLASSIFICATION ACCURACY ON CK+, MMI AND SMIC. THE ‘WITHIN-DATASET’ COLUMN REFERS TO THE CONDITION WHEN THE TEST DATASET IS

USED BOTH TO LEARN THE REPRESENTATION AND TO SET ITS PARAMETERS. THE (OPTIONAL) SECOND REFERENCE REFERS TO THE SOURCE THAT THE
RESULTS ARE COLLECTED FROM.

Ref. Method Engineered Learnt
Needs

Training
Labels

Within-dataset
Validation

Cross-dataset
Validation

Accuracy
on CK+

(α)

Accuracy
on MMI

(α)

Accuracy
on SMIC

(α)
[50] CFD-WL 3 N/A N/A 92.32 – –
[8],[12] LBP-TOP 3 N/A N/A 88.99 59.51 –
[51],[12] 3D-HOG 3 N/A N/A 91.44 60.89 –
[52],[12] 3D-SIFT 3 N/A N/A 81.35 64.39 –
[53] Optical strain 3 N/A N/A – – 53.56
[54] STLBP-IP 3 N/A N/A – – 57.93
[55] AdaBst+STM 3 N/A N/A – – 44.34
[8],[20] LBP-TOP 3 N/A N/A – – 49.30
[56] ITBN 3 N/A N/A 86.30 59.70 –
[10] DTAGN 3 3 3 96.94 66.33 –
[13] 3DCNN-DAP 3 3 3 92.40 63.40 –
[12] Expressionlets 3 3 91.13 65.37 –
[12] Expressionlets & discr. learning 3 3 3 94.19 75.12 –

Proposed: F-Bases 3 3 96.02 75.12 65.64
3 3 89.29 – 60.36

representation — a representation learnt from a specific dataset
for a fixed KA value. To have a unified representation that is
relatively compact and achieves good performance on both
large- and small-intensity expressions, we set KA = 60. We
train the unified representation on MMI, which is the most
comprehensive of the three datasets as it includes the onset,
apex and offset phases (see Table III).

We compare with state-of-the-art dynamic representations
that were validated on the CK+, MMI and SMIC datasets. We
consider only the studies that used the entire sequences on
the MMI dataset without using the manually annotated apex
frames. The learnt representations that we compare with on
the CK+ and MMI datasets are Expressionlets [12], DTAGN
[10] and 3DCNN-DAP [13] (see Table I for the extensions
of the abbreviations). We further compare with ITBN [56],
a method that proposes semantic modelling of expressions,
as well as the (engineered) 3D-HOG [51], 3D-SIFT [52] and
LBP-TOP [8] representations. We take the results reported in
the papers.

Table V reports the results of the methods under analysis on
all three datasets. The other learnt representations are validated
through within-dataset experiments, i.e. the representations are
trained and tested on the same dataset, with different learning
parameters for each dataset. We also report results for within-
database validation and the cross-database validation results
by using the representation learnt on MMI for testing on
CK+ and SMIC. DTAGN attains the best accuracy on CK+
and our method achieves comparable results through within-
database validation. Most methods achieve high performance
(over 90%) on the CK+ dataset, which contains exaggerated
expressions with time-aligned sequences (all finish at the apex
of the expressions).

Recognition results on MMI are generally lower than those
on CK+. Although MMI also contains posed expressions,
the fact that the apex frames are not known a priori is a
challenge, as an expression is recognised most easily at its
apex. Moreover, unlike the CK+ dataset, some of the subjects
are wearing glasses, headcloth, or have beard or moustache.

Two methods stand out with their high performance on MMI:
our method and Expressionlets. However, the latter obtains
good results only when the representation is augmented with
discriminative learning, which requires a separate training
with emotion labels, whereas our method (i) does not require
training labels and (ii) can be applied on sequences with labels
that are not included in the training set.

On the SMIC dataset, we provide a comparison with LBP-
TOP [20], Optical Strain [53], STLBP-IP [54] and a method
that uses LBP-TOP with AdaBoost and Selective Transfer
Machine (AdaBst+STM) [55]. All these representations are
engineered. To the best of our knowledge, there exists no learnt
representation tested on the SMIC dataset.

Our method achieves the highest performance on SMIC
(rightmost column of Table V), using within-dataset vali-
dation (with nearly a 7% improvement compared to other
methods) and with cross-database validation, i.e. testing with
the representation that was trained and optimised on MMI.
This highlights the generalisation ability of our representation:
The training dataset (MMI) contains sequences of posed
expressions recorded with relatively low temporal resolution
(∼25 fps), whereas the test dataset (SMIC) includes sequences
of spontaneous expressions recorded with higher resolution
(100 fps). Moreover, the MMI dataset includes 6 classes of
pronounced expressions, whereas the SMIC dataset contains
3 classes of subtle expressions.

In summary, the proposed method achieves state-of-the-art
or comparable performance when, similarly to other represen-
tations, is validated through within-database validation. More-
over, the cross-database results highlight the generalisation
capabilities of the proposed method, as the same representation
achieves comparable performance with other methods even
when the training dataset differs from the test dataset in terms
of frame rate, temporal phases of expressions, the expression
labels, and the intensity of expressions (see Table III).
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VII. CONCLUSION

We proposed a novel dynamic representation for facial ex-
pression analysis that characterizes facial expression variations
with a linear combination of basis functions corresponding
to localised movements. When a sequence is decomposed
through this linear model, each basis coefficient enables infer-
ence on whether a particular movement exists in the sequence,
and the magnitude of the coefficient provides information
about the intensity of the movement. With this design the
learnt representation efficiently recognises facial expressions
across a range of intensities and shows little sensitivity to
frame rate. Importantly, unlike other learnt representations,
the proposed approach achieves state-of-the-art performance
without using the expression labels of training sequences
when learning the features. To the best of our knowledge,
we proposed the first learnt representation that is designed to
model expressions across a range of intensities and is validated
in recognising both pronounced and micro expressions.

To achieve a more compact description and to address the
person-specific biases of the bases (see Section V-A), as future
work we will include a layer that learns the relationships
among bases (e.g. [57]) or use a bilinear model [58] that recog-
nises different transformations (e.g. spatial shift) of the same
basis. Moreover, although for computational tractability we
assumed independence between phase shifts and magnitudes,
a more complex approach could model the two jointly.
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