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Abstract 
The need to prioritize maintenance activities and investments 
based on asset criticality and associated risk is seen 
increasingly as important in industry. However, proper use of 
criticality in developing maintenance strategies and plans is 
still at a nascent stage in most organisations. A review of 
industrial practices showed that criticality is considered as 
more or less a static quantity that is not updated with 
sufficient frequency as the operating environment changes.  
This paper examines an electricity distribution network 
operator (DNO) to show the need to model the changing 
nature of criticality and ensure an optimal maintenance 
strategy and plan, aligned to business needs. A Real-time 
Criticality Based Maintenance (DCBM) methodology is 
proposed to identify factors affecting and influencing changes 
to criticality, monitor and update asset criticality and exploit 
the dynamic criticality to optimise maintenance decisions. 
Asset criticality was calculated using network performance, 
safety, environmental integrity, maintenance cost among 
other factors as the consequence categories for asset failure. 
The criticality for each asset (such as transformer circuit 
breakers, busbars etc.) is calculated as a weighted sum of the 
impact of supply loss on each of the consequence categories. 
Variations in some factors such as electricity demand 
influences changes in asset criticality with time and therefore 
criticality is modelled as a dynamic process, which is a 
function of time in addition to other factors.  
A comparison between an existing and a reviewed 
maintenance plan is shown where there are considerable 
variations in criticality over time. The performance measure 
used for the maintenance plan is based on the utility network 
reliability (quality of service) which is measured in terms of 
Customer Interruptions (CI) and Customer Minutes Lost 
(CML). The performance targets (for CIs & CMLs) and 
standard service levels for DNOs are given in the UK’s Office 
of Gas and Electricity Markets (OFGEM). 
The result showed improvement in availability mainly due to 
reduction of the duration of scheduled outages and short 
interruptions. 
. 
1 Introduction 
For the past decades, maintenance management techniques 
have been through a major process of metamorphosis, from 

focusing on periodic overhauls to the use of condition 
monitoring, reliability-centred maintenance and, most 
recently to, risk-based maintenance methodologies [1]. 
Criticality analysis, which is a first step to risk assessment, is 
a maintenance management tool which is crucial in making 
decisions on how to spend limited maintenance resources on 
those assets where it will do the most good [2], [3]. It 
becomes important to understand how crucial a piece of 
equipment/asset is to the bottom-line profitability of a 
business.  
  
In risk-based investment programmes [4] [5], the risk 
associated to each asset is usually quantified for optimal 
maintenance decisions. As a first step to this, an analysis is 
usually conducted and an index is assigned to each asset 
indicating it criticality – a measure of the impact of its failure 
on business goals of an organization.  
 
However, the criticality of an asset has been applied in a 
sense as though it is static and does not change with time. The 
long-time held myth is: “…we have just concluded our 
criticality analysis, we can now check that box …” Thus an 
inherent problem of criticality assessments is that they are 
static procedures that do not update as the operating 
environments and conditions changes [6], [7]. In order words, 
you can just “set it and forget it” and the maintenance strategy 
remains fixed once commissioned. But criticality depends on 
many factors which are volatile in nature; hence an asset’s 
criticality will inevitably vary with time. 
 
There’s need to continuously monitor, review and update the 
criticality of assets to ensure maintenance objectives for the 
assets are aligned to business needs. Unfortunately, current 
criticality analysis techniques are only static procedures used 
primarily to identify initial maintenance strategies. Therefore 
current techniques cannot deal with the issues of real-time 
asset criticality. To illustrate the changing nature of an asset’s 
criticality, the next section considers a few examples. 
 
1.1 Examples of dynamic criticality  
Food processing facility: Take a simple example of a multi-
product food processing plant with several production lines. 
Consider a scenario, as shown in Figure 1, where one 
production line is used to produce a more profitable product. 
If product A is considered a more profitable product then 
section 3 becomes a more critical production line than the  
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other since impact of its failure to the organisation is greater 
(assuming other variables are equal) [7]. A change in 
production schedule for the lines will result to change in 
criticality. 
 
Again, if the utilization rate of section 2 (for example) is 
greater than that of the other sections for any product, then it 
becomes more critical. Therefore criticality of production 
lines depends on, and changes with, utilization rate and 
production schedules. 
 
 

  
Figure 1: Varying criticality in a production line [7] 

 
Power generating unit: Electricity demand varies 
seasonally. For example throughout the week, demands are 
usually less at the weekends, and throughout the day 
demands will be less at night. Consider a power station with 
an installed capacity of 600 MW(e), made up of five 120 
MW(e) generating units. Assuming 3 of the sets are used for 
base load (non-varying demand) and the other 2 are expected 
to provide ‘spinning reserve’ to meet up with the peak 
demand. At nights, or weekends, when demands are low, the 
generating units for spinning reserve will become less critical 
compared to peak load periods. 
 The implication of this is that the consequences of failure 
associated with each individual asset are influenced by 
several factors. According to [4], for example, Network 
performance impact will be driven by the number of 
customers, or the amount of load, that is affected by the 
failure of the asset, similarly, the environmental impact may 
be dependent upon the proximity of the asset to 
environmentally sensitive areas (such as water course). 
 
 
 

2 Dynamic Criticality based Maintenance    
(DCBM) Model 
The proposed DCBM methodology aims to exploit the 
dynamic nature of asset criticality for setting the right 
maintenance plan for each asset based on its current 
criticality. There are three main components of the DCBM 
methodology, which are all linked interactively as shown in 
Figure 3. The algorithm for the implementation of this model 
is given in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2: RCA Algorithm 
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2.1 Real-time criticality analysis (RCA) algorithm 
 The mathematical model for the RCA algorithm is supported 
by the following notations: 
 :  1, … ,  Consequence categories for asset         

failure : 1, … ,  Influence factors per consequence 
category  : 1, … ,  Levels of possible effect of asset 
failure for any influence factor  

: Effect  for any influence factor  
: Weights (contributions) assigned to  by 

experts, with ∑ =1 = 1 
: Fractional value of effect for influence 

factor  
: Maximum level of admissible effect for 

influence factor , with ≤    ∀  : Asset number 
  Retrieved effect level j for failure of asset z 

The algorithm comprises the following steps, which are 
explained in detail below: 
 
2.1.1 Step 1: Data acquisition and analysis 
Data capture, data sharing and data standards have a very 
important part to play in driving improvement in the overall 
performance of an asset [8].  
 

Some of the challenges relating to the effective use of data 
are: the ‘right’ data, data quality, data quantity and data 
sharing.  
The first step in the dynamic criticality process involves the 
retrieval of all relevant data for calculating asset criticality. 
This can be achieved in either of two ways: data can be 
passed each time there’s a change in any of the 
monitored/measure parameters or whenever the algorithm 
request for data. For the DCBM model, the algorithm uses a 
standardized request for text or number to pull data into the 
intermediate database each time before calculating criticality. 
This way, the decision makers can control when, or how 
often, they want criticality updated. 
 
Most of the information needed by decision makers are often 
located in the different disparate sources. Some of the 
information sources will include:  Maintenance management systems 

 Financial records 
 Condition monitoring system 
 Production schedules 
 Health and safety regulations 

With recent advances in IT, the physical location of a 
database is no longer important. Remote data access 
architecture is adopted for the DCBM methodology. The 
different databases are dynamically linked and current 
information is retrieved by the criticality algorithm for 
analysis. 
 

 

  
Figure 3: Conceptual Model for DCBM
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The technical challenges involved include:  knowing what data to ask for 
 knowing where to get the data 
 Using either a pull (retrieve data on request) or a 

push (data passed frequently) approach. 
2.1.2 Step 2: Criticality analysis 
 
This step involves calculating asset criticality using current 
(not just historical) information. The algorithm selects one 
asset type at a time and calculates the criticality of all 
consequence areas for that asset, i.e. ( ), for = 1, … . 
The criticality of consequence category  for asset  (e.g. 
safety criticality for pump), is given as: 
 

( ) = ( ) ( )  

Where  is the current effect level information retrieved 
= / ,   with =   and ≤ ,   and = 1 for 

=   and ∀ . 
The change in criticality is evaluated at this stage using the 
previous asset criticality ( − 1) and current asset 
criticality ( ). A volatility test is conducted to check if 
change in criticality is simply a transient change. If the scale 
and frequency of the change is above a predetermined 
threshold, then the maintenance plan for that asset is 
reviewed. 
2.1.3 Step 3: Maintenance decision and optimisation 
 This step involves making decisions on what maintenance 
action to take based on the change in criticality index. The 
magnitude of the criticality change could mean, for example, 
that the frequency of the preventive maintenance plan be 
increase. It could also mean a change in the inspection 
schedules of another dependent asset.  
 
While the use of criticality for maintenance strategy is still at 
a nascent stage, a more challenging task is to optimise the 
maintenance strategy using changes in criticality. The 
problem lies in knowing what maintenance task/activity that 
should be removed or added to the maintenance plan or how 
frequent should it be done.  
Although Markov decision processes have been used 
extensively to model maintenance decisions, dynamic 
Bayesian Networks (DBN) seems to be gaining prominence 
for addressing maintenance issues [9]. For DCBM 
methodology, the change in maintenance decision, as a result 
of change in criticality is modelled using Bayes theorem, 
which uses conditional probabilities. DBN consists of two 
networks: a prior and a transition network [10]. The prior 
network can represent the initial value of asset criticality. 
For DCBM methodology, the change in maintenance 
decision, as a result of change in criticality is modelled using 

Bayes theorem, which uses conditional probabilities. DBN 
consists of two networks: a prior and a transition network 
[10]. The prior network can represent the initial value of asset 
criticality. 
 
 3 Application of DCBM to electricity 
distribution network 
 
3.1 Description of the Distribution Network Operator 
 Company A is a Distribution Network Operator, taking 
electric power from the National Grid and distributing it at 
lower voltages to business and domestic customers. The 
company is licensed to distribute power to over 3 million 
homes and businesses on behalf of the supply companies. The 
major assets for the distribution network consist of: 
  83,000 kilometres of overhead lines and 

underground cables 
 155,000 pole & ground mounted transformers 
 105, 000 substations 

We consider a section of the network. The capacity of the 
substation is known to be 32.5 MVA. Each of the three 
transformers has an average load of 7.5 MVA. In the event of 
failure of one busbar, the estimated time to transfer load is 1 
hour. The mean time to repair the failed circuit breaker is 
estimated to be 24 hours. Total number of customers 
connected to the circuit is 750, with each of the three busbars 
serving 250 customers. 
 
3.1 Criticality review process 
 
The following example shows how the dynamic criticality of 
an incoming transformer circuit breaker for three-busbar 
substation will be determined and updated. There are mainly 
four consequence categories considered for the network, 
which are safety, environmental, financial, and network 
performance. The network performance criticality for the 
circuit breaker is used for this example. 
 
The criticality review team determines the different levels that 
failure of an asset can have on business goals, based on each 
criticality influence factor. This is shown in Table 1 for this 
example. 
 
The interpretation of Table 2 is as follows: a circuit breaker 
functional failure affecting less than 50 customers (as 
presented in Table 1) will attract an estimated penalty cost of 
£ 1,544. As another example, a MTTR of more than 24 hours 
will cause a potential cost of £ 1,084.8 per customer hour 
loss. 
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Criteria to measure severity per influence factor 
Influence 

factors 
Customer load (fed 
directly via 
asset z, in 

MVA) 

MTTR (duration of 
repair 

work, in 
hours) 

CI (number of 
customers 
affected) 

Effect levels 
per 
influence 
factor 

50  (OO) 500 
20 ≤ 50 12 ≤ 24 200 ≤ 500 
10 ≤ 20 6 ≤ 12 50 ≤ 200 
≤ 10 ≤ 6 ≤ 50 

 
Table 1: Failure effect levels 

 
OO: out of order; CI: customer interruption; MTTR: mean 
time to repair. 
With = 4, 3, 4  as maximum level of admissible effect 
for each influence factor 
 
 
Criteria to measure severity per influence factor 

Influence 
factors 

Customer 
load 

MTTR 
(Per customer 

hour) 
CI 

Penalisation 
cost per effect 
level 
(in £) 

62,474 Nonadmissible 16,984 
28,248 1,624 12,352 
12,274 1,084 6,176 
4,284 542 1,544 

 
Table 2: Cost per effect level 

 
 Parameter £ (at 2012/2013 prices) 

Costs of CML £ 0.38 (£22.60 for one customer hour lost) 
Costs of CI £ 15.44 

 
Table 3: Conversion reference standard [11] 

 
 
Criteria to measure severity per influence factor 
Influence 

factors 
Customer 

load 
(Weight: 35% 

) 

MTTR 
(Weight: 25% ) 
(Per customer 

hour) 

CI 
(Weight: 40% 

) 
Weighted 
fractional 
effect level 

35 100 45 
15.8 25 32.7 
6.8 16.7 16.4 
2.4 8.3 4 

 
Table 4: Weighted severity level 

With maximum severity = 100 

 
Table 5: Daily load on percent of weekly peak [12] 

With a weekly peak of 10.8 MVA 
 
 
The effect levels for the influence factors can be expressed in 
both qualitative and/or quantitative terms. This must be 
translated into quantitative terms (e.g. cost) to get the severity 
of each influence factor for calculating criticality of 
consequence category. This conversion must be based on 
certain contract which must be honoured by all users, 
stakeholders and operators of the asset. An example of such 
contract is shown in Table 3 below, which is used in the 
derivation of Table 2 from Table 1. 
 
In order to determine the weights assigned to influence 
factors, various considerations were taken into account such 
as, the impact on each factor on the consequence categories, 
the importance of factor considering contracts and standards, 
etc. A major challenge of assigning weights is that it usually 
contains subjective judgements form experts in the review 
team. 
 
For a consistent judgement, analytic hierarchical process 
(AHP) can be used. According to [2], a major advantage of 
AHP approach is that both qualitative and quantitative criteria 
can be included in the classification scheme. In our example, 
the weights assigned by the experts to the influence factors, 
using AHP, is equal to = 35, 25, 45. 
 
 
3.2 Data retrieval and criticality analysis 
 
Table 1 – 4 can be stored as look-up tables for the criticality 
algorithm. These tables can be manually updated by the 
review team as contracts, regulations, market structure, or 
working environment of the asset changes. Influence factor 
information for asset z is retrieved from the disparate sources 
to an intermediate database. 
 
 When failure of an asset occurs, data concerning effect levels 
can be retrieved and captured in the variable  . This 
variable, which is a matrix of  elements, is Boolean 
with the following values: 

  

Day Customer load (MVA) 
Monday 10.04 
Tuesday 10.80 

Wednesday 10.58 
Thursday 10.37 

Friday 10.20 
Saturday 8.32 
Sunday 8.10 
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The Tables 5 show the weekly variations of electricity 
consumption/demand on each of the bus-bars. Note that other 
factors such as MTTR and number of connected customers 
could change over time also, but we focus on customer load 
variation in this example to demonstrate dynamic criticality of 
the circuit breaker. 
 
Considering  = circuit breaker, where = safety, 
environmental, financial, network performance 

 
For = network performance  
 
 = Customer load, MTTR, CI 
 
With MTTR = 24 hours; weekly peak customer load =. = 10.8 ; Customer load on Saturday = 8.2  and 
CI  = 250   
 

= 0 0 0 10 1 0 00 1 0 0
 

 
. =

35 100 4515.8 25 32.76.8 16.7 16.42.4 8.3 4
  

 
=  

 ( ) 2.4 25 32.7 = 60.1 
 ( ) = 6.1 25 32.7 = 64.5 
 
The network performance criticality for the circuit breaker on 
Saturday (for week under consideration) is 60.1. A plot of the 
network performance criticality for the week (monitored) is 
shown in Figure… 

 Figure 4: Change in network performance criticality for 
circuit breaker  

4   Discussions 
 
The use of criticality ranking for assets is quite understood for 
many organisations. But such rankings are usually not 
documented as part of the maintenance strategy [13]. 
Although the use of assert criticality for planning 
maintenance is still at a nascent stage in practise, it is 
important to examine the findings and benefits of the 
proposed methodology in this paper.  
 
This methodology is still at an initial stage of development, 
hence there are no clear rules on how to use the changes in 
criticality index to review maintenance plan for the asset. 
Ideally one would predict that changes in criticality of circuit 
breaker, for the period of time as shown in the result from 
previous section, would result in some maintenance actions. 
Such action could be increase/reduction in inspection period. 
Thus the methodology provides handy information that is 
invaluable to maintenance managers for making informed 
maintenance decision for their assets in order to achieve 
overall business profitability of the company. 
  
5 Conclusion and further work 
  Most organisations do not yet use criticality for 

planning maintenance strategy for their assets. 
 So far in both literature and practise, criticality has 

been understood and used in a static sense. Therefore 
current criticality analysis techniques cannot deal 
with the dynamic nature of asset criticality. 

 The criticality of an asset is dynamic due to 
changing operating environment and conditions; 
hence it should be updated with sufficient frequency 
to ensure a maintenance plan that is aligned to 
business needs. 

 Dynamic criticality based maintenance methodology 
has been introduced as a method to monitor, review 
and update the asset criticality over time and use 
changes in criticality to review maintenance plan. 

 Although this method is still at infancy stage, it 
promises to be a useful maintenance management 
tool. 

 Further work is required in the model architecture 
and will be reported in future publications. 
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