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Abstract 

Electron tomography using energy loss and X-ray spectroscopy in the electron microscope 

continues to develop in rapidly evolving and diverse directions, enabling new insight into the 

three-dimensional chemistry and physics of nanoscale volumes. Progress has been made recently 

in improving reconstructions from EELS and EDS signals in electron tomography by applying 

compressed sensing methods, characterizing new detector technologies in detail, deriving 

improved models of signal generation, and exploring machine learning approaches to signal 

processing. These disparate threads can be brought together in a cohesive framework in terms of 

a model-based approach to analytical electron tomography. Models incorporate information on 

signal generation and detection as well as prior knowledge of structures in the spectrum image 

data. Many recent examples illustrate the flexibility of this approach and its feasibility for 

addressing challenges in non-linear or limited signals in EELS and EDS tomography. Further 

work in combining multiple imaging and spectroscopy modalities, developing synergistic data 

acquisition, processing, and reconstruction approaches, and improving the precision of 

quantitative spectroscopic tomography will expand the frontiers of spatial resolution, dose limits, 

and maximal information recovery.  
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1. Introduction 

ADF-STEM tomography, introduced in 2001, has grown in popularity and is seen now as 

a routine tool in the study of 3D nanostructure [1–3]. Combining electron tomography with 

energy loss and X-ray spectroscopy occurred almost concurrently [4–6] but until recently has 

proven to be far less popular. However, with milestone improvements in energy filters, 

especially the Gatan Imaging Filter (GIF) [7], in whose development Ondrej Krivanek played 

such a key role, and, more recently with the development of new X-ray EDS detectors for the 

TEM, the speed and ease with which analytical signals can be acquired has led to renewed 

interest among electron tomographers. These advances enable electron tomography to not just 

address questions of predominantly materials structure but of structure and materials properties 

simultaneously using EELS and EDS tomography. Elemental composition [8–13], chemical 

properties such as oxidation state and local bonding environments [14,15], and physical 

properties such as optical response [16–19] are now measurable in three dimensions at the 

nanoscale. 

Tomography will always seek to determine the relative arrangement of matter in space 

and, as such, tomography specimens are necessarily “thick” in that they bear some interest due to 

their three-dimensional structure. In this context, thickness is a relative term, and atomic 

resolution electron tomography of crystalline specimens just a few nanometers thick is an active 

ongoing research area in materials microscopy. Importantly, approximations that hold in the limit 

of thin specimens may not be applicable in general for specimens of interest for tomography. 

Consequently, linear imaging models underpinning conventional electron tomography may not 

be valid, particularly in the use of EELS and EDS signals for quantitative measurements.  
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Although research in EELS and EDS tomography is developing along many fronts, much 

of the current focus is on making EELS and EDS tomography quantitative, on applying these 

methods to new and challenging specimens and signals, and to developing reconstruction 

methods to extract maximal information from a limited number of, often noisy, spectrum images. 

Following a brief review and generalization of the methods of electron tomography, current 

progress in EELS and EDS tomography and future directions are highlighted. Across the board, 

tools for handling noisy signals from a limited number of spectrum images in a tilt-series are 

being developed, coupled with the aim of quantitative recovery of structure-property information 

at the nanoscale. These developments are unified in a model-based approach to analytical 

electron tomography which will see continued expansion and innovation in future tomography 

with electron beam imaging spectroscopies. 

 

2. A model-based framework for analytical electron tomography 

This section outlines some of the key assumptions and equations that underpin 

tomographic reconstructions as applied to EELS and EDS signals. Traditionally, electron 

tomography methods can be traced to the concept of the Radon transform, but reconstruction 

methods in electron tomography today, particularly for EELS and EDS, can be framed within the 

context of a broader model-based approach, incorporating knowledge of the signal generation 

process and of the object and information sought in the three-dimensional reconstruction. The 

relationship between these approaches is outlined to establish clear connections between 

conventional and emerging tomographic methods and to generalize the variety of state-of-the-art 

model-based approaches to EELS and EDS tomography. 
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The Radon transform of an object is defined over all possible line integrals L along the 

direction s for an object f: 

ℛ{𝑓} = ∫ 𝑓(𝐑𝟎
′ (𝜃), 𝑠)𝑑𝑑𝐿 .     (1.) 

with coordinates in the perpendicular plane (𝐑𝟎
′ = [𝑥′,𝑦′]) determined by the rotation (tilt) angle 

θ. A single projection Pf  can then be written as the Radon transform at a fixed line L (s = z) in a 

fixed Cartesian coordinate system (R0 = [x, y], z) as the line integral along the beam direction (z): 

𝐏𝑓 = ℛ{𝑓}�
𝑠=𝑧

= ∫ 𝑓(𝐑𝟎, 𝑧)𝑑𝑑∞
−∞ .    (2.) 

Experimentally, the Radon transform is sampled discretely in the form of projections at many tilt 

angles. Taken together, the measurements acquired during an experiment can be written 

collectively in terms of a projection operator 𝐏� acting on the three-dimensional volume to 

produce the experimentally recorded projections Γexp 

𝐏�𝑓(𝐑𝟎, 𝑧) = 𝛤𝑒𝑒𝑒.     (3.) 

This system of equations forms the basis for typical tilt-series tomography reconstruction 

algorithms such as the algebraic reconstruction technique (ART) and the ubiquitous 

simultaneous iterative reconstruction technique (SIRT) where a solution for 𝑓(𝐑𝟎, 𝑧) is found 

that minimizes the difference between the projected solution and the experimental data. A 

common way of framing this problem is to minimize the squared differences, equivalent to 

minimizing the squared ℓ2-norm: 

𝑓(𝐑𝟎, 𝑧) = argmin �∑ �𝐏�𝑘𝑓(𝐑𝟎, 𝑧) − 𝛤𝑒𝑒𝑒�2𝑘 � = argmin ��𝐏�𝑓(𝐑𝟎, 𝑧) − 𝛤𝑒𝑒𝑒�
ℓ2

2 �, (4.) 

where k denotes the independent beam trajectories contributing to the complete projection 

operator and norm notation (‖∙‖) is used to simplify the equivalent expressions on the right. This 

expression also highlights several of the limitations intrinsic to tilt-series tomography. Equation 

(3.) shows that the reconstruction problem is ill-posed (i.e., f may not be a unique solution 
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matching the experimental data-set). Additionally, in an experimental realization the Radon 

transform is highly underdetermined due to the limited number of projections, i.e., there are more 

unknowns than there are equations. Further, the specific definition of the projection operator in 

equation (2.) establishes the projection requirement, that the experimental data must be 

adequately described by the projection operator in the forward model, otherwise approaches to 

solving equation (4.) will not yield reliable results. This final projection requirement means that 

the experimental data must be a monotonic function, and preferably a linear function, of the 

object thickness. 

 Within this framework there are several possibilities for incorporating additional 

information about the measurement or the specimen. Such adjustments alter the reconstruction 

process but critically open up new opportunities for non-linear measurements and enable new 

algorithms for reconstructing physically significant and quantitative volumes with rich 

information on the chemistry and physics of the electron-specimen interactions. Together, these 

changes move electron tomography toward a model-based approach: i.e., that the model can be 

considered as a description of the signal generation process and also as prior information about 

the specimen. Each of these models can be incorporated as an amendment to the equations 

outlined above. Knowledge of the signal generation process leads to replacing the linear 

projection operator 𝐏� with a measurement-specific model. Incorporating details of the EELS 

signal generation in the excitation of surface plasmons [17], absorption processes in EDS [11], 

and ADF signal generation [20] fall into this category. Knowledge of the specimen 

characteristics motivates adding regularization terms to the function to be minimized. The large 

family of approaches encompassing compressed sensing [21,22] and total variation minimization 

as well as other regularization approaches [17] and approaches such as discrete tomography 
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(DART), the use of Gaussian atomic model priors [23], and methods involving dictionary 

learning [24,25] or neural network learning [26] procedures form a second category. A third 

aspect of a model-based approach, model-fitting of the spectral dimension itself splits the 

problem into several independent reconstructions (f, g, h, …) of separable spectral signatures. 

Peak fitting, fitting reference spectra, and machine learning techniques for spectral 

decomposition comprise this third category. 

Together, these conceptual approaches generalize the approach to tomographic 

reconstruction to give: 

𝑓(𝐑𝟎, 𝑧) = argmin ��𝚽�𝑓(𝐑𝟎, 𝑧) − 𝛤𝑒𝑒𝑒�
2
2 + 𝜆�𝚿�𝑓(𝐑𝟎, 𝑧)�

ℓ
�, 

where now the 𝚽�  denotes any operator transforming the object into the experimental signal 

domain and 𝚿�  denotes any operator transforming the object into a domain where some property 

of the object can be minimized. The factor λ adjusts the weight of the regularization term in the 

overall solution and ℓ highlights that different norms could be applied in this context (e.g., 

selection of the ℓ1-norm as used in compressed sensing promotes the sparsest solution in the 

transform domain defined by 𝚿� . A signal is said to be k-sparse if it contains k non-zero values.).  

 This categorization is not necessarily rigid. Refinement of tilt-series image alignments 

[23] during the reconstruction process makes use of knowledge of the specimen, as it relies on 

using the structure of the specimen for iterative corrections to the alignment, but the procedure 

could be written as modifying the forward-model term 𝚽�𝑓(𝐑𝟎, 𝑧). However, the general 

distinction of development of forward models of signal generation (𝚽� ) and specimen-structure 

models (𝚿� ) serves to emphasize these two often complementary strands emerging in electron 

tomography today, particularly as tomography methods are increasingly applied to analytical 
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signals in the electron microscope where model-based approaches become imperative for 

quantitative chemical and structural materials characterization. 

 

3. Recent progress in EELS and EDS tomography 

Recent developments of the GIF and large-area EDS detectors in both speed and 

efficiency have made EELS and EDS tomography possible, but both intrinsic problems and 

technical challenges associated with spectroscopy in the TEM present difficulties for 

tomography using EELS and EDS signals. Due to the cross-sections for inelastic electron 

scattering and X-ray generation [27], the signal-to-noise ratio for a given electron dose at the 

specimen is significantly lower in EELS and EDS than in ADF-STEM. To compensate, higher 

electron doses are often used experimentally either by increasing the beam current, increasing the 

dwell time (or exposure time in EFTEM), or some combination of both. This higher electron 

dose in turn creates several significant problems in electron tomography. The time to acquire the 

data is long, placing more stringent requirements on both chemical and mechanical stability of 

the specimen, or the specimen may change during the acquisition introducing artefacts. These 

artefacts appear as blurring or streaking in the reconstructed volume due to inconsistencies in the 

tilt-series data that break the projection requirement for a monotonic signal response (see also 

discussion in Ref. [28]). The data is often still noisier for EELS and EDS than that acquired in 

ADF-STEM, and often spectrum images are acquired at fewer tilt angles due to specimen 

stability and time constraints. Moreover, for EELS and EDS the spectrum imaging conditions for 

meeting the projection requirement are rigorously satisfied only within a narrow range of 

specimen thicknesses (and the projected specimen thickness may change significantly during a 

tilt-series acquisition), or the projection requirement is valid only for certain types of 
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spectroscopic signals (e.g., low-loss EELS signals such as surface plasmon excitations do not in 

general satisfy the projection requirement). Coherent elastic scattering effects, including electron 

channeling in atomic resolution imaging and dynamical scattering in strongly diffracting 

samples, modify the inelastic scattering signals recorded in analytical tilt-series experiments, 

introducing further deviations from linear projection-based tomography. Additionally, technical 

challenges appear in that data-sets are increasingly large in terms of computational memory 

requirements for processing, reconstruction, and visualization, and the information content is 

more challenging to interpret due to its multi-dimensionality.  

Recent progress in electron tomography using EELS and EDS signals has provided a 

number of different strategies for addressing these obstacles to quantitative analytical electron 

tomography. While these developments have so far often been applied as tailor-made solutions 

for particular materials applications or for technique demonstrations, several common themes 

suggest a generalized suite of approaches to developing quantitative tomography and for 

applying these techniques to a wider set of materials. 

 

3.1 Compressed sensing tomography 

 Compressed sensing and related TV minimization approaches have offered substantial 

advancements to electron tomography using ADF-STEM, particularly in enabling the acquisition 

of fewer projections for robust reconstructions. These reconstruction techniques find natural 

application in EELS and EDS tomography as specimen and signal-to-noise requirements often 

result in spectrum images acquired at fewer tilts and correspondingly larger tilt angle increments. 

As alluded to in Sec. 2, compressed sensing makes use of the inherent sparsity of many objects 

in one or more transform domains. For example, some objects may inherently consist of only a 
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few non-zero voxels and are therefore sparse in the image domain (identity matrix as the 

transform operator). Many objects are approximately piece-wise smooth, and are described well 

by only a few non-zero voxels in the gradient domain (TV minimization). By incorporating this 

prior knowledge, compressed sensing algorithms identify solutions consistent with the 

experimental data that also exhibit these characteristic properties of common specimen 

structures. Compressed sensing electron tomography in this form has been applied to a number 

of problems in EELS and EDS tomography, including qualitative EELS tomography of surface 

plasmons in a silver nanocube [16], combined EELS and EDS tomography of an Al-Si alloy [8], 

and three-dimensional EELS oxidation state mapping in iron oxide nanoparticles [15], see Fig. 1.  

 

Fig. 1. (a) Compressed sensing electron tomography (CS-ET) reconstruction of five surface 
plasmon modes of a silver nanocube using a wavelet transform for the sparsity domain [16]. (b) 
3D total variation (TV) voxel tomography reconstructions of EELS and EDS signals in an Al-Si 
alloy. Adapted from Ref. [8] with permission of The Royal Society of Chemistry. (c) CS-ET 
reconstruction of the EELS signatures of Fe2+ and Fe3+  using independent component analysis 
(ICA) maps as tilt-series input. Adapted with permission from Ref. [15]. Copyright 2016 
American Chemical Society. 
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 The application of compressed sensing to analytical signals must be done with care. For 

example, in the case of EELS tomography of surface plasmons the transform domain for the 

surface plasmon EELS signal was selected as a wavelet transform domain to allow for the 

continuous characteristics of the slowly decaying surface plasmon signal extending into vacuum 

from the nanoparticle surface, a signal that is not particularly sparse in the image or TV domains 

[16]. The question of the appropriate transform domain has been offered as a potential limitation 

in other applications of compressed sensing to electron tomography, such as in the case of 

biological structures whose images may not be sufficiently sparse in many of the conventionally 

applied transform domains [29].  

 A promising development in the field of compressed sensing that holds substantial 

promise for analytical tomography is the extension of the sparsifying operator to the third 

dimension. In applications of spectroscopic tomography where each spectral channel is used for 

a reconstruction [14,30] parallelization of reconstructions has often been prioritized using SIRT 

algorithms. These parallelized reconstructions rely on ‘slice-by-slice’ tomography where each 

row perpendicular to the tilt-axis in the projection image stack is handled as an independent 

reconstruction. However, if parallelization is sacrificed in favor of sparsity models that 

incorporate the sparsity of the fully three-dimensional object, arguably the true sparsity of the 

object, then reconstructions taking into account the information in the dimension running parallel 

to the tilt axis will be promoted, improving the overall self-consistency of the reconstructed 

volume. Such a three-dimensional TV approach has been applied for combined EELS and EDS 

tomography [8] and has also shown progress in ADF-STEM for improved reconstructions from 

data suffering artefacts due to diffraction contrast and wide tilt angle increments [28]. This 
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approach, particularly in combination with signal dimension reduction approaches such as 

machine learning techniques or peak fitting, offers a complementary strategy to massively 

parallel independent reconstructions which may otherwise be noise-limited. Other potential 

developments of interest to analytical electron tomography have arisen in the combination of TV 

minimization and DART [31] which may enable high quality reconstructions of materials 

consisting of a few discrete chemical phases. While not necessarily always the best choice for a 

particular tomography problem, compressed sensing techniques hold significant promise for 

improving analytical electron tomography using limited projections.  

 

3.2 EELS tomography 

Electron tomography with EELS signals was originally developed in the context of 

energy-filtered TEM (EFTEM) for tomography [4,5]. Recent developments in EELS tomography 

have emerged in two principle directions: (1) tomography using low energy signals such as those 

arising from surface plasmon excitations in low-loss EELS of metal nanoparticles and in 

cathodoluminescence (CL) spectroscopy and (2) tomography using core-loss EELS with 

increased focus on the near edge fine structure for valency and chemical phase mapping 

available at moderate to high spectral energy resolution. The increased experimental energy 

resolution at low- and high-energy losses can be directly linked to improvements in the GIF and 

related spectrometers, both in energy resolution and acquisition speed, as well as a drive for high 

resolution monochromators for the incident electron probe. Efforts were previously largely 

focused on EFTEM tomography using low-energy losses at bulk plasmon energies, particularly 

as a means of achieving chemical contrast with short exposure times [32–35]. And while a 

variety of low-loss signals have been explored through EELS studies in general, the low-loss 
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spectral range is rich with opportunities for further tomographic EELS studies. Core-loss EELS 

tomography is a natural extension of elemental and chemical phase mapping in EFTEM, but 

presents distinct challenges for data pre-processing and reconstruction. Core-loss EELS 

tomography is a natural extension of elemental mapping in EFTEM, but presents distinct 

challenges for data pre-processing and reconstruction. Tomography using low energy signals like 

surface plasmon EELS and CL raises entirely new questions about meeting the projection 

requirement for tomography. 

Initial work in EELS tomography of surface plasmons successfully applied a projection-

based approach to reconstruction of the major surface plasmon modes of a silver nanocube [16]. 

The integral determining the EELS signal for a given trajectory includes a complex exponential 

factor due to the frequency-domain properties of the incident electron beam. This complex 

exponential approaches unity for small arguments, approximating a line integral projection. 

However, this projection-based method relies on a set of approximations of the surface plasmon 

EELS signal which, while suitably satisfied in the case of the nanocube, are unlikely to hold 

generally. A similar linear projection-based reconstruction was subsequently applied using a 

multi-particle approach rather than a tilt-series protocol for CL tomography of gold plasmonic 

crescents [19], see Fig. 2(a). A further projection-based approach has also been reported on 

dimer particle structures [18]. For quantitative EELS excitations of surface plasmons, the non-

linear details of the signal generation mechanism should be taken into account. Moreover, in 

terms of a useful signal for understanding optical properties, the EELS signal does not directly 

record the essential information for optical characterization. In the loss function formalism, 

EELS signals are related to the complex dielectric constant of a material, but such approaches 

require additional processing steps such as carefully considered Kramers-Kronig analysis and 
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complete modelling of surface and relativistic effects [36]. Accessing the underlying information 

about the specimen that is of particular relevance to understanding the property of interest needs 

to be the aim of the tomography experiment. 

Using theoretical developments for modelling the EELS signal of surface plasmons, Hörl 

et al. proposed two alternative approaches to EELS tomography of surface plasmons [37,38]. 

Both of these approaches rely on a model-based reconstruction method, incorporating detailed, 

and critically non-linear, forward models of signal generation for comparison with experimental 

data. In the first approach, the forward model consists of an eigenmode description of the surface 

plasmon EELS signal which reduces the forward model to an integral over surface charges 

distributed across the two-dimensional boundary of the particle [37] in contrast to line integrals 

through the particle volume. Iterative equation solvers can then be applied to refine the surface 

charges. An alternative method with fewer approximations limiting applicable particle sizes was 

proposed using a function basis set to further model the response of the particle, likewise making 

use of iterative refinements to match experimental data [38], see Fig. 2(b). Similar theoretical 

developments in CL of surface plasmons suggest these tomographic approaches could be 

extended to CL [39]. 

 The first approach derived from an eigenmode decomposition of the EELS signal has 

been realized in the experimental case of a silver right bipyramid [17], see Fig. 2(c). In the case 

of the silver right bipyramid reconstructions, surface charges were reconstructed giving a 

quantitative signal recovered during tomographic reconstruction for simulating the optical 

response characteristics of the bipyramid particle for any plane wave or other incident 

electromagnetic excitation. An additional regularization term incorporating prior knowledge of 

the distribution of surface charge magnitudes in the bipyramid surface plasmons was also shown 
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to improve reconstructions in the context of noisy experimental signals. These developments 

illustrate progress in the use of forward-models of signal generation and the incorporation of 

prior knowledge of properties of the signal undergoing reconstruction. 

Fig. 2. (a) Cathodoluminescence tomography of surface plasmon modes of gold nanocrescents. 
Adapted by permission from Macmillan Publishers Ltd: Nature Nanotechnology Ref. [19], 
copyright 2016. (b) A proposed EELS reconstruction approach for tomography of the photonic 
LDOS [38]. (c) Simulated and experimentally reconstructed surface plasmon eigenmodes of a 
silver right bipyramid using combined CS ADF-STEM tomography and a regularized non-linear 
EELS reconstruction algorithm [17]. 
 

The issues raised in surface plasmon EELS tomography and some of the means of 

addressing them also suggest further opportunities for development of other low-loss EELS 

signals for tomography. Three-dimensional measurements of band gaps and interband 

transitions, excitons, and other low-energy signals will provide new insight into the physical 

properties of specimens. Many of these low-loss signals are emerging as areas of active 

exploration in two-dimensional analyses by EELS with the use of new electron beam 
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monochromators [40,41]. Further developments in EELS at infrared energies may also offer new 

signals, though issues of signal localization will be critical for examining any application to 

tomography [42].  Complementary research in CL of semiconductors [43] and single-photon 

emitters [44] have also broadened  the frontiers of spectroscopy in the TEM. Each of these 

applications may require consideration of the information sought for recovery in a tomographic 

reconstruction and of the forward models needed to replicate the signal generation from the 

physical properties of interest, but these measurements offer a wealth of new opportunities for 

quantitative measurement of physical properties of nanoscale volumes. 

Core-loss EELS tomography has also seen recent progress in revealing detailed chemical 

information from a variety of materials from catalyst materials [13–15] to organic polymer 

blends [30]. Several new thrusts in EELS tomography research have been based around new 

reconstruction algorithms, including massively parallelized GPU-accelerated reconstructions 

[14] and three-dimensional TV minimization strategies [8], as well as in the advancement of data 

pre-processing strategies. Data pre-processing methods for noise reduction and dimensionality 

reduction of the spectrum image tilt-series data, while preserving the spectral features of interest, 

is a common feature in low-loss and core-loss EELS. It is possible to perform ‘voxel-

spectroscopy’ [8,14] where the EELS signal is reconstructed in three spatial dimensions at every 

energy channel, but this approach requires sufficiently high-quality signal at every energy 

channel. Noisy spectral data may introduce artefacts in tomographic reconstructions which 

complicate post-processing. At the opposite extreme, using elemental maps based on 

background-subtracted ionization edge intensities, the STEM-EELS analog of EFTEM 

tomography, very little information other than the elemental composition can be extracted. Peak 

fitting and machine learning approaches offer a middle-ground that has the potential to embed 
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chemical phase analysis and chemical composition quantification simultaneously. In specimens 

that contain a variety of phases with shared elemental constituents, the information of interest is 

in fact the composition and properties of separate phases. By grouping EELS signals using a 

model-fitting technique like peak fitting, fitting of reference spectra, or machine learning, the 

tomographic reconstruction is simplified into a small number of reconstructions matching the 

number of chemical phases rather than the number of energy channels. Moreover, the desired 

information of chemical speciation is contained within the reconstruction from data with noise 

substantially lower than the noise present in the originally acquired data. 

Model-based approaches in data pre-processing can take a number of different forms. 

Perhaps in its simplest incarnation, principal component analysis (PCA) can be used for noise-

reduction prior to elemental map-based reconstructions [13]. Alternatively, any number of 

machine learning decomposition strategies can be applied to EELS data to generate component 

maps, plots of the intensity of particular spectral signal components at each pixel in the image. 

PCA has been used to directly extract chemical phase-specific information in organic solar cell 

mixtures to determine suitable energy-windows in EFTEM tomography [45]. Non-negative 

matrix factorization (NMF) was applied on the entire tilt-series spectrum image data-set in 

surface plasmon EELS tomography experiments to extract tilt-series maps of separable surface 

plasmon modes [16,17]. Independent component analysis (ICA) of core-loss EELS has also been 

applied to extract component maps corresponding to different valency states in iron oxide 

nanoparticles for tomography [15]. These machine learning algorithms extract useful chemical 

information with reduced noise as input for tomography. One of their shortcomings, however, is 

the quantitative physical interpretation of spatial map intensities. In principle, peak fitting or 

fitting of reference spectra presents an alternative strategy, but multi-dimensional peak fitting is 
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not a trivial task in the context of experimental noise and the many data-points in a spectrum 

image tilt-series. Peak fitting approaches also require a great deal of prior knowledge of the 

chemical composition of the specimen. Further progress in validating the physical interpretation 

of machine learning results and the development of peak fitting strategies for such data-sets will 

foster wider application of these methods. 

In the core-loss EELS tomography examples presented here, the forward model for signal 

generation has generally been a linear projection model. The use of non-linear models in low-

loss EELS suggests similar approaches might be used in core-loss EELS tomography as well. 

The motivation for using non-linear forward models lies in the fact that EELS through volumes 

is not strictly a projection, particularly at core-loss energies. Inelastic scattering consists of the 

single scattering distribution as well as plural scattering contributions which may be expressed as 

a convolution with the low-loss EELS signal. EELS tomography necessarily examines specimens 

with information of interest located in the volume of the specimen and is of primary interest in 

specimens with mixed chemical composition. Consequently, thickness-dependent plural 

scattering must be accounted for in generalized, quantitative EELS tomography. One approach 

may lie in recovering the single-scattering distribution during data pre-processing through 

deconvolution steps, possibly making use of simultaneously recorded low-loss and core-loss 

spectra (“dualEELS”). Alternatively, forward models that account for plural scattering effects 

may make better use of the total data-set during the reconstruction. The success of machine 

learning techniques suggests that there are substantial benefits to be gained from the redundancy 

of information present in spectrum image data-sets, particularly in cases of tilt-series data-sets. 

Model-based pre-processing and forward models that incorporate plural scattering effects offer 

new approaches that take full advantage of the available EELS data. As the trend toward using 
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fewer projections continues, it will become increasingly imperative that all available signals are 

used as efficiently as possible in EELS tomography. 

 

3.3 EDS tomography 

Early work in EDS tomography identified severe limitations in tilt-range and signal-to-

noise with Si(Li) detectors [46]. More recently, the prospects for EDS tomography have been 

revolutionized by the development of large-area silicon drift detectors (SDDs) for STEM-EDS. 

Current-generation SDD systems typically place multiple detectors in the TEM pole-piece gap 

for much higher X-ray collection rates than previously achievable with Si(Li) detectors and an 

overall substantial increase in solid angle subtended by the multiple detectors. Qualitative EDS 

tomography results have been reported with these systems including work on mixed-metal 

nanoparticles [9,10] and Ni-based superalloys [12]. However, detector shadowing [47,48] and X-

ray absorption [11,49,50] effects have emerged as two key challenges requiring various 

corrections for quantitative EDS tomography. Shadowing can in principle be avoided completely 

by using a needle-shaped specimen as prepared by FIB milling [12], see Fig. 3(a), but such 

preparation is not a viable approach for all specimens.  

One approach has been to measure as much as possible about the particular experimental 

configuration [47], akin to the requirements for quantitative STEM aimed at assessing the 

significance of the many parameters contributing to an atomic-resolution ADF image. In this 

approach to EDS, detailed analysis of the holder and detector geometry can be used to assess 

shadowing as a function of tilt angle. However, as in quantitative STEM imaging, models with 

only a few parameters that incorporate the most significant contributing factors are attractive for 

widespread application of corrections for detector shadowing [48] or X-ray absorption [49]. 
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Absorption corrections have been proposed within both the Cliff-Lorimer [50] and the ζ-

factor [49] approaches. In fact, absorption effects appear in both models in the same form [11]. It 

has been proposed that the ζ-factor approach enables the incorporation of both shadowing and 

absorption effects for a particular experimental system [49] when the ζ-factors are determined by 

for the same system using single element reference specimens measured by ADF tomography 

[51]. In this approach, absorption corrections are applied to individual EDS maps at each tilt 

angle. Consequently, ADF data must be used to supplement the EDS maps to incorporate 

thickness information at each tilt [49]. This method presents an efficient multi-modal approach to 

using available EDS and ADF-STEM data. However, these absorption corrections cannot 

account for the path-dependent absorption effects from within the volume unless the chemical 

phase distribution is determined already, e.g. from ADF-STEM tomography. A more 

comprehensive approach has been developed to iteratively adjust absorption corrections using 

the intermediate tomogram to correct for the path-dependent absorption of X-rays reaching a 

particular detector [11], see Fig. 3(b). With more constrained prior information on the structure 

of the specimen, it is even possible to use a highly limited number of tilt angles and fit EDS data, 

including measured ζ-factors, to a structural-chemical model [52], see Fig. 3(c). There is almost 

certainly always a trade-off in these approaches between constraining the reconstruction with a 

rigid model, allowing for the use of very few tilt angles, and reducing the prior information but 

consequently requiring more experimental data to perform the reconstruction.  

In any case, it is clear that quantitative EDS tomography will require corrections for 

absorption and detector shadowing effects either in data pre-processing or during the 

tomographic reconstruction procedure. Additional effects such as X-ray fluorescence may also 

become more prominent in thicker specimens. Machine learning techniques will likely continue 
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to play a significant role in EDS data handling, as in EELS tomography, and have already shown 

substantial results in two- [53] and three-dimensional [12] EDS of complex materials. 

 

Fig. 3. (a) EDS tomography of the γ’ strengthening phase of a Ni-based superalloy using ICA 
decomposition techniques for pre-processing and ellipsoid fitting for post-processing [12]. (b) 
EDS tomography of carbon and oxygen in a multi-element core-shell nanowire using (left) a 
conventional reconstruction approach and (right) an iterative model-based approach to 
absorption correction [11]. (c) A structural model-based approach to 3D EDS quantification of 
core-shell semiconductor nanowires from limited projection data using ζ-factor absorption 
correction methods. Adapted with permission from Ref. [52]. Copyright 2016 American 
Chemical Society.  
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4. Challenges and future prospects 

The goal of EELS and EDS tomography ultimately lies in achieving precise, quantitative 

measurements of chemical and physical properties of nanoscale volumes. Tomography presents 

particular opportunities as well as obstacles to quantitative spectral analysis. Model-based 

tomographic approaches can enable the extraction of new or improved spectroscopic 

measurements in comparison to two-dimensional measurements alone: surface charge 

reconstructions of plasmonic excitations [17] and ζ-factor determination from ADF tomography 

[51] both use tomography and analytical signals to advance spectral analysis questions in 

addition to three-dimensional signal recovery. However, EELS and EDS tomography results for 

quantification are also plagued by artefacts in reconstructed volumes. Grey-levels with 

significant intensity outside of the specimen structure may appear in reconstructed volumes due 

to the limited number of tilt-angles, mis-alignments in the tilt-series, changes in the specimen 

over the course of the data acquisition, or noise in the experimental data. These non-physical 

grey-levels still contribute to the match between experimental data and re-projections of the 

volume, but are not accounted for in individual ‘voxel spectra’ or voxel composition data in 

elemental reconstructions. In these cases, there will be a certain amount of information that has 

been smeared throughout the reconstruction volume, resulting in ‘missing’ intensity in the sub-

volume of the reconstructed object relative to the re-projected tilt-series (and the corresponding 

original data). Spectral model-fitting may avoid these issues because any quantification can be 

achieved separately on the spectral components of the model and the reconstruction operates 

only on the spatial distribution of a particular component. 
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Model-based approaches present their own challenges, however. Key issues include (a) 

avoiding designs that determine too many model parameters from insufficient data, (b) 

determining the optimal regularization parameters, number of model components, and number of 

iterations, (c) identifying appropriate initializations for iterative algorithms, and (d) finding the 

best match for sampling and sensing schemes during an experiment. Validation and testing with 

phantom data-sets may provide some guide to these questions, but in some cases additional 

theoretical developments in compressed sensing and related sampling theories will be required to 

provide a robust foundation for experimental choices.  

Computational requirements for increasingly complex models for signal generation and 

for increasingly large data-sets, in terms of spectral channel depth and image size at each tilt 

angle, are likewise growing. New approaches such as three-dimensional regularization in 

compressed sensing also require larger amounts of memory for each reconstruction. While 

hardware needs may be surmountable, efficient software will become an increasingly vital part 

of EELS and EDS tomography. Efficient algorithm implementations that are portable across 

platforms and accessible to users worldwide will likely reap the most benefit. Open source 

projects like the Astra Toolbox [54] for tomography and Hyperspy [55] for EELS and EDS 

processing are key examples advancing this research area. 

Experimentally, advances in instrumentation will continue to have a crucial role in 

moving the frontiers of EELS and EDS tomography. Electron beam monochromators and fast-

acquisition GIF and SDD technologies for EELS and EDS, respectively, have substantially 

enabled progress. New monochromator designs by Nion are opening further possibilities in 

vibrational EELS and core-loss spectroscopy at high energy and spatial resolution. The limited 

flexibility of acquisition software and the underlying hardware platforms, however, remains a 
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significant obstacle for exploring new experimental possibilities for analytical tomography. Free 

control of beam scanning and blanking, independent read-out of multiple EDS detectors, and 

moving from CCDs to low-noise direct electron detectors, among other developments, will 

enable the next set of advances in this burgeoning field.  

Analytical electron tomography will also grow with application of these techniques to 

new materials and new signals. Low-energy signals below 50 eV in EELS offer a wealth of 

information on chemical and physical properties, but are often used only to remove plural 

scattering from core-loss spectra. These EELS signals are in many cases sufficiently intense to 

acquire at or near ADF-STEM imaging rates, offering new prospects for tomographic chemical 

analysis. Additional signals like CL spectroscopy as well as the use of spectroscopic signals in 

tandem with scanning diffraction data will offer new materials insights into chemical, optical, 

and crystallographic microstructure. Comparative measurements with other techniques like atom 

probe tomography merit further study for improved quantification and cross-validation of 

microanalysis results. Radiation-sensitive materials, conventionally deemed inaccessible to the 

high beam currents or long exposure times required for analytical tomography, are becoming 

accessible through careful experimental design and dose-rationing enabled by model-based 

approaches. In addition to compressed sensing and similar approaches to tomography which may 

reduce the total dose required for a satisfactory reconstruction by reducing the number of 

projections, machine learning approaches which reduce the required dose rate by enabling the 

use of signals with higher noise levels or machine learning approaches which enable 

reconstruction of time-dependent sample changes throughout a tilt-series due to electron beam-

induced damage promise to substantially reduce dose requirements for analytical electron 

tomography. 
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5. Summary and Outlook 

Recent progress in EELS and EDS tomography has advanced three-dimensional chemical 

imaging at high spatial resolution in a variety of exciting new directions. More than simply 

elemental mapping, EELS tomography is now demonstrating the possibility of mapping physical 

and chemical behaviour through nanoscale mapping of optical properties to valence states with 

nanometer resolution. EDS tomography has also progressed to the point where quantitative 

three-dimensional elemental X-ray mapping is possible in the STEM. These advances open new 

questions for developing improved models, models for signal generation, models for 

incorporating prior knowledge for physical reconstructions, and models for spectral processing. 

Theoretical and algorithmic developments alongside further progress in spectrometer and 

microscope technologies will pave the way for making possible new, precise measurements of 

nanoscale three-dimensional chemistry and physics. 
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