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Abstract—A novel approach is presented for fast generation of 

synthetic seismograms due to microseismic events, using 
heterogeneous marine velocity models. The partial differential 
equations (PDEs) for the 3D elastic wave equation have been 
numerically solved using the Fourier domain pseudo-spectral 
method which is parallelizable on the graphics processing unit 
(GPU) cards, thus making it faster compared to traditional CPU 
based computing platforms. Due to computationally expensive 
forward simulation of large geological models, several 
combinations of individual synthetic seismic traces are used for 
specified microseismic event locations, in order to simulate the 
effect of realistic microseismic activity patterns in the subsurface. 
We here explore the patterns generated by few hundreds of 
microseismic events with different source mechanisms using 
various combinations, both in event amplitudes and origin times, 
using the simulated pressure and three component particle 
velocity fields via 1D, 2D and 3D seismic visualizations. 
 

Index Terms—Elastic wave equation, GPU computing, marine 
velocity model, microseimic event simulation, seismogram  

I. INTRODUCTION 

ONITORING of microseismic events is a growing 
area of research in computational geosciences that aims 

to determine spatial and temporal localization of small 
amplitude seismic events in the subsurface from the acoustic 
waves recorded by the geophones from the earth surface [1]. 
In a marine environment [2], the seismic traces recorded by 
the four component acoustic sensors (i.e. hydrophone 
measuring water pressure and tri-axial geophone measuring 
seabed vibration or three component particle velocity) are 
used to monitor the spontaneous seismic activity in the 
subsurface during and after hydrocarbon production and are 
often used for interpretation of the changing geological 
characteristics. In order to detect these sources reliably, the 
forward simulations, given an accurate heterogeneous velocity 
model of the geographic location, is a necessary step to 
understand the statistical characteristics of the wave-fields 
generated by the microseismic events. The forward simulation 
to generate synthetic seismic traces is quite challenging due to 
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the heavy computational burden of solving elastic wave 
equation on a large number of grid points. Zhao et al. [3] have 
introduced a diffusive viscous wave equation with finite 
difference scheme on a 2D spatial model for simulation of 
synthetic seismograms. Sahimi and Allaei [4] introduced 
various heterogeneity correlation functions and compares the 
computational issues for solving the acoustic wave equation 
using finite difference, finite element and pseudo-spectral 
methods, highlighting the clear advantage of the latter. 
Synthetic seismogram generation for a 2D model has been 
shown in Phadke et al. [5], using an explicit finite difference 
predictor corrector scheme, parallelized with message passing 
interface (MPI) over multiple processors. Contrary to the real 
space methods, early developments in the Fourier domain 
solution of elastic wave equation can also be found in [6], [7] 
for the 2D and 3D models respectively. 

The recent advent of GPU enabled numerical algorithms for 
solving PDEs on heterogeneous medium has revolutionized 
massive scalability of large 3D computational models that was 
infeasible, even few years ago. A detailed comparison of 
computational performance on different GPU hardware has 
been reported in Nickolls and Dally [8]. The GPU scalability 
of high level mathematical algorithms e.g. parallel Matlab 
codes as a popular and flexible choice of data analysis 
platform has been discussed in [9]–[12] along with various 
means to achieve it. Zhang et al. [13] compares the three most 
popular GPU computing tools in Matlab platform viz. parallel 
computing toolbox (PCT), Jacket and GPUmat, whereas 
performance comparison on various benchmark GPU 
computing problems have been reported in Shei et al. [14].  

Wave propagation models have been implemented on GPUs 
with different discretization schemes e.g. finite difference 
[15][16][17][18], finite element [19][20][21][22], spectral 
element [23][24], discontinuous Galerkin method [25][26], 
and on multi-GPU clusters [27][28][29][30]. Computational 
efficiency of such models are compared on three different 
NVIDIA GPUs (C1060, C2050, M2090) in Zhou et al. [31] 
and in different size of models in Danek [32]. Traditionally for 
fast synthetic seismogram generation approximation methods 
like raytracing are widely used, but studying the source 
mechanism of the microseismic activity along with their 
position and origin time need accurate but computationally 
efficient forward simulation of the pressure and particle 
velocity fields, using the 3D heterogeneous models. Therefore 
solving full viscoelastic PDE is often a requirement compared 
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to the approximation methods, which leads to a massive 
computationally demanding step in terms of computing 
hardware, memory management, data processing and storage. 

In this paper, starting from heterogeneous velocity models 
(specified by the density, primary (P) and secondary (S) 
soundwave velocities at each grid point), we generate a few 
hundreds of synthetic seismograms, as an effect of simulated 
microseismic activity at speculative locations in the 
subsurface. Then these seismograms are scaled by random 
amplitudes and translated for random origin times, followed 
by superposition of them, in order to simulate a realistic effect 
of microseismic activity, as observed in the receivers placed at 
the sea floor. Our numerical computation makes use of GPU 
enabled fast PDE solver for elastic wave equation, thus 
accelerating the simulations in a relatively cheaper way than 
the corresponding CPU versions. 

The rest of the paper is organized as follows. Section II 
introduces the solution of elastic wave equations using 
heterogeneous velocity models. Section III reports the GPU 
computing performance for hundreds of sources and visualizes 
the synthetic seismograms as 1D, 2D, 3D images. Section IV 
shows combining these separately simulated seismograms 
with different amplitude, origin time, in order to generate 
realistic microseismic activity patterns. Events with different 
source mechanisms have been explored in section V. Cluster 
of events with various source mechanism have been shown in 
VI.  The paper ends with the discussion, conclusion, and 
future scope of research in Section VII. 

II. MATERIALS AND METHODS 

A. Solving the Elastic Wave Equation on GPUs for Fast 
Synthetic Seismic Trace Generation  

We use here the elastic wave equation solver k-Wave [33], 
for the numerical solution using a given 3D heterogeneous 
model. The sensors and sources can be modelled with an 
arbitrary geometry and the simulations can be run faster on 
GPUs with single precision (32-bit representation) [34], [35]. 
The governing equations of the stress-strain relation for the 
propagation of compressional and shear (P and S) waves are 
given by the following equation (1) which is known as the 
Kelvin-Voigt model for viscoelastic materials 

 2 2 ijkk
ij ij kk ij ij
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∂ ∂
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This extends the theory of Hooke’s law and conservation of 
momentum for an elastic medium to the viscoelastic case with 
absorption. The stress/strain tensors{ },σ ε are related to the 

particle velocity ( iv ) and material density (ρ ) by (2) (in 

Einstein Tensor notation) with ijδ being the Kronecker delta.  

22 2

,

1
.

ij j jk i k i
ij ij

k j i k j i

iji

j

v vv v v v

t x x x x t x t x t

v

t x

σ
λδ µ χδ η

σ
ρ

  ∂ ∂ ∂∂ ∂ ∂ ∂
= + + + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂∂
=

∂ ∂
                        (2) 

The three component particle velocity (iv ) can also be 

recorded from the waves at specified sensor locations within 
the computational domain. The acoustic pressure (p) can then 
be derived from the stress tensor, using equation (3)  

 ( ) 3 3ii xx yy zzp σ σ σ σ= − = − + + .  (3) 

Here,{ },χ η are the compressional and shear viscosity 

coefficients and{ },λ µ are the Lame parameters which are 

related to the compressional and shear sound speed of the 

material { },p sc c and density (ρ ) through (4) 

 ( )2 2 , 2s pc cµ ρ λ µ ρ= + = .  (4) 

Here, we have considered a lossless medium which can also 
be considered as frequency dependent absorption terms 
relating the sound velocity, density and the two viscosity 
terms{ },χ η . In most of the geophysical simulation studies, 

the heterogeneous sound velocity and density model (together 
called the velocity model) are used for solving the forward 
problem of acoustic/elastic wave propagation through a 
viscoelastic medium [5], [3]. For the simulation of only the 
elastic case like in [6], [7], the viscous damping terms { },χ η  

in (1)-(2) can be set to zero. The k-Wave solver reads the 

velocity model { }, ,p sc c ρ  as a 3D array (specified in each 

grid point) of the computational domain and uses a Fourier 
domain pseudo-spectral method for solving spatial derivatives 
in the coupled PDEs in (2) and a leapfrog finite-difference 
scheme for time marching (with a spatial and temporal 
staggered grid arrangement) as detailed in Treeby et al. [33]–
[35]. The pseudo-spectral method for computing spatial 
derivatives through fast Fourier transforms (FFTs) and its 
inverse (IFFT) makes the k-Wave solver computationally 
efficient and parallelizable over GPUs. The GPU 
parallelization of k-Wave solver transforms the 3D arrays in a 
custom datatype called gpuArray through Matlab’s PCT, 
while performing the computation on single/double datatype 
objects in CUDA enabled NVIDIA GPUs. After the 
computation, the distributed arrays can be retrieved from 
multiple GPU cores using the gather function of PCT. Usually 
this method helps in getting sufficient scale up of the 
achievable computational performance using high level 
Matlab codes, containing several intricate mathematical 
functions, without retranslating the whole PDE solver as 
custom CUDA kernels [11]. The k-Wave solver also makes 
efficient use of the fast custom function bsxfun of PCT for 
elementwise binary operations for GPU computing, leveraging 
optimized libraries like FFT/IFFT [35] for spatial gradient 
calculation in the wavenumber domain. Although in certain 
benchmark cases Matlab simulation of elastic PDEs may be 
slower, however linear operations are sufficiently fast in 
Matlab’s PCT on GPU nodes, because of the underlying high-
performance libraries like BLAS, LAPACK, FFTW etc. [12] 
which the present method leverages on while also reducing 
code customization and development time. The k-Wave solver 
has been previously used in large (few km) scale 2D 
geophysical modelling for generating seismic data with visco-
elastic wave propagation as reported in Guo et al. [36] where 
the difference with other similar seismic wave propagators 
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have been shown to be negligibly small. This supports using 
k-Wave solver as a viable option for synthetic seismic data 
generation using GPUs. 

Similar 3D PDE problems with traditional finite difference 
discretization schemes (even with an MPI parallelization over 
multiple cores) struggle for computational speed in a 3D 
heterogeneous forward model simulation using the elastic 
wave equation as in [5], [37]. The elastic wave equation based 
seismic trace generation using various combinations of 
moment tensors have been discussed in Li et al. [38], although 
the computational issues on a large number (generally few 
millions) of grid points have not been clearly addressed. In the 
present paper, we show a systematic methodology in which 
starting from fast forward model simulation with individual 
seismic sources (involving various elements of the stress 
tensor), at speculative locations of a heterogeneous marine 
geological model, one can simulate microseismic activity with 
multiple sources which is also scalable on larger geophysical 
models through state of the art GPU computing techniques. 

Here the microseismic sources are modelled as delta 
functions at specified grid points. However, the simulation 
with discrete spatial delta functions may lead to oscillations in 
time domain due to the use of Fourier-domain pseudo-spectral 
method of calculating spatial derivatives as discussed in [35]. 
To avoid this, a smoothing operation on the initial pressure or 
stress distribution is carried out using a Blackman window in 
the spatial frequency domain in order to reduce higher spatial 
frequencies. This is equivalent to setting a smoothed delta 
function or input source wavelet in reflectivity function based 
seismogram calculation for layered earth model through the 
convolution operator [39]. However, smoothing function of 
the source in the k-Wave solver can be modified like Hanning, 
Blackman or some other windows as discussed in [35]. The 
effect of visco-elastic medium has also been reduced to an 
elastic case only, for the present geophysics modelling. 

B. Heterogeneous Velocity Models and Simulation Settings 

Another important issue to worth considering is the 
numerical stability of the PDE solving scheme during the 
discretization which is usually given by the Courant-
Fredrichs-Lewy (CFL) number, given by (5) in 1D.  
 maxCFL c t x= ∆ ∆   (5)  

Apart from stability, the CFL number controls the minimum 
required temporal step-size to accurately integrate the PDE, 
given the spatial step-size and is therefore limited by the 
maximum sound speedmaxc along each direction. A small CFL 

(= 0.3 as suggested in [35]) would produce more accurate 
results at the cost of more computational burden and increased 
data storage. At the edges of the computational domains, 10 
grid points were reserved to impose an absorbing boundary 
condition [40], through a perfectly matched layer (PML) to 
avoid reappearance of the waves leaving one side to the other 
due to the use of FFT in spatial (wavenumber) domain. Here 
we explore two 3D heterogeneous velocity models, both 
having the same size [41], as shown in Figure 1, the latter 
having more complex geometric structure, along the lateral 
direction. For both the models, the density (ρ) and P/S sound 
velocities (cp, cs) are specified in kg/m3 and m/sec respectively, 
while strengths of the point sources (compressive or shear 

stress) are specified in Pascal. The measurements at the 
sensors as a solution of the PDE (2) are also in Pascal for the 
pressure field and m/sec for three particle velocity fields. 

 
Figure 1: Two heterogeneous velocity models, comprising of the density (ρ), 
P-wave and S-wave velocity (cp, cs) at each grid point. 
 

The simulations were run on a 3D domain of Nx×Ny×Nz = 
125×75×301 ≈  2.8219×106 grid points where the grid spacing 
in the three directions are given by 

12.5, 12.5, 10x y z∆ = ∆ = ∆ = m. Therefore the physical 

dimension of the geological model is 1.550×0.925×3 km3. The 
idea here is to simulate synthetic seismic traces with sources 
lying at random positions in the rock volume, while the 4 
component seismic sensors are placed at the sea floor. For 
both the velocity models, the location of the sensors are in 
every grid point (Nx×Ny = 125×75 = 9375 in total) at a fixed 
depth of z = 244. This is intuitively shown in Figure 2 by a 
scan through the two orthogonal central lines (Nx/2 and Ny/2), 
indicating that the sensors are located where the shear 
velocities just become zero. This signifies the interface 
between the rock volume and the sea bed in a marine 
environment. In both the velocity models, above the sensors, 
the remaining 56 grid points essentially model the effect of 
water column in the sea on top of the solid rock volume. 

 
Figure 2: Sensor placement in the two velocity models at the grid point where 
the shear velocity just becomes zero (z = 244).  
 

Following (5), given the spatial resolution and CFL = 0.3, 
the temporal resolution of the PDE is calculated as 0.5 msec. 
Also, the maximum and minimum time required by the sound 
wave to travel along z-direction from the farthest end of the 
model (z = 1) to the ocean bottom (z = 244) are calculated 
using the maximum and average sound velocity as 0.54 sec 
and 0.81 sec respectively. Therefore to ensure both numerical 
stability of the PDE solving scheme as well as capturing the 
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information of the seismic waves due to a single explosive 
point source, even at the most distant location from the sensor, 
solving the elastic wave equation with a sampling time of Ts = 
0.0005 sec and a fixed time interval T = 1 sec are sufficient.  

III.  RESULTS OF SEISMIC TRACE SIMULATION ON GPUS 

A. Computational Performance on Two Different GPU Cards  

Using the velocity model presented in the previous section 
with receivers placed at the sea floor, next we aim to activate 
pressure sources at speculative locations in the rock volume (z 
< 244 for any x, y location within the problem domain). We 
have used the Latin hypercube (LH) sampling to draw random 
source locations from the rock volume with unit strength (1 
Pascal). The LH sampling explores maximum spatial volume 
covering maximum number of rows/columns in each 
dimension with a minimum number of samples and has been a 
popular choice in the field of geostatistics [42]. For both the 
heterogeneous velocity models, 2000 LH samples were drawn 
as possible source locations and also to compare the 
computational performances on two different GPU cards - 
Tesla C2075 and Tesla K20 as shown in Figure 3. 

 
Figure 3: LH sample source locations in microseismic simulation on 2 GPUs. 

 
Figure 4: Distribution of computational time on two GPU cards – Tesla 
C2075, Tesla K20 and K20 GPU cluster with 10 simultaneous batches. 

 
For the same forward simulation problem with a size of 2.8 

million grid points, the CPU time (on a 64 bit Windows 
desktop PC with 16 GB memory and Intel I5, 3.3 GHz 
processor) for elastic wave equation solving takes 15 hours 41 
mins for a single source position. Therefore for 2000 random 
source locations, the estimated CPU time would be 31367 
hours ≈ 3.58 years which seems computationally infeasible. 
The same problem has been run on two different GPU cards 
viz. Tesla C2075 (with 5.5 GB memory, 1.1 GHz processor 
clock rate) and Tesla K20 (4.9 GB memory, 0.7 GHz 

processor clock rate). This makes the forward simulation ~27 
times and ~43 times faster respectively as shown from the 
distribution of the computational time for the two GPU cards 
in Figure 4. Also there is data explosion in the forward seismic 
simulation process for integrating the PDE with a smaller time 
step. Each data file for single shot simulations, containing the 
acoustic pressure and three component particle velocity fields 
with a sampling time of Ts = 0.5 msec in the 32-bit (single) 
precision occupies 262 MB memory per source on an average, 
totaling 524 GB for each of the velocity models. 

For simulation using the velocity model 1, the computations 
were carried out in two GPU cards – K20 and C2075 in 
batches of 1000 sources, whereas for the velocity model 2, the 
Wilkes GPU cluster at the University of Cambridge has been 
used with batches assigned on 10 GPU cards simultaneously 
and the simulations have been parallelized for independent 
source locations with the same velocity model. The 
distribution of computational time for these three settings are 
compared in Figure 4. The single K20/C2075 GPU 
simulations were run in interactive mode of Matlab which is 
slightly slower, whereas the GPU cluster simulations were run 
in non-interactive batch mode which may have caused thinner 
runtime distribution than the former cases as in Figure 4. 

The size of the velocity model has been chosen in such a 
way so that it matches a realistic computation time over a total 
simulation timeframe of T = 1 sec, with a sampling time of Ts 
= 0.5 msec, using both the Tesla K20 and Tesla C2075 GPUs. 
For simulation of larger velocity models, the problem domain 
can be divided in full depth (z = 1 to 301 grid points) but 
reduced x and y-direction length and solved separately, as the 
rock layer properties normally change more rapidly along the 
z-direction compared to the x and y-direction. As revealed 
from Figure 4, the total time for 1000 samples of forward 
simulation is ~15 GPU days on Tesla K20 and ~25 GPU days 
on Tesla C2075, whereas on the K20 cluster with 10 parallel 
batches the total computation time is ~14 GPU days. 

 
Figure 5: Scaling of simulation time and memory usage with increasing model 
size (grid point along a single axis) on two different GPUs. Model size N 
represents a volume of N3 grid points each with specified material properties. 
 

Scaling of the forward simulation is also an important 
parameter on different GPUs and we here use a cubic model of 
size 3N where x y zN N N N= = = . Both the computational 

time and memory usage are shown in Figure 5, as a function 
of increasing size of the velocity model. Figure 5 also shows 
that the maximum size of the velocity models that fits well in 
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a single GPU card has 3 6190 6.859 10x y zN N N× × = = × grid 

points. For larger velocity models, it overflows the GPU 
memory limiting the maximum size of a cube that can be 
accommodated for the forward simulation. However the real 
scale up between the K20 vs. C2075 GPU depends on the size 
and dimension of the velocity model, if it can be easily 
accommodated within a cube of ~1903 grid points. Memory 
requirement on both the GPUs are found to be almost similar.   

B. Seismogram Wiggle Plots: 1D Visualization 

The seismic traces for the pressure and particle velocity 
wave-fields are recorded in a fine temporal granularity as a 
solution of the PDE in (2). Now a single explosive source has 
been activated at the center of the volume (Nx/2, Ny/2, Nz/2). 
The elastic wave equation (2) updates the 6 stress tensor 
components and 3 component particle velocity at each time 
step. The propagation of normal and shear stress fields have 
been shown in the supplementary material for brevity. 

 
Figure 6: 1D depiction of seismogram trace wiggle plots for velocity model 1. 

 
The resulting pressure and velocity fields after numerically 

solving the elastic wave equation on the heterogeneous 
medium with specified source strength and location can be 
visualized in various ways e.g. a popular option is 1D traces of 
pressure and particle displacement as wiggle plots, varying 
with the trace number as shown in Mulder [40]. Due to the 2D 
sensor placement at the sea floor, we have shown the 1D 
wiggle plots in Figure 6, for each trace along the central lines - 
Nx/2 and Ny/2 for the pressure and 3 component particle 
velocity fields for velocity model 1. Here the P/S-wave arrival 
times and seismogram patterns are expected to be different 
(predominantly found in the x-direction velocity) for the same 
source position with respect to that with the velocity model 2 
and can be found in the supplementary material. 

C. Seismogram Plan Views: 2D Visualization 

Since the sensors are placed in all the x-y grid points at a 
constant z = 244, each sensor essentially records a 4 
component time series. Therefore at each time slice, the 
relative amplitudes amongst the sensors are a function of x and 
y-grid points ( ( ) [ ], 1, , 1,ij x ys t i N j N ∈ ∈   ) that can be 

represented in the form of time varying images of fixed size. 
For both the velocity models, two representative examples of 
the temporal evolution of pressure fields are shown in the 
supplementary material, over 1 sec of simulation time with an 
interval of 0.1 sec (staring from T = 0.5 sec).  

D. Seismogram Iso-surface Views: 3D Visualization 

 
Figure 7: Iso-surface at an amplitude of (µs ± 3σs) for pressure and velocity 
fields for velocity model 2. 
 

The four components measured by the sensors at different 
x-y location essentially capture the effect of propagating wave-
field which has a geometric pattern for a single seismic source 
at a specified location. With a threshold on the wave-field 
amplitude on its 4 components using a (µs ± 3σs) criterion can 
uncover the strong positive/negative measurements in the form 

of a 3D surface, where{ },s sµ σ are the mean and standard 

deviation of the particular wave-field signal amplitudes 
amongst all the grid points. For model 2, the 3D iso-surface (at 
a constant amplitude) are shown in Figure 7 for pressure and 
three velocity fields. For a lesser heterogeneous velocity 
model like model 1, the generated patterns are expected to be 
smoother for a single microseismic source in the subsurface. 

IV.  SIMULATION OF REALISTIC MICROSEISMIC EVENT 

PATTERNS BY COMBINING INDIVIDUAL SEISMIC TRACES 

Results reported in the previous section explore the 1D, 2D 
and 3D imaging of the seismic traces due to a single point 
source at the center of the volume (z = 150) with unit strength 
(1 Pascal) and zero origin time ( 0originT = ). But in reality the 
strength, spatial location and origin time of the microseismic 
sources can take any arbitrary value, with multiple active 
sources having significant spatial and temporal proximity 
between them. In order to explore these complex situations, 
we superimpose the simulated wave-fields due to the sources 
at random locations as in Figure 3 in various different 
combinations. Since the elastic wave equation in (2) is linear 
in stress ( ijσ ) and velocity ( iv ) fields, the superposition 

principle holds for adding up the effect of individual sources 
with a scaled up/down strength. Due to the linear nature of the 
PDE, the individual wave-fields can also be time translated by 
a fixed amount to accommodate the effect of shifted origin 
times for different sources. In this section, we explore three 
different cases with increased modeling complexity, with 
different combinations of the number of sources (Ne), their 
positions, strengths and origin times, whereas the sensor 
locations and the velocity models are kept fixed.   
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A. Case 1: Three Sources with Different Depth but Same 
Strength and Activated at the Same Origin Time 

It is apparent that larger distances (d) between the sources 
and the receivers result the seismic traces fade away. In order 
to simulate such a realistic scenario, three unit sources (at z = 
160, 150, 80th grid point) have been activated at the same 
origin time T0. The corresponding signal amplitudes recorded 
on the central receiver at (Nx/2, Ny/2) for these three events 
are shown in Figure 8 for both the velocity models. 
Attenuation of the maximum amplitude in the deeper sources 
are evident where the signal strength decreases with larger d. 

The resulting wiggle plots for model 2 are shown in Figure 
9. Due to different depth of these three sources, the arrival 
times of the wave-fronts are found distinctly different in the 
1D seismic traces. The corresponding 2D plan views at 
different time slices are shown in the supplementary material 
for the pressure wave-field on both the velocity models. 

 
Figure 8: Amplitudes of seismic signals due to 3 unity strength events at 
(Nx/2, Ny/2) but different depth (z) activated at the same origin time. 

 
Figure 9: Seismogram wiggle plots for model 2 with 3 superimposed events at 
different depth but same strength and origin time. 

B. Case 2: Three Sources with Random Strength Activated at 
Random Origin Times 

Compared to the example shown in case 1, here along with 
the random strength of the three sources, the origin times are 
also shifted by a random amount and then superimposed 
together. For implementing the random origin time, first the 
temporal length of the array is doubled and each seismic trace 
is shifted by a random amount (less than the signal length), 
followed by superimposition on the previous one. The rest of 
the entries after the shifted signal are zero padded. The 1D 
wiggle plots of the random origin times are shown in Figure 
10 and the corresponding 2D plan views are shown in the 

supplementary material. This is an important case to explore 
as low amplitude sources near the receivers with recent origin 
time may be confusingly appear as stronger but deep sources 
with an older origin time. 

 
Figure 10: Seismogram wiggle plots for model 2 with 3 superimposed sources 
at different depth with random strength and random origin time. 

C. Case 3: Multiple Sources at Random Locations with 
Random Strength Activated at Random Origin Times 

 
Figure 11: Seismogram wiggle plots for model 2 with 250 superimposed 
events with random amplitude and random origin time. 

 
Figure 12: 2D plan view of the pressure field for model 2 with 250 sources 
with random amplitude and random origin time. 
 

We now explore the effect of random source positions as 
shown in the LH samples in Figure 3 in addition to the 
previous cases. Along with random positions, the number of 
activated sources are also varied as Ne = 10, 50, 250, 500, 
where both the strength and origin time for each sources have 
been randomly changed, as explored in the previous 
subsection. The seismic patterns generated by multiple 
superimposed sources (Ne = 250) are shown in the 1D wiggle 
plots in Figure 11 and the corresponding 2D plan view in 
Figure 12. The rest of the seismic traces and the corresponding 
2D plan views are shown in the supplementary material for 
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brevity, with Ne = 10, 50, 500 sources. It is apparent from 
Figure 11 and Figure 12 that the pressure fields corresponding 
to large number of sources, even identifying the number of 
sources become quite complicated. These recordings can often 
be confusingly appear as noisy seismograms, purely from a 
visual inspection of the superimposed traces with random 
event strengths, positions and origin times. However these 
complex patterns are generated from purely deterministic rules 
of superposition without any explicit noise term in the model. 
In the results in this section, we assume that all microseismic 
sources are explosive in nature without any shear component. 

V. EVENTS WITH DIFFERENT SOURCE MECHANISMS 

A. Basic Source Mechanisms for Microseismic Activity 

Compared to the simulations reported in previous section, 
the actual microseismic sources may have complicated source 
mechanisms viz. with different shear (ijτ ) and normal ( iiσ ) 

stress components as characterized by the stress tensor (6). 

 
xx xy xz

xy yy yz

xz yz zz

σ τ τ
σ τ σ τ

τ τ σ

 
 = − 
 − − 

  (6) 

 It is shown in [43], [38] that complex source mechanism 
can be mathematically decomposed in three basic type of 
sources viz. isotropic or explosive, double couple (DC) and 
compensated linear vector dipole (CLVD). The explosive 
source has already been discussed in the earlier sections where 
the diagonal components have the same sign (explosion or 
implosion). The other two basic source types, considered here 
can be represented as (7). 
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B. Wave-field Comparison in DC/CLVD vs. Explosive Source  

 
Figure 13: Seismogram wiggle plots for three type of source mechanism with 
the same source location (x = 58, y = 41, z = 226), recievers are alongs Nx/2. 
Stronger S-wave and weaker P-wave are observed in DC and CLVD sources. 
 

Here the double couple source is considered to be in the x-y 
direction only, whereas in reality it can be along any other 
direction. The DC events model a shear source mechanism 
between two rock layers. The CLVD sources model a 
combination of tensile and compressive stress along different 

directions, often representing a sandwich model of two hard 
rock layers pressing a softer layer. It is shown in Li et al. [38] 
that DC and CLVD sources generate dominant S-waves 
whereas explosive sources have a dominant P-wave which is 
also evident from the wiggle plots in Figure 13. To compare 
the effect of these three source mechanisms on the generated 
wave-fields, a point source is activated at (58, 41, 226) grid 
point but with different components of the stress tensor using 
(7) to represent the explosive, DC and CLVD source 
mechanisms. The resulting 1D seismogram wiggles and 2D 
plan views for the acoustic pressure are shown in Figure 13 
and Figure 14 respectively. The corresponding 4 component 
3D iso-surface plots are shown in the supplementary material 
for brevity.  

 
Figure 14: 2D plan view of the acoustic pressure for three types of source 
mechanisms with the same source location (x = 58, y = 41, z = 226). Note the 
different radiation patterns in explosive, DC and CLVD source mechanism. 

 
Figure 15: Time-frequency domain spectrogram representation of the seismic 
traces in the central receiver due to explosive, DC and CLVD sources. 
 

In contemporary literature, microseismic activity has also 
been characterized using the time/frequency domain analysis 
for arrival time detection with tensile/shear slip [44], [45]. As 
quantitative measures, we here show the maximum frequency 
ranges in various cases of synthetic seismogram using 
explosive, DC and CLVD sources in Figure 15, as recorded in 
the central receiver. It is observed that although the frequency 
range of P-waves in explosive source may have components 
around 50 Hz and below but the dominant S-waves in 
DC/CLVD sources have a much lower spectrum ranging 
below 25 Hz which are in agreement with [44], [45]. The 
spectrograms were calculated using a 210 = 1024 point short 
time Fourier transform (STFT) with a sliding window of 26 = 
256 samples, as also applied in other studies related to the 
separation of seismic body waves [46]. 
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VI. SIMULATION OF CLUSTER OF MICROSEISMIC EVENTS AT 

RANDOM LOCATIONS WITH SPATIAL /TEMPORAL PROXIMITY  

A. Generating Cluster of Events in Space and Time  

Many real microseismic studies reveal that the events are 
not really independent of each other (as assumed in the 
previous section), but there are significant spatial and temporal 
proximity/correlations amongst the sources within a cluster, 
generating a swarm like activity [47]. Also the events often 
occur at the interfaces between different rock layers where the 
material property changes quickly. Therefore out of the 1000 
sampled locations, only a subset of events are chosen where 
the first/second spatial derivative of the density exceeds a 
certain threshold that can identify the edges between different 
rock layers. For both the velocity models, the 3D Laplacian of 
the density field (8) is calculated first as shown in Figure 16. 

 ( ) ( ) ( )2 2 2 2 2 2 2L x y zρ ρ ρ ρ= ∇ = ∂ ∂ + ∂ ∂ + ∂ ∂   (8) 

Next, only the sources above or below a fixed threshold of the 

Laplacian ( 0.1L > ) is retained as the active event locations, 

lying between different rock layers. In the velocity model 2, 
out of the first 500 LH samples in Figure 3, 82 locations match 
this criteria which are then represented as three (chosen a 
priori ) non-overlapping groups or clusters [48], [49], using 
three different unsupervised learning algorithms. 

 
Figure 16: Laplacian 2L ρ= ∇ for detecting edges between different rock 

layers. Cracks and faults are likely to occur in these edges. 
 

Firstly we apply the k-means clustering with 10 independent 
runs with random initial guess of the cluster centroids while 
minimizing the squared Euclidean distance performance 
measure. However the k-means algorithm prefers identifying 
spherical clusters, as it is based on only the mean value around 
each mode [50]. Another popular clustering technique known 
as the Gaussian Mixture Model (GMM) is employed next 
which is capable of finding ellipsoidal clusters as it adjusts the 
mean and covariance of each mode separately as well as the 
mixing proportions using the expectation maximization (EM) 
algorithm [50]. Similar to the k-means, 10 runs of the EM 
algorithm has been carried out on the same data with different 
start points in GMM to increase the robustness of finding 
similar clusters. As a third clustering algorithm for the sake of 
comparison, we use the hierarchical clustering which forms a 
tree like dendogram using the Euclidean distance criteria. The 
comparison of grouping the event locations in three clusters 
are shown in Figure 17 using these three clustering methods 

viz. k-means, GMM and hierarchical. It is observed that the k-
means algorithm has been capable of grouping the event 
positions according to their depth, along which the variation in 
the rock properties are rapid, whereas the GMM algorithm 
although faithfully grouped cluster 1 and 3 but the variance of 
cluster 2 becomes large, resulting in spatial overlap of the 
clusters with the rest. The hierarchical clustering performs 
worst as it picks up isolated events at distant location as a 
separate clusters, as evident from the bottom panels of Figure 
17. The purpose of the clustering methods here are to group 
the event locations in the forward simulation based on their 
spatial proximity, so that the origin times within a cluster can 
be made sufficiently close to simulate an effect of cascaded 
faults in the neighboring regions. It is also evident that the k-
means algorithm assigns similar number of events in each 
cluster and groups the event locations with minimum degree 
spatial overlap, hence finally chosen over the other clustering 
methods for rest of the simulation study. 

 
Figure 17: Source locations grouped in 3 clusters using various clustering 
algorithms (top) k-means, (middle) GMM, (bottom) hierarchical clustering. 

 
Figure 18: Scatter histogram of three cluster of events and distribution of their 
amplitudes and origin times. Origin times are separated by larger extent 
between clusters whereas event amplitudes are uniformly distributed. 

 
Figure 19: Event locations as a function of amplitude and origin time. Larger 
dots represent stronger amplitude and color represent shift in orgin time. 
 

After relabeling the events in three clusters, their 
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corresponding origin times (origin
iT ) are translated by 0.3 sec 

between these three clusters, while within the cluster they are 
translated by a smaller random amount with zero mean and 0.1 
sec of standard deviation. The cluster of events nearest to the 
sea floor (cluster 1 in Figure 17) has been activated first, 
followed by the farthest sources in cluster 2 and cluster 3 as 
shown by their origin time vs. source amplitude scatter 
histograms in Figure 18. Here, the three clusters of origin 
times can be clearly identified with uniformly distributed 
strength of the events. 

This particular case can be considered as a more realistic 
example where multiple events with spatial and temporal 
proximity are activated with smaller random origin time shift 
within a cluster but larger origin time shift between different 
clusters and a superimposed trace is recorded at the receivers. 
This helps physical modelling of cascaded growth of faults in 
the subsurface. These events are also plotted as a function of 
both their strength and the origin time in Figure 19 where the 
event sizes are proportional to their amplitudes and the colors 
represent differences in the respective origin times [51]. 

B. Cluster of Events with Explosive Source Mechanism  

Here we first assume that all the three cluster of events have 
explosive nature. For velocity model 2, the corresponding 
seimogram traces (as 1D wiggle plots) for the three cluster of 
events are shown in Figure 20 and the corresponding 2D plan 
views at different time slices in the top row of Figure 22. 

 
Figure 20: Seismogram wiggle plots for the four recorded components due to 
three clusters of explosive events in velocity model 2. 

C. Cluster of Events with Double Couple and CLVD Sources  

Here we assume that all the three clusters of events have the 
same source mechanisms either double couple or CLVD type. 
Since the governing equations in (2) are linear in stress, the 
superposition of the seismic traces are not only valid for 
explosive sources but also for the shear sources where each 
point source may be characterized by a stress tensor in (6). To 
get a visual understanding of the generated wave-fields, the 
clustered event locations are considered fixed and with the 
same seed for random origin time and amplitude as reported in 
section VIA for different cases of microseismic events with 
the same source mechanisms in all the clusters. 

The comparison of DC and CLVD sources in all the three 
clusters have been shown in the 1D seismogram wiggles for 
the pressure wave-field in Figure 21 with dominant S-waves. 

The 2D plan views at different time slices for the DC/CLVD 
sources are compared with explosive ones in Figure 22. Here, 
the difference in polarity and radiation patterns can be 
identified clearly for the DC/CLVD events, as opposed to the 
explosive sources. In the generated wave-fields the appearance 
of positive and negative pressures often take the shape of 
concentric circles in the case of explosive and CLVD sources 
(with reverse polarity) but appears in opposite diagonals in the 
case of DC sources, as revealed from Figure 22.  

 
Figure 21: Comparison of seismogram wiggle plots due to three clusters of 
events with different source mechanism in velocity model 2. (left column) 
DC, (middle column) CLVD (right column) mixture of all the 3 sources types. 

 
Figure 22: Comparison of 2D plan view of the pressure wavefield in velocity 
model 2, due to three cluster of events with same type (top three rows) and 
different type (bottom row) of microseismic sources. 

D. Different Source Mechanism in Different Clusters 

We now explore the effect of having same source 
mechanism within the clusters but different mechanism in 
different clusters. Due to some degree of layered nature of the 
velocity models, the combined tensile and compressive stress 
sources are considered at the middle rock layers i.e. cluster 2 
with CLVD sources. Due to the late arrival of S-waves which 
is predominantly found in the DC sources are considered in 
the layer close to the sea floor i.e. cluster 1 in Figure 17. The 
explosive sources generate dominant P-waves which travels 
much faster than the S-waves. Therefore cluster 3 or the 
deepest sources are considered to have explosive source 
mechanism. In this scenario, the waveforms from different 
type of sources are mixed together to generate highly complex 
wave-fields as shown in Figure 21 as 1D seismogram wiggles 
whereas the corresponding 2D plan views are shown in the 
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bottom panel of Figure 22. The time-frequency domain 
spectrograms traced on the central receiver has been compared 
in Figure 23 for the clusters with the same type of sources, as 
shown in the previous subsections and also using combination 
of all the three types in this subsection. In the mixture of all 
the three type of source mechanisms, cluster 1 contains DC, 
cluster 2 contains CLVD, cluster 3 contains explosive sources. 
It is also evident from Figure 23 that the dominant power lies 
below the frequency range of fmax = 50-80 Hz, depending on 
the different type of sources in the cluster of events. 

 
Figure 23: Time-frequency domain representation of the seismograms, traced 
in the central receiver due to cluster of explosive, DC, CLVD sources and 
mixture of all the three types of sources. 

VII.  DISCUSSIONS AND CONCLUSION 

A. Achievements and Contributions over Existing Literature 

A systematic methodology for fast forward simulation on 
GPUs are shown to generate synthetic seismic traces due to 
several cases of microseismic events in two realistic 
heterogeneous marine velocity models. Here we show that the 
use of GPU accelerated methods for computationally 
expensive forward seismic pattern generation due to 
microseismic events at random locations in the subsurface can 
be an efficient way, by using combination of few hundreds of 
separately simulated events. Although the seismic traces for an 
individual event looks simpler even for heterogeneous velocity 
models, in a realistic scenario there might be hundreds of 
simultaneous events taking place with random amplitudes and 
also shifted by random origin times. In such a scenario, the 
seismic traces may be quite complex, in terms of recorded 
pressure and three component particle velocity fields. This 
paper shows the following cases for the forward simulation of 
complex waveform modelling in microseismic response: 
• Three different source mechanisms (explosive, double 

couple and compensated linear vector dipole events). 
• Comparison of three different clustering methods (k-means, 

Gaussian mixture model and hierarchical clustering) to 
group the event locations with spatial proximity and then 
event origin time translation by smaller amount within 
cluster but by a larger amount between different clusters.  

• Cluster of events with same and different type of source 
mechanism with random amplitude and origin time 

Previous literatures (as introduced in section I) mostly 
attempted CPU/GPU based forward simulation of seismic 
wave propagation using single event on relatively simple 
velocity models and not necessarily always considering 

complex source mechanisms, which is an important factor in 
microseismic response modelling using elastic wave equation. 
Similar earlier works mainly focused on simplified 2D model 
with assumptions like layered earth, no lateral variation, 
special symmetry anisotropy, raytracing with only P/S-waves 
etc. Also reporting single shot simulation on GPU has been the 
most common e.g. [16], but carrying out bulk simulations 
using 1000s of sources and the resulting synthetic data 
storage, handling and memory management in itself is a 
challenging computational task which this paper deals with, as 
a contribution over existing literature.  

Also, existing approaches mostly report 2D velocity models 
instead of the realistic 3D version e.g. in [16][17][24] and with 
only few layers in a 2D model as in [15][21] or often do not 
report on heterogeneous models at all e.g. [18][23][29][30], 
[31]. Danek [32] implemented a simplified acoustic wave 
propagation on GPU using only the pressure field without 
considering the full elastic wave equation and P/S-wave mode 
conversion. In Mu et al. [25], [26] a similar realistic 3D 
heterogeneous velocity model has been used with 0.03M and 
0.3M cells respectively which is 22 times less than the 
computing requirements, needed for the present case having 
6.86M cells, and even more for the simulation of few 
thousands of shots. Hence the reported simulations in this 
paper deals with sufficiently complex model along with larger 
computing requirements and associated complexities related to 
large volume of data storage and processing which has not 
been addressed in most of the previous literatures. Therefore 
the contribution of this paper is not only in the aspect of fast 
geophysical modelling using GPU cards but also processing of 
large volume of synthetic seismic data (>1 TB for both the 
models) to generate cluster of microseismic patterns with 
spatio-temporal proximity. 

To the best of our knowledge, there is no literature that 
shows a step by step process of gradually building 
complexities in the microseismic forward modelling by 
combining several shots of single event simulation with 
various source mechanisms on a large heterogeneous velocity 
model, while also considering temporal and spatial proximity 
within the cluster of events with or without similar type of 
source mechanism. We also show that the complexities of the 
recorded wave-fields are generated using purely deterministic 
rules (scaling, translation and superposition of seismograms) 
by taking random samples from a heterogeneous velocity 
model, without considering a stochastic part in the forward 
modelling. Whereas in real seismic data low amplitude 
oscillations may often be interpreted as random background 
seismic noise which may be actually a result of weak 
deterministic events. Such a deterministic rule based 
microseismic response modelling opens up the scope of 
characterizing events when buried under significant amount of 
noise by separately considering the complexities due to the 
deterministic and stochastic parts of the forward modeling, 
within a Bayesian inference framework, in future. 

B. Need for a Fast Microseismic Response Simulation 
Method as the First Step for Detecting Events 

In order to detect the microseismic events and quantify their 
characteristics reliably given the recorded 4 component 
seismic data, one viable option is to simulate template seismic 
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response in a noiseless heterogeneous medium, and then 
applying machine learning techniques to detect them. Starting 
from unity amplitude single events at random locations, this 
paper shows various ways of complex seismic pattern 
generation with simple deterministic rules, e.g. effect of 
amplitude scaling, origin time shifting, superposition of 
multiple sources with scaling and shifting, grouping or 
clustering of correlated sources in space and time etc. which 
are quite similar to what is observed in a real hydrocarbon 
production field. Therefore, this paper can be considered as a 
first step towards the broader goal of reliable detection of 
microseismic events in the subsurface using different 
supervised learning algorithms. As a necessary first step, the 
seismic data generation process through numerical solution of 
the 3D elastic wave equation on few millions of grid points 
itself is quite computationally challenging task for generating 
such seismic event templates. The microseismic source 
parameters and corresponding noiseless synthetic seismic data 
can then be used to train an event detection algorithm for 
reliable prediction of unseen and often noisy data which may 
be pursued in a future research. 

Therefore, with an aim of developing a Bayesian event 
detection framework for microseimic sources, a fast algorithm 
for approximate seismic template generation needs to be 
developed first, for faster computation of the likelihood. In a 
real field data, there might have many superimposed events, 
often added with complicated noise characteristics with joint 
spatio-temporal correlation structures. Separately using these 
superimposed seismograms as the deterministic part (often 
with a proposed event number and associated properties by a 
sampler) and a stochastic part (with known statistics of the 
background seismic noise) in the likelihood function may help 
in detecting many small amplitude superimposed events and 
often buried with correlated noise. 

However, this paper do not focus on comparing numerical 
accuracy between various PDE solvers like in Phadke et al. 
[5], as there is no analytical solution possible for 3D elastic 
wave propagation through heterogeneous medium. As a result 
there will always be small numerical differences between 
different discretization schemes and specific implementations 
for the iterative PDE solvers as also shown in Guo et al. [36], 
including the k-Wave solver. However, these small 
inaccuracies in forward geophysics modelling with respect to 
the ‘ideal noiseless physical response’ are also automatically 
considered in the likelihood function when matching with the 
real field data for microseismic event detection. Small increase 
in computational accuracy at the cost of higher computational 
burden and PDE discretization and numerical implementation 
specific complexities may not be worthwhile to explore here 
for a practical purpose, if approximate source modelling is the 
primary goal for event detection, using a Bayesian inference 
framework. This is even more justified in the presence of 
complicated noise characteristics in the receivers in a real field 
survey. Previously Poliannikov et al. [52]–[54] used a travel 
time based Bayesian inference, although the influence of 
background seismic noise on the travel time calculation may 
not have a simple linear and Gaussian nature. However this 

condition can be relaxed if the Bayesian inference can be 
framed rather in the real measurement i.e. the seismic domain 
where the noise can be assumed to have simpler statistical 
characteristics like known mean and covariance, across 
different receivers which is often considered using plethora of 
available covariance estimation techniques in geostatistics. 

C. Open Research Questions and Scope of Future Work 

Future research may include the use of machine learning 
surrogate models to approximate the forward seismic 
simulations as a ‘proxy’ for the GPU based simulations, and 
for fast likelihood calculation within a Bayesian microseismic 
event detection framework. Our method relies on the fact that 
large velocity models (including the extra PML grid points to 
impose absorbing boundary conditions) can be fitted well 
within the GPU memory which is a limitation to this study. In 
fact multi-GPU domain decomposition for larger 3D velocity 
models using distributed FFTs and multi-GPU communication 
aspects in a single shot simulations that does not fit in one 
GPU memory is an open research problem. One workable 
solution under the same framework could be decreasing the 
spatial resolution or upscaling of the model with a coarse grid 
(larger , ,x y z∆ ∆ ∆ ) to reduce the number of grid points in the 

velocity model as adopted in [55], although as a consequence 
it may reduce the temporal resolution of the generated seismic 
data. Often finding a trade-off between the required temporal 
and spatial resolution may help reducing the number of grid 
points and hence the memory overflow problem, as well as the 
computing requirements, in a single shot simulation in GPUs.   

Although the present simulation reports an ideal noiseless 
scenario, however in a real measured seismic data, 
distinguishing noise and low amplitude microseismic events is 
an open challenge. Ideally the number of occurring events are 
not known a priori and some assumption can be made for the 
event detection e.g. say there is known finite number of events 
(Ne) in the data, within a small time window or the event 
number can also be searched for, as an extra parameter in the 
inference process. Ideally, statistical characteristics of the 
background noise should be estimated from a long stream of 
data, so that even the presence of few low amplitude events do 
not significantly change the statistics of the noise. To scan for 
the microseismic events, a mixture of separately modelled 
simulated template microseismic response and laterally 
correlated seismic noise can be useful in the Bayesian 
likelihood calculation. However, noise estimation in real 
microseismic data in the context of event detection may be 
considered in a future study, as this paper mainly focuses on 
the fast GPU simulation of the forward problem, for synthetic 
noiseless seismic template generation, as required to calculate 
the likelihood function. 

It is also important to note that the clustering is not used 
here to detect source positions or investigate the source 
mechanisms which is often known as the inverse geophysical 
problem. As discussed above that such an inverse problem to 
detect or quantify microseimic sources will typically need 
several thousands of forward simulations within a Bayesian 
sampling approach. The present paper focuses only on the first 
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part of this broader objective to provide a fast solution for the 
forward geophysics modelling problem. The source 
mechanism can also be searched using a sampler or optimizer 
with a fixed or variable number of parameters in a future 
research. This may lead to a high dimensional sampling 
problem with unknown number of sources and associated 
properties like amplitude/stress components and origin times. 
Here, the clustering was carried out to show the generation of 
synthetic superimposed seismic waves with spatio-temporal 
proximity, as flexible templates in the forward model which 
can be used for comparison with real field data within the 
likelihood function.  

This paper also focuses on the forward modelling of body 
seismic waves (P-wave and S-waves) only and does not 
include modelling of surface waves. Effect of different types 
of slow surface waves e.g. Rayleigh waves, Love waves and 
Stoneley waves can also be investigated in future. 

APPENDIX 

Additional high resolution images for the simulation results 
are provided in the supplementary material. 
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