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Decoding the Cortical Dynamics of Sound-Meaning Mapping

Ece Kocagoncu, “Alex Clarke, “Barry J. Devereux, and Lorraine K. Tyler
Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom

Comprehending speech involves the rapid and optimally efficient mapping from sound to meaning. Influential cognitive models of
spoken word recognition (Marslen-Wilson and Welsh, 1978) propose that the onset of a spoken word initiates a continuous process of
activation of the lexical and semantic properties of the word candidates matching the speech input and competition between them, which
continues until the point at which the word is differentiated from all other cohort candidates (the uniqueness point, UP). At this point, the
word is recognized uniquely and only the target word’s semantics are active. Although it is well established that spoken word recognition
engages the superior (Rauschecker and Scott, 2009), middle, and inferior (Hickok and Poeppel, 2007) temporal cortices, little is known
about the real-time brain activity that underpins the computations and representations that evolve over time during the transfor-
mation from speech to meaning. Here, we test for the first time the spatiotemporal dynamics of these processes by collecting MEG
data while human participants listened to spoken words. By constructing quantitative models of competition and access to
meaning in combination with spatiotemporal searchlight representational similarity analysis (Kriegeskorte et al., 2006) in source
space, we were able to test where and when these models produced significant effects. We found early transient effects ~400 ms
before the UP of lexical competition in left supramarginal gyrus, left superior temporal gyrus, left middle temporal gyrus (MTG),
and left inferior frontal gyrus (IFG) and of semantic competition in MTG, left angular gyrus, and IFG. After the UP, there were no
competitive effects, only target-specific semantic effects in angular gyrus and MTG.
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Understanding spoken words involves complex processes that transform the auditory input into a meaningful interpretation. This
effortless transition occurs on millisecond timescales, with remarkable speed and accuracy and without any awareness of the
complex computations involved. Here, we reveal the real-time neural dynamics of these processes by collecting data about
listeners’ brain activity as they hear spoken words. Using novel statistical models of different aspects of the recognition process, we
can locate directly which parts of the brain are accessing the stored form and meaning of words and how the competition between
different word candidates is resolved neurally in real time. This gives us a uniquely differentiated picture of the neural substrate for
the first 500 ms of word recognition. j

/Signiﬁcance Statement

effortless set of computations and is vital for rapid and efficient
communication. Although current neurobiological models situ-
ate the speech-mapping process in the superior (Rauschecker and
Scott, 2009), middle, and inferior (Hickok and Poeppel, 2007)

Introduction

Understanding speech involves the rapid transformation from
low-level acoustic-phonetic analysis to complex meaning repre-
sentations. This rapid speech-meaning mapping, which is typi-

cally within 200 ms of word onset, is the result of a seemingly

Received Sept. 9, 2016; revised Dec. 16, 2016; accepted Dec. 21, 2016.

Author contributions: EX., B.J.D., and LK.T. designed research; E.K. and A.C. performed research; E.K., A.C,, and
B.J.D. contributed unpublished reagents/analytic tools; E.K. analyzed data; E.K. and L.K.T. wrote the paper.

This work was supported by a European Research Council Advanced Investigator grant under the European
Community’s Horizon 2020 Research and Innovation Programme (2014 -2020 ERC Grant 669820 to LK.T.). We
thank Elisa Carrus, Billi Randall, and Elisabeth Fonteneau for invaluable help in data collection and William Marslen-
Wilson for constructive discussions on the manuscript.

The authors declare no competing financial interests.

Correspondence should be addressed to Lorraine K. Tyler, Centre for Speech, Language and the Brain,
Department of Psychology, University of Cambridge Downing Street, Cambridge (B2 3EB, UK. E-mail:
Iktyler@csl.psychol.cam.ac.uk.

DOI:10.1523/JNEUR0SCI.2858-16.2016
Copyright © 2017 the authors ~ 0270-6474/17/371312-08%15.00/0

temporal cortices, little is known about the neural dynamics of
the computations and representations that evolve over time dur-
ing the transformation from speech to meaning. Here, we used
MRI-constrained MEG in source space combined with quantita-
tive models of cognitive computations and multivariate pattern
analysis (MVPA) methods to determine the spatiotemporal dy-
namics of the computations and representations that evolve over
time during the transformation from speech to meaning.

Some influential cognitive models claim that, as speech is
heard (e.g., the initial phonemes /rp/ in robin), the lexical and
semantic properties of word candidates (e.g., robin, rock, rod) that
match the incoming speech are rapidly and partially activated,
forming the “word-initial cohort” (Marslen-Wilson and Welsh,
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1978; McClelland and Elman, 1986; Gaskell and Marslen-Wilson,
2002; Zhuang et al., 2014). The parallel activation of these lexical
representations creates transient lexical and semantic competi-
tion between candidates that diminishes over time as the pool
of candidates narrows to a single target item (the uniqueness
point, UP), boosting its specific semantics. This set of pro-
cesses constitutes an optimally efficient processing system in
which a spoken word is identified as soon as it can be differ-
entiated reliably from its neighbors (Marslen-Wilson, 1984,
1987; Zhuang et al., 2014).

To test for the neural spatiotemporal properties of these
computations from the initial stages of cohort competition
through to the activation of target word semantics and the
crucial role of the UP in marking a reduction in competitive
processes and increasingly selective activation of the target
word’s semantics, we collected MEG data while participants
listened to 296 familiar words interspersed with a small num-
ber of nonwords and pressed a response key when they heard a
nonword, thus reducing task effects while maintaining the
participant’s attention.

We determined empirically the UP of each word using a gating
task (Grosjean, 1980) in which listeners heard increasingly larger
fragments of a word and guessed its identity. Subjects’ gating
responses were also used to develop quantitative models of pho-
nologically driven lexical and semantic competition before each
word’s UP. Lexical competition was defined as the change in
lexical uncertainty (Shannon entropy) as the speech unfolds over
time and cohort membership changes up to the UP. Semantic
competition was derived from the semantic similarity of each
word’s competitors obtained from the gating data and computed
using a large corpus-based distributional memory (DM) data-
base (Baroniand Lenci, 2010). We derived a quantifiable measure
of target-specific semantics from a large, semantic feature-based
corpus (McRae et al., 2005) using the relationship between two
feature-specific indices, feature distinctiveness and correlational
strength, which were shown in previous studies to be a key prop-
erty of lexical semantics (Randall et al., 2004; Taylor et al., 2012;
Tyler et al., 2013; Devereux et al., 2016).

The MEG analyses used spatiotemporal searchlight represen-
tational similarity analysis (ssRSA; Su et al., 2012) in MEG source
space. ssRSA compares the similarity structure observed in brain
activity time courses with the similarity structure of our theoret-
ically relevant cognitive models. RSA can reveal distinct represen-
tational geometries in different brain areas even when other
MVPA methods fail (Connolly et al., 2012). Using ssRSA, we
constructed model representational dissimilarity matrices
(RDMs) of our cognitive variables: lexical and semantic compe-
tition between activated cohort members and target-specific
semantic information. We tested these over time and against ac-
tivity patterns in MEG source space (captured as brain data
RDMs) focusing specifically before and after the UP. We pre-
dicted early pre-UP lexical and semantic competition effects and
later post-UP target-specific semantic effects.

Materials and Methods

Participants. Eleven healthy participants (mean age: 24.4 years, range
19-35; 7 females, 4 males) volunteered to participate in the study. All
were right-handed, native British English speakers with normal hearing.
The experiment was approved by the Cambridge Psychology Research
Ethics Committee.

Procedure. Participants were seated in a magnetically shielded room
(IMEDCO) and positioned under the MEG scanner. Auditory stimuli
were delivered binaurally through MEG-compatible ER3A insert ear-
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phones (Etymotic Research). The delay in sound delivery due to the
length of earphone tubes and stimulus delivery computer’s sound card
was 32 &= 2 ms on average. Instructions were presented visually on the
screen positioned 1 m in front of the participant’s visual field.

Before the E/MEG recording, participants performed an automated
hearing test in the MEG scanner, where they were presented with pure
tones at a frequency of 1000 Hz to either ear and pressed a response
button when they heard a tone. The loudness of the tones was gradually
attenuated until the participant was unable to hear them. By this means,
we determined hearing thresholds for each ear. Participants’ hearing
thresholds (right ear M = 66.71, SD = 9.95; left M = 62.5; SD = 11.21)
were all within the normal range (45-75 dB).

To ensure that participants were listening attentively to the stimuli, a
simple nonword detection task was performed on 10% of the trials. Par-
ticipants were instructed to listen to the speech stimuli and press a re-
sponse key whenever they heard a nonword. Participants were instructed
to focus their eyes on a fixation cross that appeared for 650 ms before the
onset of the auditory stimulus. The interstimulus interval was random-
ized between 1500 and 2500 ms. Every interval was followed by a blink
break that lasted for 1500 ms. The start of the blink break was indicated
by an image of an eye that appeared in the middle of the screen. Using
blink breaks and fixation cross, we aimed to minimize the contamination
of the signal by eye-movement-related artifacts. Participants were also asked
to refrain from movement during the entire block of recording. E-Prime 2
(Psychology Software Tools) was used to present the stimuli and record
participants’ behavioral responses to the nonword detection task.

Stimuli. The stimuli consisted of 218 spoken names of concrete objects
(e.g., alligator, hammer, cabbage) and 30 phonotactically legal nonwords
(e.g., rayber, chickle, tomula). Nonwords were matched to real words by
their duration, number of syllables, and phonemes. The nonword trials
were excluded from the imaging analysis. All of the words were highly
familiar (M = 477, SD = 73; MRC Psycholinguistic Database), frequent
(M = 19.21, SD = 39.01; CELEX; Baayen et al., 1993), semantically rich
(number of features, M = 13, SD = 3.34) concepts with a mean duration
of 602 ms (SD = 122 ms).

The stimuli were presented in a pseudorandomized order such that
consecutive items were from different domains of knowledge (living or
nonliving concepts) and started with different phonemes. They were
presented in two blocks, each containing 109 words and 15 nonwords.
The block order was also randomized for each participant.

Gating task. We used a behavioral gating task (Grosjean, 1980; Tyler
and Wessels, 1985) to determine the UP of each spoken word and to
obtain word candidates to serve as inputs to the generation of models of
lexical and semantic competition. In a self-paced procedure, 45 partici-
pants, who did not take part in the MEG study, listened to incremental
segments (i.e., gates; e.g., al... alli... allig. .. ) of an initial set of 372
spoken words and were asked to type in their best guess of the word and
rate their confidence in their answer on a scale of 1-7 (where 7 = very
confidentand 1 = not confident at all). We initially used CELEX (Baayen
et al., 1993) to determine an approximate UP to guide the onset of the
gating segments. We gated before and after the UP in five increments of
25 ms each. The gating UPs were defined as the gate where 80% of the
participants correctly identified the word with an average confidence
rating of at least 80% (Warren and Marslen-Wilson, 1987, 1988). Using
these criteria, we determined the gating UPs of the 218 spoken words that
were presented in the MEG experiment (time from word onset; M = 408
ms, SD = 81 ms) and obtained a list of the word candidates produced by
subjects at each gate. The gating UPs were on average 69 ms later than the
CELEX UPs.

Cognitive models. We modeled the key cognitive processes of lexical
competition, semantic competition, and the ease of semantic feature
integration into a coherent concept. The model of lexical competition,
the LexComp model (Fig. 1A), was defined as the change in cohort en-
tropy from the first gate until the UP. Here, entropy represents the lexical
uncertainty that results from changing lexical representations as speech
unfolds and is calculated with Shannon’s entropy formula (Shannon and
Weaver, 1949; Shannon, 2001):
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Model RDMs tested in the current analysis where rows and columns of the matrices represent trials (i.e., single spoken words) and values indicate pairwise dissimilarity values across

trials. 4, LexComp model. B, SemComp model. ¢, SemDis model. D and E represent cohort activations of two example stimuli taken from the gating results: chicken and train. Cohort profiles indicate
the change in activation of every candidate word over time. D, At word onset, all members in chicken’s cohort are partially activated, resulting in high lexical competition. As more of the speech input
is heard, the activation of competitor words decays and the target word’s activation increases. E, Train’s cohort profile shows high semantic competition due to low semantic overlap between the

cohort candidates. Arrows mark the UPs.

H= — iP(xi)log P(x;)

where H refers to entropy, P(X;) refers to the summed confidence score
for a cohort competitor i (e.g., the target word train has trade, trail, and
tray as cohort competitors) across participants divided by the total sum
of confidence scores for all the competitors reported at a particular gate
and # refers to the total number of competitors at that gate. Here, differ-
ences in entropy were inversely related to the level of lexical competition.

Semantic competition (the SemComp model) incorporated semantic
information about all competitor words included in the target word’s
cohort (Fig. 1B) as determined by the gating data. The semantic similarity
of the set of each word’s competitors was computed using a corpus-based
DM database (Baroni and Lenci, 2010). The DM database represents the
semantics of words as vectors over 5000 semantic dimensions, where the
entries of the semantic dimensions are derived from word cooccurrence
data dimensionally reduced by random indexing (Kanerva et al., 2000).
Semantic competition was defined as the average cosine similarity (i.e.,
semantic overlap) between pairs of vectors of competitors at the first gate. A
smaller overlap between a pair of vectors was proposed to create an average
pattern of semantic activation from both words that has a small resemblance
to any single conceptual representation and therefore generating higher se-
mantic competition (Gaskell and Marslen-Wilson, 1997).

Finally, the SemDis model (Fig. 1C) was designed to tap into the ease
with which the semantic features of a concept are integrated to form a
unique meaning representation of each target word. This measure was
computed using the relationship between two feature-specific indices:
feature distinctiveness and correlational strength (Randall et al., 2004;
Taylor et al., 2012; Tyler et al., 2013; Devereux et al., 2014; i.e., feature
cooccurrence). The set of features for each word were obtained from a
database of anglicized feature norms (McRae et al., 2005; Taylor et al.,
2012). Feature distinctiveness was calculated as: 1/(number of concepts
in which a feature occurred) (e.g., has stripes, has a hump). Correlational
strength measured the degree to which a feature cooccurs with other
features. For each concept, we can plot its constituent features in a scat-
terplot with feature correlational strength on the x-axis and feature dis-

tinctiveness on the y-axis (Taylor et al., 2012). The SemDis measure was
defined as the unstandardized slope of the regression line fitted to this
plot. The SemDis measure captured the relative contribution of a con-
cept’s feature cooccurrence to feature distinctiveness, so it was sensitive
to the ease of feature integration of concepts (Taylor et al., 2012).

MEG and MRI acquisition. Continuous MEG data were recorded using
the whole-head 306-channel Vector-view system (Electa Neuromag).
The channel system consisted of 102 pairs of planar gradiometers and
102 magnetometers. To monitor and record blinks and cardiac activity,
EOG and ECG electrodes were used. To record subjects” head shape and
movements, five head position indicator (HPI) coils were attached onto
the subjects’ head. HPI coils recorded the head position every 200 ms. For
coregistration of the subject’s head to the MEG sensors, the three fiducial
points (nasion, left, and right pre-auricular) and additional points across
the scalp were digitized. MEG signals were recorded continuously at a
1000 Hz sampling rate with a high-pass filter of 0.03 Hz. To facilitate
source localization, T1-weighted MP-RAGE scans with 1 mm isotropic
resolution were acquired for each subject using Siemens 3 T Tim Trio.
Both the MEG and MRI systems were located at the Medical Research
Council Cognition and Brain Sciences Unit in Cambridge, United Kingdom.

MEG preprocessing and source localization. The raw data were pro-
cessed using MaxFilter 2.2 (Elekta Oy) in three steps. In the first stage,
bad channels were detected and reconstructed using interpolation. In the
second stage, signal space separation was applied to the data every 4 s to
separate the signals generated from subjects’ heads from the external
noise. Last, head movements were corrected and each subject’s data were
transformed to a default head position. To remove blink- and pulse-
correlated signals from the continuous MEG signals, an independent
component analysis (ICA) was performed using the EEGLAB toolbox
(Delorme and Makeig, 2004). ICA was performed with 800 maximum
steps and 64 PCA dimensions. To capture blink- and pulse-related com-
ponents, independent component (IC) time series were correlated with
vertical EOG and ECG time series. ICs that revealed correlations higher
than r = 0.4 and z = 3 were removed and the remaining IC time series
were reconstructed. Data were further preprocessed using SPM8 (Well-
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A, Language mask used in the current analysis. The mask consists of bilateral IFG, MTG, STG, SMG, AG, and LATL. B, Diagram depicting how the data RDMs are correlated with the model

RDM:s for each searchlight. Note that the data RDMs change at every time point, whereas the model RDMs remain static. This procedure was repeated for every searchlight and model RDM.

come Trust Centre for Neuroimaging, University College London;
r4667) and band-pass filtered between 0.5 and 40 Hz using a fifth-order
Butterworth filter.

All of the real word trials were aligned by their UP and segmented into
epochs of 1200 ms duration, with a 200 ms silent baseline period before
each word. Because our goal was to determine the spatiotemporal dy-
namics of lexical and semantic activation and competition processes over
time, both before and after the UP, epochs were centered on the UP for
each word so that the epoch extended from 700 ms before the UP to 500
ms after it. The average baseline period (—700 to —500 ms) was used for
baseline correction of each trial. Further, trials contaminated by motion-
related artifacts were removed. On average, 3.43 trials were removed due to
artifacts (SD = 4.22). Finally, time series were downsampled to 250 Hz.

Each subject’s data were source localized using both magnetometers
and gradiometers. The source space was modeled by a cortical mesh
consisting of 8196 vertices. The sensor positions were coregistered to
individual subject’s T1-weighted MP-RAGE scan using three fiducial
points. A single shell model, as implemented in SPM8, was used for
forward modeling. Inversion was completed over the entire epoch using
the SPM implementation of the minimum norm estimate solution.

ssRSA. ssRSA (Su et al., 2012) involves extraction of data from a
searchlight that samples the source estimated cortical space. The search-
lights span three spatial dimensions and one temporal dimension, allow-
ing the searchlight to map across the MEG data in both space and time.
The spatiotemporal searchlight spheres had a 10 mm spatial radius and a
10 ms temporal radius (i.e., a sliding time window of 20 ms). To con-
struct the data representational dissimilarity matrices for a searchlight
sphere centered at a particular point in space and time, the source recon-
structed data within the sphere is extracted for every item. The data
vectors for each pair of items are compared using correlation distance
(i.e., 1 — Pearson’s r), which measures the dissimilarity between the brain
activity patterns for the pair of items in that spatiotemporal window. This
yields a matrix of dissimilarity values (data RDM; see Fig. 3) for the
searchlight sphere, where the entries of the matrix correspond to the
dissimilarity values of pairs of items.

The data RDMs for each point in space and time are then compared
against the dissimilarity values computed for the theoretically relevant
models called the model RDMs. Model RDMs were constructed using
pairwise dissimilarity values (1 — Pearson’s r) for the three theoretical
measures of interest that correspond to the trials (Fig. 1A-C). LexComp
and SemComp were constructed using the behavioral gating data and

were predicted to be sensitive to lexical and semantic competition before
the UP. The SemDis model was predicted to tap into target word’s unique
semantic representations after UP.

The analysis was restricted to those cortical regions that are consis-

tently reported in studies investigating lexical and semantic processing
during language comprehension (Vigneau et al., 2006; Price, 2012; Fig.
2A), which included bilateral inferior frontal gyrus (IFG), superior tem-
poral gyrus (STG), middle temporal gyrus (MTG), supramarginal gyrus
(SMG), and angular gyrus (AG). The spatial definitions of these regions
were taken from the Automated Anatomical Labeling Atlas (Tzourio-
Mazoyer et al., 2002) and were fused together as a contiguous mask with
1 mm isotropic spacing. For each participant, data RDMs were con-
structed for searchlight centroids contained in the mask.
Statistics and correction for multiple comparisons. The data RDMs were
correlated with model RDMs for each participant using Spearman’s rank
correlation coefficient (Fig. 2B). To allow computation of spatiotempo-
ral clusters in 4D space, correlation time courses for each vertex were
placed in the participant’s cortical mesh. The 4D matrix consisted of the
3 spatial dimensions of the cortical mesh (91 X 109 X 91 spatial points,
of which 8196 are on the mesh) and 1 temporal dimension (251 time
points). The spatial dimensions here correspond to the size of isotropic 2
mm grid used by SPM8. To correct for the large number of data points
tested, we performed cluster permutation based one-sample ¢ tests with
1000 permutations with p = 0.01 heightand p = 0.05 significance thresh-
old (Nichols and Holmes, 2002). Throughout the results, we present the
cluster-level-corrected p-values.

Results

Competition effects before and after the UP

Figure 3 shows corrected t-map snapshots aligned to the UP (0 ms).
We predicted a transition from competitive processes before the
UP to the activation of the unique semantics of the target word
after the UP. Before the UP, we found lexical and semantic com-
petition effects, reflecting the early short-lived parallel activation
of candidate lexical and semantic representations as speech is
processed over time. The LexComp model showed early transient
effects in left STG (LSTG) and left SMG (LSMG) from —400 to
—376 ms before the UP (p = 0.023) (Fig. 3) and later more
sustained effects in LMTG between —224 to —180 ms p = 0.031)
and left IFG (LIFG) (BA 45/47) from —244 to —172 ms (p =
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0.04) before the UP. The early effects in LSTG/LSMG reflect the
acoustic phonetic computation of spectrotemporal features
within speech (Hickok and Poeppel, 2007; Mesgarani et al.,
2014). These computations are mapped rapidly onto lexical rep-
resentations involving the LMTG, which engages later competi-
tive processes between word candidates involving LIFG (Zhuang
etal., 2014).

Semantic competition effects captured by the SemComp
model showed similarly early effects before the UP starting at
approximately the same time as the LexComp model. These early
effects were in the LIFG (BA 47) from —420 to —392 ms (p =
0.0009) and —340 to —288 ms before the UP (p = 0.005) (Fig. 3).
The SemComp model revealed short-lived sensitivity in the
RSTG/MTG from —332 to —292 ms (p = 0.029) before the UP
and a sustained effect in the left AG (LAG) and LMTG from
—96 to —100 ms (p = 0.0009). There were transient effects in the
left anterior temporal region (LATL) (p = 0.036) from —100 to
—80 ms, in right IFG (RIFG) (BA 44/45; p = 0.04) from —88 to
—52 ms, and in LIFG (BA 44/45; P = 0.029) from 44 to 64 ms.
These results show that the initial activation of low-level lexical
auditory representations gives rise to later semantic representations
as activity shifts from STG to LAG, LATL, and bilateral MTG. The
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ssRSA results displaying the corrected t-maps every 100 ms. *p << 0.05, **p << 0.01, ***p << 0.001. UP is marked by the red border.

involvement of the LIFG differs in the two competition models.
Whereas, in the LexComp model, the LIFG, primarily BA 45, is
involved in later competitive processes as the UP approaches, in the
SemComp model, BA 47 is initially engaged and shows early and
sustained involvement until the UP approaches. Around this point,
when sufficient evidence has accrued to identify the target word and
activate its unique semantics, we see the involvement of BA 45,
which likely reflects later selection processes rather than processes of
competition (Zhuang et al., 2014).

Transition from semantic competition to target

word semantics

Around the UP, when the accumulating speech input enables the
target word to be differentiated from the other members of its
cohort, there were significant effects of the SemDis model that
captured the ease of a target word’s feature integration and there-
fore access to its unique semantic representation. The results of
the SemDis model revealed significant model fits over time in
bilateral AG, RMTG, and RIFG. The initial effect of the SemDis
centered in the L inferior parietal region (Fig. 3), with the cluster
including LAG, LSMG, and left posterior MTG (p = 0.016) and
showing a sustained effect 8—112 ms after the UP. In the right
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hemisphere, there were parallel effects in the RIFG from 48—116 ms
(p = 0.003) and significant clusters in RAG from 72-112ms (p =
0.039) and from 200-248 ms (p = 0.025) and in RS/MTG from
192-216ms (p = 0.036). The SemDis results indicate that activity
after the UP reflects a process of individuation between the target
concept and its cohort neighbors. Furthermore, the overlapping
effects of the SemComp and SemDis models in LAG confirm the
prominent role of LAG in the conceptual representations and
show that UP marks a transition point between the lexical-se-
mantic competitive processes and selection between cohort can-
didates to the boosting of semantic activation and rapid access to
the target’s semantic representation.

Discussion

This study investigated the spatiotemporal dynamics of the neu-
ral computations involved in the transition from the speech input
to the target word’s semantic representation by combining cog-
nitive models of competition and semantics with ssRSA analysis
of MEG data collected as participants listened to spoken words.
Our predictions were based on lexicalist models of speech pro-
cessing that assume a fully parallel recognition process in which
all word candidates that initially fit the speech input are activated
and continuously assessed against the accumulating input and
those that do not continue to match drop out (Marslen-Wilson
and Welsh, 1978; McClelland and Elman, 1986; Gaskell and
Marslen-Wilson, 1997). We predicted that, as listeners hear a
spoken word, they partially activate lexical and semantic repre-
sentations of words that match the speech input. When the target
word becomes maximally differentiated from its cohort compet-
itors (at the UP), we expected to see a reduction in competitive
processes and a boost in the semantic representation of the target
word. Consistent with this model of speech comprehension, we
found semantic and lexical competitive processes dominated be-
fore the UP, which we defined empirically in a gating study as the
earliest point in the speech sequence at which only the target
word continues to match the sensory input. After the UP, which
marks a transition from processes of lexical and semantic com-
petition to a boost in activation of the target word semantics, we
found no evidence for competitive processes and selective activa-
tion of the semantics of the target word.

This pattern of results is consistent with the view that speech
sounds activate meaning representations by means of an opti-
mally efficient language processing system as originally proposed
by Marslen-Wilson (1984) and later instantiated in the distrib-
uted cohort model of spoken word recognition (Gaskell and
Marslen-Wilson, 1997). This optimally efficient system results in
a spoken word being recognized as soon as the information be-
comes available in the speech stream that differentiates it from its
competitors (the UP) and accounts for the remarkable earliness
with which spoken words can be recognized. This early recogni-
tion has important consequences for the wider language system
in that the early activation of the semantic and syntactic proper-
ties of the word makes them available to be integrated into the
developing utterance and discourse representation (Marslen-
Wilson and Zwitserlood, 1989), enabling rapid updating of
the developing utterance and facilitating rapid and effective
communication.

This system is optimally efficient in the sense that it makes
maximally effective use of incoming sensory information to
guide dynamic perceptual decisions. Although behavioral studies
have supported this account (Gaskell and Marslen-Wilson, 2002;
Apfelbaum et al., 2011), the present study is the first to reveal the
neural dynamics associated with this optimally efficient system.
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Lexical access and competition

The MEG data show that processing a spoken word is initially
dominated by processes of lexical and semantic competition, re-
flecting the parallel activation of multiple phonologically based
word candidates that initially match the speech input and decay
as the UP approaches. Our measure of lexical competition was
based on cohort statistics, which reflect the structure and organi-
zation of the mental lexicon (Marslen-Wilson, 1987; Cibelli et al.,
2015). Lexical competition effects were observed well before the
UP and initially engaged LSTG/LSMG, regions that are involved
in acoustic and phonological analysis (Rauschecker and Scott,
2009). These effects subsequently spread to the LMTG, which is
associated with processing the semantic properties of words
(Binder et al., 2009), and were followed by effects in BA 45, which,
in previous studies using similar manipulations, has been shown
to be responsive to selecting between activated cohort competi-
tors (Zhuang et al., 2014).

There were similarly early effects of semantic competition re-
sulting from the activation of the semantics of the multiple word
candidates initiated by the activation of multiple lexical candi-
dates. These early effects of semantic competition involved the
LIFG (BA 47) and spread into the LATL, followed by effects in the
LAG and then the ATL again as the UP neared and the number of
semantic competitors declined. The LAG is frequently associated
with a variety of semantic-based processes (Binder et al., 2009)
such as semantic feature integration (Price et al., 2016), whereas
the LATL is thought to be a core region within the amodal seman-
tic hub (Patterson et al., 2007). The finding that the effects of
semantic competition flow between these regions over time sug-
gests their joint sensitivity to semantic effects. Finally, around the
UP, we found effects of the SemComp model in bilateral IFG (BA
45), most likely reflecting the resolution of semantic competition
and selection of the appropriate candidate (Grindrod et al.,
2008).

Although the effects of cohort competition were seen at both
the lexical and semantic levels, semantic competition effects were
more robust and sustained than lexical competitive effects. The
SemComp model showed initial early effects primarily in LIFG
BA 47, a region associated with cohort competition effects in
previous studies of spoken word recognition (Zhuang et al.,
2014) and later effects in more superior inferior frontal regions
(BA 44/45), which, in previous studies (Zhuang et al., 2014), has
been shown to be involved in cohort selection processes. These
results suggest that, whereas a word’s phonological form carries
its meaning, processes of cohort competition and selection
mainly involve the semantic representations of cohort competi-
tors (Gaskell and Marslen-Wilson, 1999; Devereux et al., 2016).

After the UP, there were no competitive effects of either pho-
nology or semantics, supporting the claim that the UP marks the
earliest point at which a word can be reliably differentiated from
its cohort competitors (Marslen-Wilson and Tyler, 1980; Tyler,
1984). Consistent with an optimally efficient speech recognition
system, after the UP, we only found effects of the target word
semantics, suggesting that, before the UP, the semantics of the
target word were not differentiated from the semantics of the
other words in the cohort.

Rapid access to target word semantics

During the process of recognizing a spoken word, the target
word’s semantic representation is partially activated, along with
the partial activation of the semantics of all of the other members
of the cohort. We predicted that, around the UP, after the reso-
lution of cohort competition, the partial activation of a target
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word’s semantic representation would be boosted because the
speech input at that point would enable a unique phonology-to-
semantics mapping and the semantics of the competitor words
would have decayed. The SemDis measure, based on a well vali-
dated feature-based model of lexical semantics, captures the rel-
ative ease with which the semantic features of a concept can be
integrated (Taylor et al., 2012). Consistent with an optimally ef-
ficient speech recognition system, soon after the UP, we found
effects of the target word semantics, suggesting that, before the
UP, the semantics of the target word were not sufficiently differ-
entiated from the semantics of the other words in the cohort. The
SemDis model revealed a number of regions (bilateral AG, MTG)
that have been associated previously with lexical semantic infor-
mation. Moreover, the AG has been claimed to function as an
integrative hub in which different kinds of semantic feature in-
formation can be combined (Seghier, 2013; Bonnici et al., 20165
Price et al., 2016), thus providing a potential neurobiological
substrate for the integration of features into a holistic concept.

The results of the SemComp and the SemDis models suggest
that the activation of lexical semantic information is rapid. The
SemComp model that incorporated the target word’s semantic
representation showed retrieval effects starting from —244 ms
before the UP, suggesting that the target word’s semantic repre-
sentation is partially activated before the UP, along with the se-
mantics of the cohort competitors.

The SemDis model, in contrast, started showing effects 8 ms
after the UP. The absence of effects of the SemDis model before
the UP suggests that the boost of target word’s semantic activa-
tion depends on the unique identification of the spoken word.
Although previous studies have shown that meaningful words are
distinguished as early as 50 ms after the UP (MacGregor et al.,
2012) and a word’s semantic representation is activated within
200 ms (Pulvermiiller et al., 2005), we found even earlier effects in
the current study, perhaps due to higher spatiotemporal sensitiv-
ity achieved by ssRSA compared with a more conventional event
related potential/field approach. The latter involves averaging the
signal across all channels, which results in losing the spatial in-
formation embedded in the signal.

Conclusion

Our findings suggest that the sound-to-meaning mapping during
natural speech comprehension involves rapid dynamic compu-
tations aligned around the UP. By testing quantifiable cognitive
models of key cognitive processes as they occur in real time in the
brain, this research revealed the dynamic cortical networks that
relate to partially activated lexical and semantic representations
of the cohort candidates before the UP and the gradual resolution
of competitive processes as speech accrues over time, the pool of
candidate words narrows down to a single concept, and the target
word’s unique conceptual representation is boosted.
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