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ABSTRACT 28 

The majority of terrestrial plants associate with arbuscular mycorrhizal (AM) fungi, which 29 

typically facilitate the uptake of limiting mineral nutrients by plants in exchange for plant 30 

carbon. However, hundreds of non-photosynthetic plant species — mycoheterotrophs — 31 

depend entirely on AM fungi for carbon as well as mineral nutrition. Mycoheterotrophs can 32 

provide insight into the operation and regulation of AM fungal relationships, but little is 33 

known about the factors, fungal or otherwise, that affect mycoheterotroph abundance and 34 

distribution. In a lowland tropical forest in Panama, we conducted the first systematic 35 

investigation into the influence of abiotic factors on the abundance and distribution of 36 

mycoheterotrophs, to ask whether the availability of nitrogen and phosphorus altered the 37 

occurrence of mycoheterotrophs and their AM fungal partners. Across a natural fertility 38 

gradient spanning the isthmus of Panama, and also in a long-term nutrient addition 39 

experiment, mycoheterotrophs were entirely absent when soil exchangeable phosphate 40 

concentrations exceeded 2 mg P kg-1. Experimental phosphorus addition reduced the 41 

abundance of AM fungi, and also reduced the abundance of the specific AM fungal taxa 42 

required by the mycoheterotrophs, suggesting that the phosphorus sensitivity of 43 

mycoheterotrophs is underpinned by the phosphorus sensitivity of their AM fungal hosts. The 44 

soil phosphorus concentration of 2 mg P kg-1 also corresponds to a marked shift in tree 45 

community composition and soil phosphatase activity across the fertility gradient, suggesting 46 

that our findings have broad ecological significance.  47 

 48 
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 54 

1. Introduction 55 

 56 

The 400-million-year-old symbiotic relationship between plants and arbuscular mycorrhizal 57 

(AM) fungi is a fundamental component of terrestrial ecosystems [1,2]. Plants supply the 58 

fungi with up to 20% of photosynthetically-derived carbon in return for improved access to 59 

mineral nutrients, with up to 90% of plant phosphorus being derived from AM fungal 60 

partners [3-6]. AM fungi are thus major players in global carbon and nutrient cycles [7-9]. 61 

The functioning of plant–AM fungal symbioses in highly diverse tropical forests is poorly 62 

understood, partly because tropical plant–AM fungal associations are understudied compared 63 

with agricultural and temperate systems [10,11], and partly because tropical plant–AM fungal 64 

relations are more complicated than in temperature systems, with the majority of tropical 65 

trees depending on AM fungi for establishment and growth [2,12].  66 

 67 

Over 400 species of plant are non-photosynthetic and depend entirely on fungi for carbon as 68 

well as mineral nutrition [13-16] (Figure 1). These plants are known as full 69 

mycoheterotrophs because they depend on fungi for their entire carbon and nutrient supply 70 

over their lifecycle. The mycoheterotrophic habit has evolved independently more than 40 71 

times across many plant phyla [17]. Because AM fungi are themselves obligate symbionts 72 

and derive all of their carbohydrate from photosynthetic plants, the carbohydrates acquired by 73 
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mycoheterotrophs are ultimately derived from other plants via common mycorrhizal 74 

networks, thus demonstrating that AM fungi can facilitate biologically significant plant-to-75 

plant carbon transfer, a hotly contested topic [6]. Mycoheterotrophs also demonstrate that 76 

plant–AM fungal relations are not always based on the reciprocal exchange of resources. In 77 

light of recent efforts to portray plant-AM fungal relations as a ‘biological market’ in which 78 

plant-AM fungal relations are determined by the mutual evaluation of a range of trading 79 

partners [18], mycoheterotrophs thus represent important exceptions. 80 

 81 

Little is known about factors, fungal or otherwise, that determine mycoheterotroph 82 

distributions [17]. Changes in the relative availability of resources, notably nitrogen and 83 

phosphorus, strongly determine the operation of AM fungal symbioses [19], affecting AM 84 

fungal abundance, community composition and diversity, resource allocation and mutualistic 85 

quality of plant and fungal partners [20-23]. Here, we performed the first systematic 86 

investigation into the effects of abiotic factors on the abundance and distribution of 87 

mycoheterotrophs to ask whether the relative availability of nitrogen and phosphorus altered 88 

the occurrence of mycoheterotrophs and their AM fungal partners.  89 

 90 

2. Methods 91 

We investigated the most common mycoheterotrophic species — Voyria tenella and Voyria 92 

corymbosa (Figure 1) — across: i) a well-characterised fertility gradient across the isthmus of 93 

Panama [24,25], and ii) a fully factorial NPK nutrient-addition experiment that had been 94 

running for fifteen years (Figure S1) [26]. We asked which environmental factors determined 95 

mycoheterotroph abundance by combining mycoheterotroph census data and 96 

mycoheterotroph tissue nutrient data with a range of environmental metrics along the fertility 97 

gradient. We then used the nutrient-addition experiment to ask whether i) the patterns of 98 



 

 5 

mycoheterotroph occurrence across the gradient could be experimentally recreated, ii) 99 

experimental nutrient addition affected the net abundance of AM fungi in both soil and in the 100 

roots of autotrophic plants, and iii) experimental nutrient addition affected the specific AM 101 

fungal hosts of the mycoheterotrophs in the soil, and in the roots of autotrophic plants. 102 

 103 

(a) Fertility gradient 104 

 105 

(i) Site descriptions 106 

The natural fertility gradient consisted of 37 sites near the Panama Canal in closed canopy 107 

forest, including undisturbed old growth and secondary stands (60-100 years old) [27]. Sites 108 

spanned a rainfall and edaphic gradient at low elevation (< 200 m above sea level; SI 109 

methods). Concentrations of readily exchangeable phosphate extracted by anion exchange 110 

membranes — a measure of biologically available phosphorus — vary more than 300-fold 111 

across these sites and represent a range comparable to that of the entire lowland tropics [25]. 112 

Most of the sites were 1-ha permanent census plots [26]. 113 

 114 

(ii) Mycoheterotroph census and sampling 115 

We censused all sites over a two-week period between 4th and 18th October 2013. This fell 116 

in the middle of the wet season and the peak of mycoheterotroph flowering (based on our 117 

observations and a preliminary census between August and December 2012 at the Barro 118 

Colorado Nature Monument; BCNM). Counts for each plot are the average of three 119 

independent counts by the same three-person team who combed each plot in 3-m wide bands 120 

(SI methods). In 1-ha plots, we surveyed a randomly selected 40-m × 40-m area. When we 121 

found no mycoheterotrophs in the 40-m × 40-m area we combed the entire 1-ha plot to 122 
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confirm their absence. Plots where mycoheterotrophs were entirely absent were re-checked in 123 

late October, mid-November and mid-December). 124 

 125 

Mycoheterotroph samples from the fertility gradient were collected for tissue phosphorus 126 

analysis. We sampled 6-10 individuals of the common Voyria tenella and 3-6 individuals of 127 

the less common Voyria corymbosa (Figure 1) at each site, where present. Plants were 128 

located away from gaps, and separated from each other by at least 3 m. Roots and stems for 129 

tissue nutrient analysis (fertility gradient samples) were dried at 60°C and stored at room 130 

temperature.  131 

 132 

(iii) Soil chemistry 133 

The fertility gradient is naturally occurring, not experimental, and multiple variables were 134 

required to model mycoheterotroph occurrence. All soil chemistry data used was obtained by 135 

the methods described by Condit et al. (2013) [25] (SI methods).  136 

 137 

(iv) Tissue nutrient analysis 138 

We asked whether increasing levels of soil phosphorus corresponded to an increase in 139 

mycoheterotroph tissue phosphorus across the fertility gradient. Mycoheterotroph stem and 140 

root tissue was ground to a fine powder in a homogeniser (TissueLyser II, Qiagen) and then 141 

pooled by plot, each individual contributing an equal mass to the composite sample. Samples 142 

were ashed at 550°C, dissolved in 1 M HCl, and phosphorus was detected by automated 143 

molybdovanadate colorimetry on a Lachat Quikchem 8500 (Hach Ltd, Loveland, CO). 144 

Values are expressed on a 60°C dry mass basis.  145 

 146 

(b) Nutrient addition experiment 147 
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 148 

(i) Site descriptions 149 

The nutrient-addition experiment is a factorial NPK fertilisation experiment with eight 150 

treatments (N, P, K, NP, NK, PK, NPK, and unfertilised controls) and a ninth micronutrient 151 

treatment, each replicated four times across the 38.4-ha study site (a total of 36 plots). The 152 

plots measured 40-m × 40-m. Starting in 1998, fertilisers were applied by hand in four equal 153 

doses a year, equally spaced across the wet season. The annual doses were 125 kg N ha-1 yr-1 154 

as urea, 50 kg P ha-1 yr-1 as triple superphosphate, 50 kg K ha-1 yr-1 as potassium chloride, 155 

and a mixture of micronutrients (B, Ca, Cu, Fe, Mg, Mn, Mo, S, Zn; SI methods). The 156 

nutrient-addition experiment is located within the BCNM in Panama [26] (see SI methods for 157 

a detailed site description). 158 

 159 

(ii) Mycoheterotroph census and sampling 160 

Across the nutrient-addition experiment, we surveyed entire 40-m × 40-m experimental plots 161 

(total area = 1,600 m2) across all treatments (a total of 36 plots). In all other ways, the 162 

mycoheterotroph census and sampling was performed as described for the fertility gradient. 163 

Since mycoheterotroph samples from the nutrient-addition experiment were collected for 454 164 

sequencing of AM fungal communities in their roots, we wiped down and flame-sterilised all 165 

equipment in between samples, handled all samples with fresh latex gloves, and double-166 

bagged samples in sealed ZiplocTM bags. We rinsed root systems in filtered deionised water, 167 

and removed soil particles with a fine brush. All brushes and containers were sterilised with 168 

boiling water between samples to prevent cross-contamination. Roots were surface sterilised 169 

by immersion for 1 minute in 70% ethanol then 1 minute in 1% bleach (NaOCl), rinsed with 170 

sterile deionised water, dried separately over silica gel in 4 ml tubes, and stored at -20°C.  171 

 172 



 

 8 

(iii) Soil sampling  173 

We collected soil samples for i) AM fungal DNA extraction, and ii) lipid analysis across the 174 

control, N, P, K, NP and NK treatments (24 plots). We collected 81 soil samples (9 × 9 grid) 175 

from 0-10 cm depth within the inner 20-m × 20-m of each plot, using a volumetric spoon to 176 

ensure that there were equal volumes of soil in each subsample. We chose the surface layer 177 

(0-10 cm) because the majority of fine roots are located in this layer [28,29]. We composited 178 

and thoroughly mixed the samples for each plot, sieved the soil to remove large roots, and 179 

subsampled the mixed soil 10 times to make two replicate samples (c. 10 g per sample), for 180 

DNA extraction and lipid analysis. We froze these samples at –80°C for twelve hours, 181 

lyophilised them, and stored them dry at –80°C until further processing.  182 

 183 

(iv) Autotrophic seedling sampling 184 

We harvested autotrophic seedlings to analyse i) AM fungal community composition, and ii) 185 

AM fungal root colonization. We sampled seedlings of seven of the most common tree 186 

species across the plots: Alseis blackiana Hemsl. (Rubiaceae), Desmopsis panamensis (B.L. 187 

Rob.) Saff. (Annonaceae), Heisteria concinna Standl. (Olacaceae), Sorocea affinis Hemsl. 188 

(Moraceae), Simarouba amara Aubl. (Simaroubaceae), Tetragastris panamensis (Engl.) 189 

Kunze. (Burseraceae), and Virola sebifera Aubl. (Myristicaceae). These species span a range 190 

of life history strategies and maximum adult heights [30] (SI methods). 191 

 192 

We harvested 4-6 seedlings of each of the seven species from each plot. Seedlings were 193 

sampled from the same treatments as soil with the exception of NK, due to time constraints (a 194 

total of 20 plots). This resulted in c. 35 seedlings for each of the 20 plots, making a total of c. 195 

700 seedlings. Seedlings were 15-20 cm tall, were located away from gaps, and separated 196 
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from each other by at least 3 m. From each seedling, we subsampled healthy fine roots for 197 

DNA extraction as described above, and stored subsamples in 70% ethanol for microscopic 198 

analysis.  199 

 200 

(v) AM fungal abundance  201 

We used the neutral lipid fatty acid (NLFA) 16:1ω5 as a biomarker for extra-radical AM 202 

fungal biomass in soils from the nutrient-addition experiment. We performed lipid extraction 203 

and analysis following Frostegård et al. (1993) [31], with modifications described by Nilsson 204 

et al. (2007) [32] (SI methods). The mean NLFA:PLFA ratio across samples was 2.3, 205 

indicating that NLFA 16:1ω5 is an effective AM fungal biomarker in these soils [33].  206 

 207 

We quantified root colonisation to assess intra-radical AM fungal abundance in the roots of 208 

autotrophic seedlings sampled from the nutrient-addition experiment. To measure AM fungal 209 

colonisation of roots, we observed cleared and stained roots (SI methods) using a compound 210 

light microscope at 200 × magnification, and quantified AM fungal colonization following 211 

McGonigle et al. [34], with at least 100 intersections for one sample per seedling. 212 

Mycorrhizal colonisation was expressed as the percentage fine root length colonised by AM 213 

fungal hyphae, vesicles or arbuscules.  214 

 215 

(vi) DNA extraction and sequencing 216 

Mycoheterotroph and autotrophic seedling root samples were individually pulverised in a 217 

homogeniser prior to DNA extraction (TissueLyser II, Qiagen), and an equal mass of each 218 

root sample was pooled to make one composite sample per species per plot. Soil samples 219 

were pulverised by the same method. We extracted DNA from 50 mg of pulverised root and 220 
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25 mg of pulverised soil using MoBio PowerPlant and PowerSoil DNA isolation kits and 221 

manufacturer’s instructions (MoBio Laboratories Inc., Carlsbad, CA, USA).  222 

 223 

We amplified the partial small subunit (SSU) region of 18S ribosomal DNA (c. 550 bp) with 224 

universal eukaryotic primer NS31 [35] and the AM fungal-specific primer AM1 [36]. The 225 

primers were modified by the addition of the 454 pyrosequencing adaptors A and B, in 226 

addition to a 10 bp multiplex identifier (MID) on the forward primer (NS31). We conducted 227 

duplicate polymerase chain reactions (PCRs) in 25 µl sample volume using Phire hot start II 228 

DNA polymerase (Life Technologies LTD, Paisley, UK). Conditions were: 98°C for 1 229 

minute; 32 cycles of 98°C for 10 s and 72°C for 15 s; and a final extension phase of 72°C for 230 

2 minutes. We gel-purified PCR products using MinElute PCR purification kits (Qiagen Ltd, 231 

West Sussex, UK) and pooled the samples in equimolar concentrations. 232 

 233 

Amplicon libraries were sequenced by the Cambridge DNA Sequencing Facility (Department 234 

of Biochemistry, University of Cambridge, UK) on an FLX Titanium system (Roche, Basel, 235 

Switzerland). No sequences were detected in the blanks included as negative controls at each 236 

of the extraction, PCR, gel purification, quantification, and sequencing stages.  237 

 238 

(vii) Bioinformatic analyses 239 

All bioinformatic analysis was performed using the software mothur [37] unless otherwise 240 

stated. Reads were removed from the dataset if they did not contain the 10 bp MID, had > 1 241 

error in the barcode sequence, > 2 errors in the forward primer, or were shorter than 200 bp in 242 

length.  243 

 244 
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Clustering was performed using the algorithm Clustering 16S rRNA for Operational 245 

Taxonomic Unit (OTU) Prediction (CROP). Sequence alignment was performed with the 246 

software MAFFT v7.149b [38] and improved with MUSCLE [39] using the –refine option. 247 

Trees were built using RAxML v. 8.0 [40] with GTR GAMMA implementation, and 248 

bootstrap values based on 1000 runs. We used the Basic Local Alignment Search Tool 249 

(BLAST [60]; minimum e-value 10-30) on one representative sequence from each cluster 250 

iteratively against three databases in the following order of preference: i) sequences from 251 

Krüger et al. (2012); ii) all virtual taxa (VT) from the MaarjAM AM fungal sequence 252 

database (www.maarjam.botany.ut.ee); and iii) all 18S Glomeromycotan sequences from the 253 

SILVA database. Non-Glomeromycotan clusters were removed when the highest blast match 254 

did not correspond to an AM fungal sequence in any of the three datasets. 255 

 256 

Clusters were named based on matches to database entries at > 97% covering a minimum of 257 

80% of the query sequence. We used the generic names from Krüger et al. (2012), and VT 258 

numbers from the MaarjAM database. Where clusters did not match a VT at > 97%, we 259 

assigned a name based on the highest VT match and phylogeny (eg. Glomus_OTU1). 260 

Clusters that occurred in < 2 samples, and with < 5 reads total were removed from the 261 

dataset. A breakdown of the sequencing results is provided in the Supplementary Discussion. 262 

For detailed description of bioinformatic procedures see SI methods.   263 

 264 

(c) Statistical analyses  265 

All statistical analysis was conducted in R version 3.1.2 (R Development Core Team, 2014).  266 

 267 

(i) Mycoheterotroph census (fertility gradient and nutrient-addition experiment)  268 

http://www.maarjam.botany.ut.ee/
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We analysed the results of mycoheterotroph censuses across the fertility gradient and 269 

nutrient-addition experiment using generalised linear models (GLMs) with negative binomial 270 

error structures with glm.nb from the package MASS [41]. We analysed only the most 271 

abundant species (V. tenella across the gradient, and V. tenella and V. corymbosa across the 272 

nutrient-addition experiment), and built separate models for each species. Significance of 273 

model terms was assessed using likelihood-ratio chi-square tests. 274 

 275 

The fertility gradient is not a controlled experiment. Consequently, multiple regression was 276 

required to model mycoheterotroph occurrence. We worked with a subset of environmental 277 

variables selected and described by Condit et al. (2013) [25] (dry-season moisture, inorganic 278 

N, P, Ca, Zn, K; see SI methods). P, Ca, Zn, and K had extreme values and were log-279 

transformed to reduce the influence of outliers. All predictors were standardized to zero mean 280 

and unit variance.  281 

 282 

Across the nutrient-addition experiment, we modelled counts of mycoheterotrophs in NPK 283 

factorial models and tested for all two-way interactions. The experimental design of the 284 

nutrient-addition experiment includes four replicates of an incomplete block design, and 285 

‘replicate’ was used as a spatial blocking term to control for natural variation across the site 286 

[26].  287 

 288 

(ii) Mycoheterotroph tissue phosphorus (fertility gradient) 289 

We used linear models to analyse the relationship between soil exchangeable phosphorus and 290 

root and stem tissue phosphorus concentration of V. tenella.  291 

 292 

(iii) AM fungal abundance in roots and soil (nutrient-addition experiment) 293 
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We used linear models to analyse: i) the concentration of NLFA 16:1ω5 (a proxy for AM 294 

fungal biomass) in the soil and, ii) the percentage of tree seedling root length colonised by 295 

AM fungi, pooling six of the seven seedling species (Tetragastris roots were damaged during 296 

the clearing process and omitted from analysis). In both cases we tested for N × P interactions 297 

(omitting the K treatment) using factorial ANOVA, and for the significance of K in a 298 

separate model with a single ‘treatment’ term. The spatial blocking term was included in all 299 

models.  300 

 301 

(iv) AM fungal taxa in roots and soil (nutrient-addition experiment) 302 

We used the number of DNA sequences as a measure of relative abundance of OTUs 303 

(Supplementary Discussion). We analysed the relative abundance, in the soil, of the five AM 304 

fungal taxa dominating (constituting > 97%) the AM fungal communities in the roots of V. 305 

tenella and V. corymbosa using factorial GLMs with negative binomial errors (using glm.nb), 306 

building a separate model for each fungal taxon, including the spatial blocking term, and 307 

testing for N × P and N × K interactions using likelihood-ratio chi-square tests (soil samples 308 

were not collected from PK and NPK plots).  309 

 310 

We analysed the relative abundance of the AM fungal taxon most strongly associated with 311 

the roots of V. tenella and V. corymbosa (constituting > 90% of their AM fungal taxa; 312 

Sclerocystis_VTX00126) in the roots of the seven autotrophic plant species with generalised 313 

linear mixed models (GLMMs; glmer.nb from the package lme4) with ‘P’ (0 versus 1), 314 

‘species’, and the spatial blocking term as fixed effects, and ‘plot’ as a random effect to 315 

control for the pseudoreplication arising from having seven species per plot. Main treatment 316 

effects (P, ‘species’ and P × ‘species’ interaction) were assessed by comparing nested models 317 

using likelihood-ratio chi-square tests.  318 
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 319 

3. Results 320 

 321 

(a) Fertility gradient 322 

 323 

(i) Mycoheterotroph census 324 

Across the fertility gradient, the abundance of V. tenella precipitously declined with 325 

increasing soil exchangeable phosphorus; numbers of plants fell from 3500 ha-1 at the lowest 326 

soil phosphorus concentrations to 0 plants ha-1 above 2 mg P kg-1 (χ2 = 55.1, P < 0.001, 327 

Figure 2a). The abundance of V. tenella was not related to any other environmental variable 328 

included in the analysis (dry-season moisture, inorganic N, and exchangeable Ca, Zn and K; 329 

Figure S2, Table S1). Furthermore, we found no mycoheterotrophs of any other species 330 

growing in plots with exchangeable soil phosphorus above 2 mg P kg-1.  331 

 332 

(ii) Mycoheterotroph tissue phosphorus analysis  333 

Stem and root tissue phosphorus concentrations of Voyria tenella did not respond to 334 

increasing levels of soil exchangeable phosphorus across the network of forest plots at the 335 

lower end of the fertility gradient (< 2 mg P kg-1) where they were found (stem: F1,21 = 1.8, P 336 

= 0.20; root: F1,17 = 0.45, P = 0.51; Figure S7). Some root samples did not yield sufficient 337 

material for analysis, meaning that sample sizes for stem and root analyses differed (n = 23 338 

and n = 19 for stem and root, respectively).  339 

 340 

 341 

(b) Nutrient-addition experiment  342 

 343 
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(i) Mycoheterotroph census 344 

In the nutrient-addition experiment, phosphorus addition in all nutrient combinations (P, NP, 345 

PK, NPK) completely eliminated mycoheterotrophs of any species. In the case of V. tenella, 346 

numbers were reduced from 1000 plants ha-1 (in no-P treatments) to 0 (χ2 = 497, P < 0.001), 347 

and in the case of V. corymbosa from 45 plants ha-1 (in no-P treatments) to 0 (χ2 = 205, P < 348 

0.001, Figure 2b and Figure S3). Micronutrient addition did not affect numbers of either V. 349 

tenella or V. corymbosa confirming that phosphorus and not the calcium counterion of the 350 

phosphorus fertiliser (triple superphosphate, Ca(H2PO4)2.H2O) was responsible for the 351 

elimination of mycoheterotrophs (Figure S8). Numbers of V. tenella were reduced by 352 

nitrogen addition and restored to control levels when nitrogen and potassium were added 353 

together, as indicated by a significant nitrogen × potassium interaction (χ2 = 7.94, P = 0.005; 354 

Figure S3), while the abundance of V. corymbosa was increased by N addition (χ2 = 7.68, P < 355 

0.006; Figure S3).  356 

 357 

(ii) AM fungal abundance 358 

Phosphorus addition reduced the biomass of AM fungi in the soil by c. 25% (F 1,11 = 5.02, P 359 

= 0.04, Figure S6a) and AM fungal colonisation in tree seedling roots, by c. 12% (F 1,11 = 360 

9.39, P = 0.01, Figure S6b). AM fungal biomass in the soil was also reduced by nitrogen 361 

addition (F 1,15 = 5.05, P = 0.04; Figure S6a), as was AM fungal colonisation of tree seedling 362 

roots (F 1,9 = 18.4, P = 0.002; Figure S6b).  363 

 364 

(iii) AM fungal community composition 365 

Five AM fungal families were represented across root and soil samples (Acaulosporaceae, 366 

Archaeosporaceae, Diversisporaceae, Gigasporaceae, Glomeraceae). Rarefaction curves for 367 

each sample approached asymptotes indicating that sequencing intensity was sufficiently 368 
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high to detect the majority of OTUs and that sampling effort was sufficient to capture the 369 

range of AM fungal diversity across the sites (Figure S9). 95.9% of all sequences were 370 

Glomeromycotan, and 80 OTUs remained after blasting 80 OTUs remained after blasting, 371 

filtering, merging, and trimming, representing a total of 288,139 sequences. Samples 372 

contained a mean of 13 OTUs (range: 1–40), and the mean number of sequences per sample 373 

was 1055 (range: 201–2442). Sclerocystis_VTX00126 was the most dominant taxon across 374 

the dataset.  375 

 376 

Experimental phosphorus addition reduced the relative abundance of the AM fungal taxon 377 

most strongly associated with the roots of V. tenella and V. corymbosa in soil communities 378 

(constituting > 90% of their AM fungal communities ; Sclerocystis_VTX00126) by c. 65% 379 

(χ2 = 24.8, P < 0.001, Figure 3 and Figure S4). In contrast, in the roots of photosynthetic 380 

seedlings the relative abundance of Sclerocystis_VTX00126 was reduced in some species but 381 

not others (phosphorus × species interaction, χ2 = 26.8, P < 0.001, Figure S5). Although 382 

reduced, the AM fungal taxa colonising mycoheterotrophs were still present in the soil in P-383 

fertilised plots, and remained part of intact networks with the photosynthetic plant species 384 

that they partnered with in unfertilised controls (Figure 4). 385 

 386 

4. Discussion 387 

 388 

We found that the abundance and distribution of V. tenella and V. corymbosa were strongly 389 

dependent on soil phosphorus availability, and that numbers of V. tenella increased sharply 390 

below a phosphorus threshold of 2 mg P kg-1. Long-term experimental phosphorus addition 391 

not only eliminated Voyria, but also reduced the net abundance of AM fungi in soil and roots 392 

of autotrophic plants (Figure S6), and the relative abundance of the specific AM fungal taxa 393 
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hosting both species of Voyria (Figure 3). We observed a moderate response of V. tenella and 394 

V. corymbosa abundance to experimental nitrogen addition, although this was not consistent 395 

between the two species (Figure S3). The abundance of AM fungi in soil and roots of 396 

autotrophic plants was also reduced by nitrogen addition (Figure S6).  397 

  398 
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(a) Explaining Voyria’s phosphorus sensitivity 399 

Although we cannot resolve the mechanism by which phosphorus impacts Voyria, we can 400 

evaluate several possibilities.  401 

 402 

i) Phosphorus toxicity 403 

It is unlikely that phosphorus is directly toxic to either species of Voyria. Across the plant 404 

kingdom, phosphorus toxicity occurs at tissue phosphorus concentrations of 10–40 mg 405 

phosphorus g-1 dry mass (from the extremely phosphorus-sensitive Proteaceae to arable 406 

crops) [42]. Across the phosphorus gradient where V. tenella occurred (from 0–2 mg P kg-1 407 

soil exchangeable phosphorus), tissue phosphorus concentrations of V. tenella never 408 

exceeded 3.2 mg P g-1, well below the documented lower limit of phosphorus toxicity, and 409 

did not increase in response to increasing soil phosphorus (Figure S7).  410 

 411 

ii) Shifts in plant species distributions 412 

Plant species distributions shift markedly across the fertility gradient [25]. In some cases, 413 

mycoheterotrophs can specialise on fungi linked to a specific set of autotrophic host trees 414 

[43], and the change in AM fungal host might influence the occurrence of mycoheterotrophs 415 

across this gradient. However, both species of Voyria were eliminated by experimental 416 

phosphorus addition, whereas tree species distribution has not been altered by phosphorus 417 

addition, strongly suggesting that the sensitivity of mycoheterotrophs to phosphorus is not 418 

mediated by autotrophic plant host identity.  419 

 420 

iii) Reduced abundance of mycoheterotrophs’ AM fungal partners 421 

Both the overall abundance of AM fungi in soil and roots, and the relative abundance of the 422 

AM fungal taxa required by V. tenella and V. corymbosa in soil were reduced by phosphorus 423 
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addition (Figures 3 and 4). This is likely to contribute to reduced Voyria abundance with 424 

increasing soil phosphorus, and strongly suggests that the phosphorus sensitivity of Voyria 425 

can be explained in terms of the phosphorus sensitivity of Voyria’s AM fungal symbionts. 426 

The impact of phosphorus availability on AM fungal abundance and function is well-427 

documented and is caused by changes in the exchange relationships between AM fungi and 428 

their autotrophic hosts [19]. This finding raises the interesting possibility that changes in the 429 

pattern of resource exchange between autotrophs and AM fungi may affect the abundance 430 

and distribution of mycoheterotrophs.  431 

 432 

iv) Shift in AM fungal function  433 

Although the AM fungal taxa required by both species of Voyria were reduced by 434 

phosphorus addition across the nutrient-addition experiment, these taxa were not eliminated 435 

(Figure 3 and 4). Furthermore, in three of the +P plots, where mycoheterotrophs were absent, 436 

both the proportional abundance of the dominant Sclerocystis_VTX00126 and net AM fungal 437 

biomass in the soil was comparable or exceeded that in three no-P plots, where 438 

mycoheterotrophs were present (Table S2). This indicates that at least in some cases, 439 

phosphorus addition eliminated mycoheterotrophs without reducing the prevalence of their 440 

preferred fungal partners in the soil, or reducing net soil AM fungal biomass. We speculate 441 

that this could indicate a phosphorus-dependent shift in the underlying exchange relationships 442 

between photosynthetic plants and their AM fungal partners. Although elucidation of the 443 

exact mechanism falls outside the scope of this study, we hypothesise that such a functional 444 

shift could be underpinned by a reduction in carbon allocation from photosynthetic plants to 445 

AM fungal partners at increasing concentrations of soil phosphorus [44], either inhibiting the 446 

release of chemical factors from the fungi that stimulate the germination of mycoheterotrophs 447 

[45], or causing the fungi to restrict carbon flow to mycoheterotrophs [46]. Alternatively, it 448 
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could be that changes in AM fungal community dynamics (such as competition) at elevated 449 

soil phosphorus (indicated by changes in soil AM fungal community composition; Figure 4) 450 

may affect mycoheterotroph abundance. These possibilities merit further investigation.  451 

 452 

(b) Broader implications  453 

Mycoheterotrophs are necessarily connected to other plants via common mycorrhizal 454 

networks and cannot exist without fungal support [17]. If, as seems likely, the sensitivity of 455 

Voyria to phosphorus is due to the sensitivity of their AM fungal symbionts to phosphorus, 456 

we might expect to see phosphorus-dependent responses in not only mycoheterotrophic plant 457 

species, but in autotrophic species too. 458 

 459 

Indeed, soil exchangeable phosphorus has been identified as the most important mineral 460 

nutrient driving tree species distribution across the fertility gradient, with more than half of 461 

the 550 measured tree species showing significant affinity with either high or low phosphorus 462 

soils [25]. The point at which species with high or low phosphorus affinity dominate the tree 463 

community shifts at a concentration of 2.2 mg P kg-1 exchangeable soil phosphorus. 464 

Strikingly, this concentration corresponds to a marked shift in tree growth rates and the 465 

activity of soil phosphatase enzymes (responsible for the hydrolysis of the majority of 466 

organic phosphorus compounds in soil [24]); below 2 mg P kg-1 tree growth responses to 467 

phosphorus increased markedly, and phosphatase activity increased exponentially (Turner et 468 

al. Unpublished Manuscript – enclosed with submission). This suggests that the 469 

mycoheterotrophic response we describe here corresponds to an ecosystem-wide threshold 470 

below which phosphorus demand increases markedly above- and below-ground.  471 

  472 
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5. Conclusions  473 

 474 

We show that i) the occurrence of two species in the mycoheterotrophic genus Voyria is 475 

strongly determined by levels of soil phosphorus, and ii) the effects of phosphorus on Voyria 476 

are likely to be underpinned by the phosphorus sensitivity of their AM fungal symbionts. We 477 

identify a critical concentration of soil phosphorus for V. tenella (2 mg P kg-1), which 478 

corresponds to broad shifts in plant species distributions and growth responses. Our findings 479 

suggest that the well-documented effects of phosphorus availability on plant species 480 

distributions [25,47] may act by altering the dynamics of resource exchange in mycorrhizal 481 

networks, and highlight the importance of further investigation into the functioning of plant–482 

AM fungal relationships under natural conditions. 483 

 484 
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 651 

FIGURE CAPTIONS 652 

 653 

Figure 1. The mycoheterotrophs Voyria tenella (a), and V. corymbosa (b) in a lowland 654 

tropical forest in Panama. The root system of the mycoheterotroph V. tenella is intensely 655 

colonised by arbuscular mycorrhizal (AM) fungi (d). In c-i, fungal material is visible as the 656 

light-coloured ring surrounding the central vasculature. In c-ii, fungal material (hyphae and 657 

coils) is rendered in red and plant material is not shown. In d, plant material is displayed in 658 

grey, and fungal material in red. The same image stack is displayed in d-i–iv with the plant 659 

material made increasingly transparent. Confocal micrographs (c-ii) and (d-i–iv) were 660 

obtained by differential staining of plant and fungal tissues, shown as 3D projections 661 

(AMIRA™). Photos a and b courtesy of Christian Ziegler. In a and b scale bar = 20 mm; in c 662 

scale bar = 1 mm; in d scale bar = 100 µm.  663 

 664 

Figure 2. (a) Numbers of the mycoheterotroph Voyria tenella sharply decline with increasing 665 

soil exchangeable phosphorus (P) across a naturally occurring gradient in lowland tropical 666 

forests in Panama. The solid line depicts the fitted response of a generalised linear model 667 

with negative binomial errors (n = 37). Red dashed lines indicate the 95% confidence 668 

interval. The blue shaded region represents the concentrations of soil exchangeable 669 

phosphorus found in +P plots in the nearby factorial nutrient-addition experiment (Figure 670 
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S1). (b) The abundant mycoheterotroph V. tenella (b-i) and less common congener V. 671 

corymbosa (b-ii) are eliminated by phosphorus (P) addition in a long-term factorial nutrient-672 

addition experiment in a lowland tropical forest in Panama. Figure contrasts 16 no-P plots 673 

(control, N, K, NK treatments) with 16 +P plots (P, NP, KP, NPK treatments). Values are 674 

fitted responses of generalised linear model with negative binomial errors and show 95% 675 

confidence intervals. The effects of individual fertilisation treatments on numbers of V. 676 

tenella and V. corymbosa are presented in Figure S3. 677 

 678 

Figure 3. The relative abundance — in the soil — of the AM fungal taxa most strongly 679 

associated with Voyria tenella (a-i) and Voyria corymbosa (b-i) are reduced but not 680 

eliminated in +P treatments (a-ii, b-ii) in a long-term factorial nutrient-addition experiment in 681 

a lowland tropical forest in Panama. Upper bars (a-i and b-i) represent the relative abundance 682 

of AM fungal taxa in the roots of V. tenella and V. corymbosa (averaged across control, N, K, 683 

NK treatments; n = 16). Lower bars (a-ii and b-ii) illustrate the effect of experimental 684 

phosphorus addition on the proportional abundance of AM fungal taxa in the soil. Figure 685 

contrasts 16 no-P plots (control, N, K, NK treatments) with 8 +P plots (P, NP treatments). 686 

Values are fitted responses of generalised linear model with negative binomial errors and 687 

show 95% confidence intervals. Significant effects of phosphorus addition are asterisked. 688 

Data are based on read counts from 454-sequencing. See Figure S4 for the effects of 689 

individual fertilisation treatments on the relative abundance of AM fungal taxa in the soil.  690 

 691 

Figure 4. The AM fungal partners of mycoheterotrophs Voyria tenella and Voyria corymbosa 692 

under unfertilised conditions (a-i) were present both in the soil and in the roots of autotrophic 693 

plants when fertilised with phosphorus (b-ii, b-iii), although the relative abundance of AM 694 

fungal taxa shifted in response to phosphorus addition. Interactions between 695 
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mycoheterotrophs, AM fungi, and autotrophs in unfertilised control plots are represented in 696 

(a), and in phosphorus-addition plots in (b). (b) displays potential linkages (indicated by 697 

shaded blue region) between mycoheterotrophs and AM fungi based on their partners in 698 

unfertilised control plots; there were no mycoheterotrophs actually found in phosphorus-699 

addition plots. Values are based on the mean of 4 unfertilised control plots, and 4 700 

phosphorus-addition plots. The widths of bars representing AM fungal OTUs (ii) are scaled 701 

to the relative abundance of OTUs in soil communities in control (a-ii) and phosphorus-702 

addition (b-ii) treatments respectively. The thickness of the linkages is scaled to reflect the 703 

proportion of the AM fungal community constituting the linkages. AM fungal OTUs found in 704 

the roots of either species of Voyria and their linkages are depicted in colour (see legend), 705 

and those AM fungal OTUs not interacting with mycoheterotrophs in grey. Full list of OTU 706 

codes are given in Table S3. Only the 50 most abundant AM fungal OTUs (in the soil) are 707 

plotted, and AM fungal OTUs making up less than 1% of the total number of sequences in a 708 

sample type are omitted for clarity. Data are based on read counts from 454-sequencing. V. 709 

ten = Voyria tenella, V. cor = Voyria corymbosa, ALSB = Alseis blackiana, DESP = 710 

Desmopsis panamensis, HEIC = Heisteria concinna, SIMA = Simarouba amara, SORA = 711 

Sorocea affinis, TET2 = Tetragastris panamensis, VIR1 = Virola sebifera. 712 



	
	
 
Figure 1. The mycoheterotrophs Voyria tenella (a), and Voyria corymbosa (b) in a lowland 
tropical forest in Panama. The root system of the mycoheterotroph V. tenella is reduced (c) 
and intensely colonised by arbuscular mycorrhizal (AM) fungi (d). In (c-i), fungal material is 
visible as the light-coloured ring surrounding the central vasculature. In (c-ii) fungal material 
(hyphae and coils) is rendered in red and plant material is not shown. In (d) plant material is 
displayed in grey, and fungal material in red. The same image stack is displayed in (d-i–iv) 
with the plant material made increasingly transparent. (c-ii) and (d-i–iv) are confocal 
micrographs obtained by differential staining of plant and fungal tissues, shown as 3D 
projections (AMIRA™). Photos (a) and (b) courtesy of Christian Ziegler. In (a) and (b) scale 
bar = 20 mm; in (c) scale bar = 1 mm; in (d) scale bar = 100 µm.  
	
	
	
	
	
	



	
	
Figure 2. (a) Numbers of the mycoheterotroph Voyria tenella sharply decline with increasing 
soil exchangeable phosphorus (P) across a naturally occurring gradient in lowland tropical 
forests in Panama. The solid line depicts the fitted response of a generalised linear model 
with negative binomial errors (n = 37). Red dashed lines indicate the 95% confidence 
interval. The blue shaded region represents the concentrations of soil exchangeable 
phosphorus found in +P plots in the nearby factorial nutrient-addition experiment (the 
Gigante Fertilisation Project, Figure S1). (b) The abundant mycoheterotroph Voyria tenella 
(b-i) and less common congener Voyria corymbosa (b-ii) are eliminated by phosphorus (P) 
addition in a long-term factorial nutrient-addition experiment in a lowland tropical forest in 
Panama. Figure contrasts 16 no-P plots (control, N, K, NK treatments) with 16 +P plots (P, 
NP, KP, NPK treatments). Values are fitted responses of generalised linear model with 
negative binomial errors and show 95% confidence intervals. The effects of individual 
fertilisation treatments on numbers of V. tenella and V. corymbosa are presented in Figure S3. 
 
 
 



 
 
Figure 3. The relative abundance — in the soil — of the AM fungal taxa most strongly 
associated with Voyria tenella (a-i) and Voyria corymbosa (b-i) are reduced but not 
eliminated in +P treatments (a-ii), (b-ii) in a long-term factorial nutrient-addition experiment 
in a lowland tropical forest in Panama. Upper bars (a-i) and (b-i) represent the relative 
abundance of AM fungal taxa in the roots of V. tenella and V. corymbosa (averaged across 
control, N, K, NK treatments; n = 16). Lower bars (a-ii) and (b-ii) illustrate the effect of 
experimental phosphorus addition on the proportional abundance of AM fungal taxa in the 
soil. Figure contrasts 16 no-P plots (control, N, K, NK treatments) with 8 +P plots (P, NP 
treatments). Values are fitted responses of generalised linear model with negative binomial 
errors and show 95% confidence intervals. Significant effects of phosphorus addition are 
asterisked. See Figure S4 for the effects of individual fertilisation treatments on the relative 
abundance of AM fungal taxa in the soil.  
 
 
 



 
 
Figure 4. The AM fungal partners of mycoheterotrophs Voyria tenella (V. ten) and Voyria 
corymbosa (V. cor) under unfertilised conditions (a-i) were present both in the soil and in the 
roots of autotrophic plants when fertilised with phosphorus (b-ii, b-iii), although the relative 
abundance of AM fungal taxa shifted in response to phosphorus addition. Interactions 
between mycoheterotrophs, AM fungi, and autotrophs in unfertilised control plots are 
represented in (a), and in phosphorus-addition plots in (b). (b) displays potential linkages 
(indicated by shaded blue region) between mycoheterotrophs and AM fungi based on their 
partners in unfertilised control plots; there were no mycoheterotrophs actually found in 
phosphorus-addition plots. Values are based on the mean of 4 unfertilised control plots, and 4 
phosphorus-addition plots. The widths of bars representing AM fungal OTUs (ii) are scaled 
to the relative abundance of OTUs in soil communities in control (a-ii) and phosphorus-
addition (b-ii) treatments respectively. The thickness of the linkages are scaled to reflect the 
proportion of the AM fungal community constituting the linkages. AM fungal OTUs found in 
the roots of either species of Voyria and their linkages are depicted in colour (see legend); 
AM fungal OTUs not interacting with mycoheterotrophs are depicted in grey. Full list of 
OTU codes are given in Table S3. Only the 50 most abundant AM fungal OTUs (in the soil) 
are plotted, and AM fungal OTUs making up less than 1% of the total number of sequences 
in a sample type are omitted for clarity. V. ten = Voyria tenella, V. cor = Voyria corymbosa, 
ALSB = Alseis blackiana, DESP = Desmopsis panamensis, HEIC = Heisteria concinna, 
SIMA = Simarouba amara, SORA = Sorocea affinis, TET2 = Tetragastris panamensis, VIR1 
= Virola sebifera. 
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SUPPLEMENTARY METHODS 

 

(a) Detailed site description: Gigante Fertilisation Project 

 

The Gigante Fertilisation Project (GFP) is located on the Gigante Peninsula, within the Barro 

Colorado Nature Monument (BCNM) in Panama [1]. Tree species composition and canopy 

height are characteristic of mature secondary forest [1]. Nearby Barro Colorado Island (c. 5 

km from the study site) has a mean annual rainfall of 2600 mm, with a strong dry season 

between January and April and a mean annual temperature of 26 oC {Sayer:2011vi}. The 

soils are predominantly moderately acidic Oxisols [2] and are comparable to the plateau soils, 

on andesite, on nearby Barro Colorado Island (BCI) [3]. Compared to soils worldwide, the 

Gigante soils are infertile and strongly weathered, with low concentrations of available 

phosphorus and moderate concentrations of base cations [4,5]. The GFP is a factorial NPK 

fertilisation experiment consisting of nine fertiliser treatments (N, P, K, NP, NK, PK, NPK, 

micronutrients, and unfertilised controls) replicated four times across the 26.6-ha study site. 

The 32 experimental plots measured 40-m × 40-m, and were separated by a minimum 

distance of 40 m, with the exception of two plots separated by 20 m and a 3 m deep stream 

bed. Starting in 1998, fertilisers were applied by hand in four equal doses a year, equally 

spaced across the wet season. The annual doses were 125 kg N ha-1 yr-1 as urea, 50 kg P ha-1 

yr-1 as triple superphosphate, and 50 kg K ha-1 yr-1 as potassium chloride.  

 

The micronutrient treatment consisted of HBO2, CuSO4, FeSO4, MnSO4, ZnSO4 and 

(NH4)6Mo7O24 at 25 kg ha-1 year-1 besides dolomitic limestone CaMg(CO3)2 (36.8 kg 

year-1) at 230 kg ha-1 year-1. 

 

(b) Detailed rationale for use of natural rainfall and edaphic gradient alongside long-

term experimental manipulation 

 

It is possible that the artificially large amounts of added phosphorus in the experiment may 

have induced an exaggerated response in the mycoheterotrophs. However, the natural 

gradient allowed us to model the response of mycoheterotrophs to soil exchangeable 

phosphorus ranging from concentrations lower than those in experimental no-P treatments to 

concentrations as high or higher than the experimental +P treatments. Conversely, the 

response of mycoheterotrophs along the natural phosphorus gradient could be caused by 
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correlated variables such as pH. However, the experimental data allowed us to observe the 

response of mycoheterotrophs to soil phosphorus alone. In addition, patterns in 

mycoheterotroph abundance across the natural gradient with plots spanning a wide 

geographic area could be confounded by dispersal effects. However, the blocked design of 

the nutrient-addition experiment provided control over spatial variation and allowed us to 

quantify the effect of soil phosphorus on mycoheterotroph abundance accounting for natural 

variation in dispersal. Finally, the micronutrient plots, which received dolomitic limestone to 

provide Ca, allowed us to confirm that phosphorus rather than the calcium counterion of the 

phosphorus fertiliser (triple superphosphate; Ca(H2PO4)2.H2O) was responsible for the 

observed effects (Figure S8).  

 

(c) Autotrophic seedling species 

 

Alseis is a medium-sized canopy species recruiting from very small wind dispersed seeds in 

canopy gaps [6]; Desmopsis is a small understory tree; Heisteria is a small understory tree 

that sometimes reaches the canopy; Sococea is an understory shrub to small tree; Simarouba 

is fast-growing canopy tree associated with gaps; Tetragastris is a shade-tolerant canopy 

species; and Virola is a shade-tolerant mid-storey tree [7]. Sorocea, Desmopsis and Heisteria 

reproduce under closed canopies of taller trees [8].  

 

(d) Soil chemistry 

 

All soil chemistry data used was obtained by the methods described by Condit et al. (2013) 

[9]. Briefly, nitrogen was extracted within 6 h of collection in 0.5 M K2SO4, with ammonium 

and nitrate determined by automated colorimetry on a Lachat Quickchem 8500 (Hach Ltd, 

Loveland, CO, USA). Soil pH was determined in deionized water and 0.01 M CaCl2 with a 

glass electrode (Hach Ltd, Loveland, Colorado) in a 1:2 solution to solution ratio. Readily-

exchangeable phosphate (resin P) was determined by extraction with anion-exchange 

membranes, with phosphate detection by automated molybdate colorimetry [10]. All other 

inorganic nutrients were extracted in Mehlich-3 solution [11] with detection by inductively-

coupled plasma optical-emission spectrometry on an Optima 7300DV (PerkinElmer, 

Waltham, MA, USA). 

 

(e) AM fungal abundance 
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We used the neutral lipid fatty acid (NLFA) 16:1ω5 as a biomarker for extra-radical AM 

fungal biomass. We performed lipid extraction and analysis according to Frostegård et al. 

(1993) [12], with modifications described by Nilsson et al. (2007) [13]. Briefly, extracted 

lipids, from 4 g lyophilised soil per plot were fractionated into neutral lipids, glycolipids, and 

polar lipids on silica columns by successive elution with chloroform, acetone and methanol. 

Methyl nonadecanoate (FAME 19:0) was added as an internal standard, and neutral and polar 

fractions were converted to fatty acid methyl esters (FAMEs) prior to analysis on a gas 

chromatograph with a flame ionisation detector and a 50 m HP5 capillary column (Hewlett 

Packard, Wilmington, DE, USA).  

 

We analysed both NLFAs and phospholipid fatty acids (PLFAs) to ascertain the ratio of 

NLFA 16:1ω5 to PLFA 16:1ω5, as a ratio > 1 indicates that NLFA 16:1ω5 is a sensitive AM 

fungal biomarker [14]. Because PLFA 16:1ω5 is known to be produced by bacteria, and is 

not a reliable AM fungal biomarker in field soils [15], we used NLFA 16:1ω5 as a general 

proxy for extra-radical AM fungal biomass. The mean NLFA:PLFA ratio across the samples 

analysed in this study was 2.3, suggesting that NLFA 16:1ω5 is an effective AM fungal 

biomarker in these soils [14].  

 

To measure AM fungal colonisation of roots, we soaked and rinsed the root samples with 

distilled water to remove the ethanol. Roots were then cleared by autoclaving in 5% KOH for 

5-60 minutes; bleached in solution of ammonia in 3% H2O2 for 15-60 minutes depending on 

the composition of roots in the sample [16]; acidified in 2% HCl for 30 minutes; and stained 

with 0.05% trypan blue (in a 1:1:1 solution of distilled water, glycerol and lactic acid) for 20 

minutes at 60 oC. The optimum clearing and bleaching time varied depending on the 

thickness and pigmentation of the roots. We quantified AM fungal colonisation using a 

compound light microscope at 200 × magnification, according to the method of McGonigle et 

al. [17], with at least 100 intersections per sample, and one sample per seedling. Mycorrhizal 

colonisation was expressed as the percentage fine root length colonised by AM fungal 

hyphae, vesicles and arbuscules.  

 

(h) Detailed bioinformatic analyses 
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All bioinformatic analysis was performed using the software mothur [18] unless otherwise 

stated. Sequence filtering was performed with the sff.multiple quality filtering protocol. 

Reads were removed from the dataset if they did not contain the 10 bp MID, had > 1 error in 

the barcode sequence, > 2 errors in the forward primer, or were shorter than 200 bp in length.  

 

Clustering was performed using the algorithm Clustering 16S rRNA for Operational 

Taxonomic Unit (OTU) Prediction (CROP). CROP is an unsupervised Bayesian clustering 

method that forms clusters based on the actual organisation of sequences without setting a 

hard similarity cutoff [19]. To capture species level diversity as far as possible, we set the i 

and u parameters to 2% cluster difference rather than the conventional 3% because the SSU 

region has relatively low variation [20,21]. The centre sequence from each cluster was used 

as a representative sequence in subsequent analyses.  

 

Sequence alignment was performed with the software MAFFT v7.149b [22] using the L-INS-

i algorithm (iterative refinement using local pairwise alignment) and the alignment from 

Krüger et al. (2012) [23] as a backbone. Alignments were improved with MUSCLE [24] 

using the –refine option. Trees were built using RAxML v. 8.0 [25] with GTR GAMMA 

implementation, and bootstrap values based on 1000 runs.  

 

We used the Basic Local Alignment Search Tool (BLAST [60]; minimum e-value 10-30) on 

one representative sequence from each cluster iteratively against three databases in the 

following order of preference: i) sequences from Krüger et al. (2012); ii) all virtual taxa (VT) 

from the MaarjAM AM fungal sequence database (www.maarjam.botany.ut.ee); and iii) all 

18S Glomeromycotan sequences from SILVA database. Non-Glomeromycotan clusters were 

removed when the highest blast match did not correspond to an AM fungal sequence in any 

of the three datasets. 

 

Clusters were named based on matches to database entries at > 97% covering a minimum of 

80% of the query sequence. We used the generic names from Krüger et al. (2012), and VT 

numbers from the MaarjAM database. Where clusters did not match a VT at > 97%, we 

assigned a name based on the highest VT match and phylogeny (eg. Glomus_OTU1). We 

fused clusters based on matches to database sequences > 97% and the tree topology obtained 

from RaXML. Clusters that occurred in < 2 samples, and with < 5 reads total were removed 
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from the dataset. A breakdown of the sequencing results is provided in the Supplementary 

Discussion. Raw sequence data were deposited in the International Nucleotide Sequence 

Database Sequence Read Archive (accession no. SRP076949). 

 

(i) Statistical analyses: mycoheterotroph numbers across the rainfall and edaphic 

gradient 

 

We analysed the results of all mycoheterotroph censuses using generalised linear models 

(GLMs). Count data (integer abundances) can be modelled using Poisson or negative 

binomial error structures [26]. Because the variance >> mean we used negative binomial 

error structures with glm.nb from the package MASS [27]. We analysed only the most 

abundant species (V. tenella across the rainfall and edaphic gradient, and V. tenella and V. 

corymbosa across the GFP), and built separate models for each species. Significance of 

model terms was assessed using likelihood-ratio chi-square tests. 

 

When modelling mycoheterotroph counts across the 37 plots spanning the rainfall and 

edaphic gradient we worked with a subset of environmental variables selected and described 

by Condit et al. (2013) [9]. Briefly, the subset was the largest set of variables within which all 

pairs were weakly correlated (r2 < 0.40). Variables consisted of dry-season moisture, soil 

phosphorus (P), calcium (Ca), zinc (Zn), potassium (K), aluminium (Al), iron (Fe), and 

inorganic nitrogen (N). Magnesium, manganese, organic nitrogen and pH were closely 

correlated with calcium, and therefore excluded. Resin extractable phosphorus was chosen 

above Mehlich-3 and total phosphorus measures because resin extractable phosphorus better 

corresponds to the plant-available phosphorus fraction. Mehlich-3 iron and aluminium data 

were unavailable for five of the plots (Gigante Leaf Litter Manipulation Project control 

plots), and omitted from further analysis. We did not consider this to be a problem: Condit et 

al. (2013) [9] identified dry-season moisture, phosphorus, potassium and calcium as the most 

important variables in predicting tree distributions across this gradient, suggesting that these 

are the predictors that vary enough to matter. All of the predictors apart from dry-season 

moisture and inorganic nitrogen had extreme values (ie. P, Ca, Zn, K) and were log-

transformed to reduce the influence of outlying values. All predictors were standardized to 

zero mean and unit variance.  
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SUPPLEMENTARY TABLES S1-S3 

 

Table S1. Numbers of Voyria tenella modelled against six environmental variables across the 

natural phosphorus gradient (generalized linear model with negative binomial errors).  

Variable Parameter	estimate 95%	CI χ2 P
log	P -1.594 -2.07	,	-1.15 55.07 <	0.001
log	Ca -0.268 -0.72	,	0.16 1.468 0.226
dry	season	moisture 0.282 -0.17	,	0.76 1.455 0.228
log	K -0.365 -0.82	,	0.07 2.744 0.098
log	Zn -0.045 -0.40	,	0.31 0.062 0.804
inorganic	N	 -0.181 -0.53	,	0.17 1.053 0.305  

 

 

Table S2. Comparison of three +P plots and three no-P plots with comparable proportional 

abundance of the dominant Sclerocystis_VTX00126 net AM fungal biomass in the soil.  

P	status Plot Treatment Sclerocystis_VTX00126 AM	fungal	biomass Number	of	V.	tenella	
(%) (nmol	g	-1	dry	soil	NLFA	16:1ω5)	

- 18 K 13.55 73.19 61
- 32 K 14.28 94.76 115
- 23 N 14.79 59.27 216
+ 24 P 12.94 113.11 0
+ 22 NP 13.75 72.24 0
+ 3 NP 14.92 47.01 0  
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Table S3. AM fungal OTUs corresponding to numbers in Figure 4.  

# OTU	name # OTU	name # OTU	name
1 Sclerocystis_VTX00126 45 Glomus_VTX00368 89 Rhizophagus_OTU4
2 Rhizophagus_VTX00089 46 Glomus_VTX00093_a 90 Rhizophagus_OTU5
3 Rhizophagus_VTX00399_c 47 Rhizophagus_VTX00404 91 Rhizophagus_OTU6
4 Rhizophagus_VTX00361_b 48 Glomus_OTU12 92 Rhizophagus_OTU7
5 Glomus_VTX00103_a 49 Glomus_VTX00137_a 93 Rhizophagus_OTU8
6 Glomus_VTX00093_b 50 Scutellospora_OTU1 94 Rhizophagus_VTX00084
7 Rhizophagus_VTX00070 51 Acaulospora_VTX00227 95 Rhizophagus_VTX00090
8 Rhizophagus_VTX00080 52 Glomus_OTU10 96 Rhizophagus_VTX00099
9 Rhizophagus_VTX00359 53 Glomus_VTX00096 97 Rhizophagus_VTX00223
10 Rhizophagus_VTX00092 54 Glomus_VTX00183_a 98 Rhizophagus_VTX00399_b
11 Glomus_VTX00166 55 Rhizophagus_VTX00235 99 Scutellospora_VTX00254
12 Glomus_VTX00120 56 Scutellospora_VTX00041
13 Acaulospora_VTX00024 57 Acaulospora_OTU1
14 Glomus_VTX00121 58 Acaulospora_OTU2
15 Glomus_VTX00203 59 Acaulospora_OTU3
16 Glomus_VTX00199 60 Acaulospora_OTU4
17 Rhizophagus_VTX00074 61 Acaulospora_OTU5
18 Glomus_VTX00122_b 62 Acaulospora_VTX00012
19 Rhizophagus_VTX00361_a 63 Acaulospora_VTX00014
20 Glomus_OTU13 64 Acaulospora_VTX00030
21 Sclerocystis_VTX00269 65 Acaulospora_VTX00328
22 Glomus_VTX00101_b 66 Archaeospora_OTU1
23 Glomus_VTX00167 67 Archaeospora_VTX00004
24 Gigaspora_VTX00039 68 Archaeospora_VTX00005
25 Glomus_VTX00292 69 Gigaspora_OTU1
26 Rhizophagus_VTX00399_a 70 Glomus_OTU5
27 Glomus_OTU1 71 Glomus_OTU6
28 Glomus_VTX00194 72 Glomus_OTU7
29 Glomus_VTX00175 73 Glomus_OTU8
30 Sclerocystis_VTX00069 74 Glomus_VTX00075
31 Rhizophagus_VTX00253 75 Glomus_VTX00109
32 Acaulospora_VTX00026 76 Glomus_VTX00122_a
33 Glomus_OTU9 77 Glomus_VTX00135
34 Glomus_VTX00209 78 Glomus_VTX00137_b
35 Glomus_VTX00189 79 Glomus_VTX00146
36 Glomus_OTU2 80 Glomus_VTX00183_b
37 Glomus_OTU11 81 Glomus_VTX00366
38 Glomus_OTU3 82 Glomus_VTX00370
39 Rhizophagus_VTX00397 83 Glomus_VTX00410
40 Glomus_OTU4 84 Glomus_VTX00420
41 Glomus_VTX00103_b 85 Redeckera_VTX00262
42 Glomus_VTX00186 86 Rhizophagus_OTU1
43 Acaulospora_VTX00231 87 Rhizophagus_OTU2
44 Glomus_VTX00101_a 88 Rhizophagus_OTU3
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SUPPLEMENTARY FIGURES S1-S9 
 

 
Figure S1. Maps of the study sites in the Panama Canal area. Units on the axes are UTM 
(Universal Transverse Mercator) coordinates (zone 17) in kilometers. Sites across the edaphic 
gradient are marked as purple points. The blue square marks the long-term nutrient addition 
experiment (the Gigante Fertilisation Project, GFP). In (b): the placements of treatments in 
the GFP are shown. Treatments are represented by the combination of nutrients added (N = 
nitrogen, P = phosphorus, K = potassium, C = unfertilised control, M = micronutrients).  
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Figure S2. Numbers of the mycoheterotroph Voyria tenella modelled against six 
environmental variables across a naturally occurring rainfall and edaphic gradient in lowland 
tropical forests in Panama. Solid lines indicate a significant relationship, and represent the 
fitted response of V. tenella to a given predictor in the generalised linear model with negative 
binomial errors (n = 37). Figures are plotted on the scale of the linear predictor. Points are 
partial residuals (the proportion of the response explained by a given term). Shaded regions 
are 95% confidence bands. Parameter estimates are reported in Supplementary Table 1. 
Although in the models all predictors were standardised to a mean of zero and standard 
deviation of 1, predictors are here plotted on the original scale of the predictor to facilitate 
interpretation.  
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Figure S3. The abundant mycoheterotroph Voyria tenella (a) and less common congener 
Voyria corymbosa (b) are eliminated by phosphorus (P) addition in a long-term factorial 
nutrient-addition experiment in a lowland tropical forest in Panama. Shaded regions highlight 
+P treatments. In (a) the significant N × K interaction is marked, and in (b) the significant 
effect of N is shown, contrasting 16 no-N plots with 16 +N plots. Values are fitted responses 
of generalised linear model with negative binomial errors and show 95% confidence 
intervals. C is control, K is potassium, N is nitrogen, P is phosphorus.  
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Figure S4. The relative abundance — in the soil — of the AM fungal taxa most strongly 
associated with the mycoheterotrophs Voyria tenella (a-i) and Voyria corymbosa (b-i) are 
reduced but not eliminated in treatments with added phosphorus (a-ii) and (b-ii) in a long-
term factorial nutrient-addition experiment in a lowland tropical forest in Panama. Upper 
horizontal bars (a-i) and (b-i) represent the relative abundance of AM fungal taxa in the roots 
of V. tenella and V. corymbosa  (averaged across control, N, K, NK treatments; n = 16). 
Lower bars (a-ii) and (b-ii) illustrate the effect of fertilisation treatments on the relative 
abundance of AM fungal taxa in the soil. Grey shaded bands highlight fertilisation treatments 
with added phosphorus. Values are fitted responses of generalised linear model (n = 4) with 
negative binomial errors and show 95% confidence intervals. C is control, K is potassium, N 
is nitrogen, P is phosphorus.  
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Figure S5. The relative abundance — in the roots of seven species of tree seedlings — of the 
AM fungal taxon making up > 90% of the AM fungal community in the roots of the 
mycoheterotrophs V. tenella and V. corymbosa (Sclerocystis_VTX00126) was reduced in 
some species but not others (significant phosphorus × species interaction, χ2 = 26.8, P < 
0.001). Values are fitted responses of generalised linear mixed model with negative binomial 
errors and show 95% confidence intervals obtained by parametric bootstrapping with 10,000 
simulations. The Figure contrasts 12 no-P plots (control, N, K treatments) with 8 +P plots (P, 
NP treatments). ALSB = Alseis blackiana, DESP = Desmopsis panamensis, HEIC = 
Heisteria concinna, SIMA = Simarouba amara, SORA = Sorocea affinis, TET2 = 
Tetragastris panamensis, VIR1 = Virola sebifera. 
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Figure S6. Net AM fungal biomass was reduced by long-term nitrogen (N) and phosphorus 
(P) addition in a lowland tropical forest in Panama. (a) Levels of the neutral lipid fatty acid 
(NLFA) 16:1ω5, a commonly used proxy for net AM fungal biomass, in forest soil. (b) 
Percentage of root length colonised in six species of tree seedling. Significant effects of N 
and P addition are shown, contrasting eight –N / –P plots with eight +N / +P plots. Values are 
fitted responses of linear models ± one standard error. In (a), effect of nitrogen: F 1,11 = 8.61, 
P = 0.01; effect of phosphorus: F 1,11 = 4.84, P = 0.05. In (b) effect of nitrogen: F 1,11 = 18.43, 
P = 0.01; effect of phosphorus: F 1,11 = 9.39, P = 0.01. C is control, K is potassium, N is 
nitrogen, P is phosphorus.  
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Figure S7. Stem (a) and root (b) tissue phosphorus concentrations of the mycoheterotroph 
Voyria tenella do not respond to increasing levels of soil exchangeable phosphorus across a 
natural phosphorus gradient in lowland tropical forests in Panama. Shaded regions represent 
95% confidence bands. 
 

 
 
Figure S8. The abundance of the mycoheterotrophs Voyria tenella (a) and Voyria corymbosa 
(b) was unaffected by long-term micronutrient addition in a lowland tropical forest in 
Panama, confirming that phosphorus and not the calcium counterion of the phosphorus 
fertiliser (triple superphosphate, Ca(H2PO4)2.H2O) was responsible for the elimination of 
mycoheterotrophs. The micronutrient treatment contained dolomitic limestone to provide Ca 
and Mg, and a micronutrient fertiliser that contained B, Cu, Fe, Mn, Mo, S, and Zn. Values 
are fitted responses of generalised linear model with negative binomial errors (n = 4) and 
show 95% confidence intervals.  
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Figure S9. Rarefaction curves for each sample approached asymptotes indicating that 
sequencing intensity was sufficiently high to detect the majority of OTUs and that sampling 
effort was sufficient to capture the range of AM fungal diversity across the sites. 
 

0 500 1000 1500

0
10

20
30

40

a Soil

N
um

be
ro
fO

TU
s

0 500 1000 1500

0
5

10
20

30

b Tree seedling roots

N
um

be
ro
fO

TU
s

0 500 1000 1500

2
4

6
8

10
14

c Voyria (tenella & corymbosa) roots

Number of sequences

N
um

be
ro
fO

TU
s


	01
	Additional materials enclosed in submission:
	1.  Supplementary Figures S1-S9
	2.  Supplementary Tables S1-S3
	3.  Supplementary Methods
	4.  Supplementary Discussion
	5.  Raw data as .xlsx file
	6.  Unpublished manuscript cited in discussion of our findings: Turner, B. L., Brenes-Arguedas, T. & R. Condit, Pervasive phosphorus limitation of tropical tree species, Unpublished Manuscript
	2. Methods
	(a) Fertility gradient
	(ii) Mycoheterotroph census and sampling
	(iii) Soil chemistry
	(iv) Tissue nutrient analysis
	(b) Nutrient addition experiment
	(ii) Mycoheterotroph census and sampling
	(iv) Autotrophic seedling sampling
	(v) AM fungal abundance
	(vi) DNA extraction and sequencing
	(vii) Bioinformatic analyses
	(c) Statistical analyses
	All statistical analysis was conducted in R version 3.1.2 (R Development Core Team, 2014).
	(i) Mycoheterotroph census (fertility gradient and nutrient-addition experiment)
	(iv) AM fungal taxa in roots and soil (nutrient-addition experiment)

	02
	03
	04
	05

