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Why RLC realizations of certain impedances need
many more energy storage elements than expected

Timothy H. Hughes

Abstract—It is a significant and longstanding puzzle that
the resistor, inductor, capacitor (RLC) networks obtained by
the established RLC realization procedures appear highly non-
minimal from the perspective of linear systems theory. Specifi-
cally, each of these networks contains significantly more energy
storage elements than the McMillan degree of its impedance, and
possesses a non-minimal state-space representation whose states
correspond to the inductor currents and capacitor voltages. De-
spite this apparent non-minimality, there have been no improved
algorithms since the 1950s, with the concurrent discovery by
Reza, Pantell, Fialkow and Gerst of a class of networks (the
RPFG networks), which are a slight simplification of the Bott-
Duffin networks. Each RPFG network contains more than twice
as many energy storage elements as the McMillan degree of
its impedance, yet it has never been established if all of these
energy storage elements are necessary. In this paper, we present
some newly discovered alternatives to the RPFG networks. We
then prove that the RPFG networks, and these newly discovered
networks, contain the least possible number of energy storage
elements for realizing certain positive-real functions. In other
words, all RLC networks which realize certain impedances
contain more than twice the expected number (McMillan degree)
of energy storage elements.

Index Terms—Passive system, positive-real, minimal realiza-
tion, network synthesis, electric circuit, mechanical control,
inerter.

I. INTRODUCTION

MODERN systems theory has its roots in electrical
circuit analysis and synthesis [1, p. 78]. The notions

of realizability, minimality, and the relationship between the
internal and external properties of systems, all feature in
several classical papers on electrical circuit synthesis, e.g.,
Foster’s reactance theorem [2]. The connection between pas-
sivity and positive-real (PR) functions originated in the thesis
of Otto Brune on electrical circuit synthesis [3], where it
was established that the impedance of any passive network is
necessarily PR. These concepts continue to play a central role
in modern systems theory. Nevertheless, many significant re-
sults in electrical circuit synthesis continue to perplex systems
theorists. In particular, there remain several open questions
on the synthesis of PR impedances with networks comprising
resistors, inductors, and capacitors (RLC networks). Some of
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the more puzzling questions concern minimality (in terms
of the numbers and types of elements required) [4], [5];
controllability [6], [7]; and observability [7], [8]. Notably, an
RLC network can contain more energy storage elements than
the McMillan degree of its impedance, and possess a non-
minimal state-space representation whose states correspond to
the inductor currents and capacitor voltages. Indeed, this is
the case for the famous Bott-Duffin networks [9], and their
simplifications [10]–[12]. The purpose of this paper is to
demonstrate the necessity of this apparent non-minimality in
the RLC realization of certain PR functions.

In [13], it was established that the Bott-Duffin networks
contain the least possible number of energy storage elements
for realizing certain PR functions (the biquadratic minimum
functions) using series-parallel networks. However, it is pos-
sible to realize an arbitrary given PR function with RLC
networks which are not series-parallel and contain fewer
energy storage elements than the Bott-Duffin networks. This
is demonstrated by the networks discovered by Reza, Pantell,
Fialkow and Gerst [10]–[12] (hereafter referred to as the RPFG
networks), which achieve a slight improvement on the Bott-
Duffin networks. In this paper, we first present some newly
discovered alternatives to the RPFG networks. We then prove
that, among the entire class of RLC networks, the RPFG
networks and our newly discovered alternatives contain the
least possible number of energy storage elements for realizing
almost all biquadratic minimum functions. This is despite the
number of energy storage elements in these networks being
more than twice the McMillan degree of the corresponding
network’s impedance.

Secondary to the motivation outlined above, the topic of
this paper is also relevant to mechanical control following
the recent invention of the inerter [14]. Using the completed
electrical-mechanical analogy (see Appendix C), any given
RLC network has a corresponding damper-spring-inerter net-
work whose transfer function from force to velocity is equal
to the impedance of the corresponding RLC network. Such
damper-spring-inerter networks have applications in vibration
absorption systems [14], e.g., vehicle suspension [15]; train
suspension [16]–[18]; motorcycle steering compensators [19],
[20]; and building suspension [21].

The structure of this paper, and the key contributions, are
as follows. Section II discusses state-space descriptions of
RLC network behaviors. In Section III, we present the RPFG
networks (Fig. 4a), and our newly discovered alternatives
(Fig. 4b). Each network in Section III contains significantly
more energy storage elements than the McMillan degree of
its impedance. In Section IV, we state our main results
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concerning the necessity of this apparent non-minimality for
the realization of biquadratic minimum functions (Theorems
4–6). Section V investigates the realization of general (not nec-
essarily biquadratic) minimum functions with RLC networks.
The main results are then proved in Section VI.

Relevant background information is included in three appen-
dices. Appendices A and B contain technical information on
RLC network classification and the graph theoretic analysis of
RLC networks. The reader who wishes to follow the proofs in
Sections V and VI in detail is advised to read these appendices
before those sections. Finally, in Appendix C, we outline the
electrical-mechanical analogy and its relevance to this paper.

Our notation is as follows. We let R (resp., C) denote the
real (resp., complex) numbers. For z ∈ C, we denote the
real (resp., imaginary) part by <(z) (resp., =(z)), and the
complex conjugate of z by z∗. R[s] (resp., R(s)) denotes the
polynomials (resp., rational functions) in the indeterminate s
with real coefficients. With F denoting one of R, C, R[s],
or R(s), then Fm×n and Fn denote matrices and vectors of
the respective dimensions whose entries are all from F. We
let diag

(
M1 · · · Mn

)
denote the block diagonal matrix with

M1, . . . ,Mn on the main diagonal; and col
(
M1 · · · Mn

)
:=[

MT
1 · · · MT

n

]T
. For G ∈ R(s), we say G is PR if (i) G

is analytic in the open right half plane; and (ii) <(G(λ)) ≥ 0
for <(λ) > 0. Equivalently, condition (ii) can be replaced with
(iii) <(G(jω)) ≥ 0 for all ω ∈ R (except at poles of G), and
the poles of G on jR ∪∞ are simple and have real positive
residues. G is called lossless if it is PR and <(G(jω)) = 0 for
all ω ∈ R ∪∞. When p̂, q̂ ∈ R[s] are coprime, and G = p̂/q̂,
then the McMillan degree of G is the maximum of the degrees
of p̂ and q̂, and is equal to the number of states in a minimal
(controllable and observable) state-space realization for G.

II. STATE-SPACE REPRESENTATIONS OF RLC NETWORK
BEHAVIORS

The famous Bott-Duffin networks [9], and their simplifi-
cations [10]–[12] (the RPFG networks), prove that any given
PR function can be realized by an RLC network. However, the
number of energy storage elements in these networks is con-
siderably greater than the McMillan degree of their impedance.
In contrast, there are many RLC networks which possess the
same number of energy storage elements as the McMillan
degree of their impedance. For example, any regular function
of McMillan degree two (biquadratic) can be realized by an
RLC network containing two energy storage elements [22].
Indeed, in the analysis of electrical networks, it is not unusual
to assume that the behavior of the network has a minimal
state-space realization whose states correspond to the inductor
currents and capacitor voltages (see [23, Section III] for a
nice description of this and other commonly held assumptions
and their implications). In this section, we provide examples
of networks which violate this condition. One conclusion of
this paper is that this assumption is violated for all RLC
realizations of certain PR functions (the biquadratic minimum
functions). In fact, we will answer the question what is the
minimum possible number of energy storage elements required
for realizing a biquadratic minimum function, and we find that
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N

Fig. 1. RLC network with source. The driving-point current and voltage are
denoted by i and v, respectively.
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Fig. 2. Passive electrical and mechanical elements.

in most cases the RPFG networks actually contain the least
possible number of energy storage elements.

We consider RLC (one-port) networks. These networks
possess a pair of driving-point terminals across which a source
can be attached as in Fig. 1. The network comprises an
interconnection of resistors, inductors, and capacitors, which
have the properties shown in Fig. 2 (we only allow strictly
positive values for R, L, and C). Note that this figure also
indicates the similarities between these elements and three
mechanical components: springs, dampers, and inerters (this
will be discussed in Appendix C).

The driving-point current i and voltage v are constrained
by the network to satisfy a linear differential equation of the
form p( ddt )i = q( ddt )v for some p, q ∈ R[s]. Providing q 6≡
0, then the impedance Z of the network is defined as Z :=
p/q. The existence of Z is guaranteed if there is at least one
path of elements between the driving-point terminals of the
network [24], in which case Z is PR, and the number of energy
storage elements in the network is greater than or equal to the
McMillan degree of Z [25].

As emphasised in [6], [8], [24], certain RLC networks
contain more energy storage elements than the McMillan
degree of their impedance. There are two main ways in which
this can happen: (i) it may not be possible to arbitrarily assign
initial values to the currents through the inductors and the
voltages across the capacitors; and (ii) the set of inductor
currents and capacitor voltages can be either uncontrollable
or unobservable from the driving-point terminals.

Case (i) is illustrated by the network in Fig. 3a. The three
capacitors in this network form a circuit, so the sum of the
voltages across the capacitors must sum to zero by Kirchhoff’s
voltage law. It follows that the behavior of this network does
not possess a state-space representation dx

dt = Ax + Bi,
v = Cx + Di whose states correspond to the inductor
currents and capacitor voltages. To see this, note that for
any given (real) x(0) and (locally integrable) i, then x(t) =
eAtx(0) +

∫ t
0
eA(t−τ)Bi(τ)dτ and v(t) = Cx(t) + Di(t)

(t ≥ 0) is a solution to the state-space equations. If the states
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(a) Network with linearly dependent
capacitor voltages.
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Fig. 3. Two network realizations of the function H(s) in Lemma 3; φ :=
1 −W , ψ := 1 + W , η := 2W − 1, ζ := W 2φ2 − F 2η, K,ω0 > 0
0 < F < W (1 −W )/

√
2W − 1, 1/2 < W < 1. The two networks are

related through a star-delta transformation involving the three capacitors.

correspond to the inductor currents and capacitor voltages,
then this implies that there are trajectories of the network for
which the initial voltages across the capacitors do not sum
to zero: a contradiction. Note, however, that it is possible to
describe the behavior of this network using a linear differential
algebraic equation [24].

Case (ii) is illustrated by the network in Fig. 3b. The
behavior of this network possesses the state-space repre-
sentation: dx

dt = Ax + Bi, v = Cx + Di; with x :=[
i1 i2 v3 v4 v5

]T
,

A:=


−ω0φψ

F 0
ω0
FK − ω0

FK 0

0 −ω0Wφ
F − ω0φ

FWK 0 − ω0φ
FWK

−ω0FK −ω0FK 0 0 0
ω0Kζ
FW 0 0 0 0

0 −ω0KFη
φ 0 0 0

, B:=


−ω0φψ

F

−ω0Wφ
F

−ω0FK
ω0Kζ
FW

0


C := [Kφψ KW 2 −1 1 0], and D := K,

and where φ, ψ, η, and ζ are as defined in the caption of Fig.
3. Now, let

x̃ =
[
−φW 2 φ2W −KF 2η Kζ KF 2η

]T
.

Then Ax̃ = −Wφ
F x̃ and Cx̃ = 0, so this state-

space model is not observable. Similarly, with x̂ =[
0 0 ηζ F 2Wη −φζ

]T
, then x̂TA = 0 and x̂TB = 0,

so this state-space model is not controllable. In fact, this state-
space model is not stabilizable owing to an uncontrollable
mode at the origin (as emphasised in [24], this violates an
assumption which is implicit in the a-c steady-state analysis
of RLC networks adopted in [26]).

In this paper, we investigate the necessity of the apparent
non-minimality of RLC networks such as those in Fig. 3 for
the RLC realization of certain PR functions. In fact, we will
show that each network in Fig. 3 contains the least possible
number of energy storage elements for realizing its impedance.

III. RLC NETWORK REALIZATION PROCEDURES

The famous Bott Duffin procedure [9] provided the first
algorithm for realizing a general positive-real function as the
impedance of an RLC network. Slight simplifications of the
Bott Duffin networks were discovered by Reza, Pantell, Fi-
alkow and Gerst in the 1950s [10]–[12] (the RPFG networks).

In this section, we present some newly discovered alternatives
to these networks. It will follow from the results in Section IV
that the RPFG networks, and these new alternatives, contain
the least possible number of energy storage elements for
realizing almost all biquadratic minimum functions (defined
below).

Definition 1. H(s) ∈ R(s) is called a minimum function (with
minimum frequency ω0) if H is PR, not identically zero, has
no poles or zeros on jR ∪∞, and satisfies < (H(jω0)) = 0
for at least one ω0 > 0 (which implies = (H(jω0)) 6= 0). It is
called biquadratic if its McMillan degree is two.

Both the Bott-Duffin procedure and the RPFG simplification
are inductive, with two stages at each inductive step: 1) the
problem of realizing an arbitrary given PR function G(s) is
converted into the problem of realizing a minimum function,
derived from G(s), whose McMillan degree is no greater
than that of G(s); 2) the problem of realizing an arbitrary
given minimum function H(s) is converted into the problem
of realizing two PR functions, derived from H(s), whose
McMillan degrees are at least two fewer than that of H(s).
Stage 1 (described above) is achieved by the Foster preamble,
as discussed in [13, Section II]. The contribution of [10]–
[12] was the discovery of the networks in Fig. 4a, which
pertain to stage 2. In Fig. 4b, we present the newly discovered
alternatives to these networks. As shown in [27, Section 3.1],
the networks in Fig. 4 can be derived from the Bott-Duffin
networks by a sequence of network transformations (see also
[28] for an alternative sequence of transformations relating
the networks in Fig. 4a to the Bott-Duffin networks). As a
consequence of the following theorem, the networks in Fig. 4
can be used in stage 2 of the procedure described above.

Theorem 2. Let H(s) be a minimum function with H(jω0) =
ω0Xj and X > 0 (resp., X < 0). Then H(s) is realized as
the impedance of the networks on the top left and bottom right
(resp., top right and bottom left) of Figs. 4a and 4b for some
α, µ > 0 (resp., β, ν > 0), and some PR function Hr(s) (resp.,
H̃r(s)) whose McMillan degree is at least two fewer than that
of H(s).

Proof: Consider first the case X > 0. Then, as de-
scribed in [13, Section II], there exists a µ > 0 such that
X = H(µ)/µ, and there exists an α > 0 and a PR function
Hr(s) such that (µH(µ) − sH(s))/(µH(s) − sH(µ)) =
1/Hr(s)+2αs/(s2+ω2

0). Here, the McMillan degree of Hr(s)
is at least two fewer than that of H(s). It follows that

H(s) = H(µ)
s3 +Hr(s)(2α+ µ)s2 + ω2

0s+Hr(s)µω2
0

Hr(s)s3 + µs2 +Hr(s)(2αµ+ ω2
0)s+ µω2

0

.

Direct calculation verifies that this is the impedance of the
networks on the top left and bottom right of Figs. 4a and 4b.

If, instead, X < 0, then there exists a ν > 0 such that
−ω2

0X = H(ν)ν, and there exists a β > 0 and a PR function
H̃r(s) such that (νH(s) − sH(ν))/(νH(ν) − sH(s)) =
1/H̃r(s) + 2βs/(s2 + ω2

0) [13, Section II]. In this case, the
McMillan degree of H̃r(s) is at least two fewer than that of
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Fig. 4. Illustration of a single step in the realization of a minimum function H(s) with H(jω0) = ω0Xj. Here, h = H(µ), χ = ω2
0 + 2αµ, γ = µ+ 2α,

φ = χ+ µ2, h̃ = H(ν), η = ω2
0 + 2βν, ζ = ν + 2β, ψ = η + ν2, and Hr(s), µ, α, H̃r(s), ν, β are defined in the proof of Theorem 2.

H(s), and we obtain

H(s) = H(ν)
H̃r(s)s3 + νs2 + H̃r(s)(ω2

0 + 2βν)s+ νω2
0

s3 + H̃r(s)(2β + ν)s2 + ω2
0s+ H̃r(s)νω2

0

.

By direct calculation, this is the impedance of the networks
on the top right and bottom left of Figs. 4a and 4b.

IV. RLC REALIZATIONS AND MINIMALITY

Each network in Fig. 4 contains many more energy storage
elements than expected for the realization of its impedance.
However, we will prove that these networks contain the least
possible number of energy storage elements (five) and the
least possible number of resistors (two) for realizing almost
all biquadratic minimum functions. Our main results are
stated in Theorems 4–6, which adopt the parametrisation of
a biquadratic minimum function described in the following
lemma:

Lemma 3. Let H(s) be a biquadratic minimum function. Then
H(s) takes the form

K
s2 + ω0(1−W )F

W s+ ω2
0W

s2 + ω0(1−W )
F s+ ω2

0
W

,

for some K,ω0 > 0 and for some W,F which satisfy either
(i) 0 < W < 1 and F > 0, or (ii) W > 1 and F < 0.
Here K,ω0, F , and W are uniquely determined by H(s), with
K = H(∞), KW 2 = H(0), and KFj = H(jω0).

Proof: This is immediate from [26, Theorem 8]. Relative
to the terminology of [26, equations (4), (8)], we have made
the substitutions R = K, k = W , and X0 = FK (this enables
a more concise presentation of the main results).

Theorem 4. Let N be an RLC network whose impedance
H(s) is a biquadratic minimum function, as in Lemma 3. Then
N contains at least three energy storage elements and at least

two resistors. If, in addition, N contains exactly three energy
storage elements, then either (a) W = 1

2 and F > 0, or (b)
W = 2 and F < 0. In particular, H(s) is the impedance of
N1 (resp., N2) in case (a) (resp., (b)) (see Fig. 5).

N1

K

2

K

2
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ω0

KFs

ω0
KFω0

s

N2

2K

2K

−

KFω0

s

−

KFω0

s

−

KFs

ω0

Fig. 5. Networks N1 and N2. The impedances of both N1 and N2 have
the form indicated in Lemma 3; and F satisfies condition (a) (resp., (b)) of
Theorem 4 in network N1 (resp., N2).

The proof of Theorem 4 comes at the end of Section VI,
as does the proof of the following theorem:

Theorem 5. Let N be an RLC network whose impedance
H(s) is a biquadratic minimum function, as in Lemma 3. If
N contains four or fewer energy storage elements, then either
condition (a) or (b) in Theorem 4 is satisfied, or one of the
following four conditions must hold:
(c) 1/2 < W < 1 and F = W

√
2W − 1/(1−W ),

(d) 1 < W < 2 and F = (1−W )
√
W/(2−W ),

(e) 1 < W < 2 and F =
√
W 3(2−W )/(1−W ),

(f) 1/2 < W < 1 and F = W (1−W )/
√

2W − 1.
In particular, H(s) is the impedance of N3 (resp., N4, N5,
N6) in case (c) (resp., (d), (e), (f)) (see Fig. 6)

We then obtain the following theorem (also proved at the
end of Section VI):

Theorem 6. Let N be an RLC network whose impedance
H(s) is a biquadratic minimum function, as in Lemma 3. Then
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Fig. 6. Networks N3, N4, N5, and N6. Here, φ = 1 −W , ψ = 1 + W ,
η = 2W − 1, and γ = 2 −W . The impedances of all four networks have
the form indicated in Lemma 3, and F and W satisfy condition (c) (resp.,
(d), (e), (f)) of Theorem 5 in network N3 (resp., N4, N5, N6).

the following conditions all hold.
1. If none of the conditions (a)–(f) in Theorems 4 and 5

are satisfied, then N contains at least five energy storage
elements and at least two resistors.

2. If F > 0 and 0 < W < 1, then H(s) is the impedance of
the networks on the top left and bottom right of Figs. 4a
and 4b, where X = FK/ω0, µ = Wω0/F , H(µ) = KW ,
α = (F 2 + W 2)(1 −W )ω0/(2W 2F ), Hr(s) = W , and
N̂1 and N̂2 are both resistors.

3. If F < 0 and W > 1, then H(s) is the impedance of the
networks on the top right and bottom left of Figs. 4a and
4b, where X = FK/ω0, ν = −Fω0/W , H(ν) = KW ,
β = (F 2 + W 2)(1 −W )ω0/(2WF ), H̃r(s) = 1/W , and
N̂3 and N̂4 are both resistors.

We also note that the impedance of each network in Fig.
3 has the form indicated in Lemma 3, with K,ω0 > 0,
0 < F < W (1 − W )/

√
2W − 1, and 1

2 < W < 1. It
then follows from Theorem 6 that each network in Fig. 3
contains the least possible number of energy storage elements
and the least possible number of resistors for the realization
of its impedance. This is despite the fact that the capacitor
voltages are linearly dependent in the network in Fig. 3a, and
the behavior of the network in Fig. 3b is not stabilizable.

To show Theorems 4–6, we first determine those minimum
functions (not necessarily biquadratic) which are realized
by RLC networks containing four or fewer energy storage
elements (this results in Theorems 7 and 8 in Section V).
The proofs of Theorems 4–6 (at the end of Section VI) then
amount to determining which biquadratic minimum functions
are realized by the networks described in Theorems 7 and 8.

We note an important distinction between Theorems 4–6
and the results in the paper [26]. Specifically, Theorems 4–
6 establish the minimum possible number of energy storage
elements in RLC networks realizing certain PR impedances,
whereas [26] considers the minimum possible number of

elements. As discussed in Section II, the number of energy
storage elements is more relevant from a linear systems theory
perspective. Moreover, Theorems 4 and 5 cover a class of
infinitely many networks (as there is no restriction on the
number of resistors), whereas the results in [26] only cover
a class of finitely many networks (those containing seven or
fewer elements).

In fact, there are two notable errors in the main results
of [26]. First, [26, Theorem 12] was shown to be incorrect
by Foster, who stated ‘perhaps such a census (of biquadratic
minimum functions realized by RLC networks containing
seven or fewer elements) should still be included among those
problems not completely solved as yet’ [29]. Second, in [26,
p. 349], it is claimed that the RPFG networks are ‘the only
general seven-element realizations of the biquadratic minimum
function’. But this is disproved by the networks in Fig. 4b
of this paper. More specifically, the seven-element RPFG
networks (see Fig. 4a and Theorem 6) realize the set of all
biquadratic minimum functions, i.e., the set of all H(s) of
the form indicated in Lemma 3. If 0 < W < 1 and F > 0,
then H(s) is the impedance of the networks on the top left
and bottom right of Fig. 4a and also Fig. 4b (see condition
2 of Theorem 6); and if W > 1 and F < 0, then H(s) is
the impedance of the RPFG networks on the top right and
bottom left of Fig. 4a and also Fig. 4b (see condition 3 of
Theorem 6). We note that the networks in Figs. 3, 5, and
6 (and other networks in [27]) realize impedances H(s) of
the form indicated in Lemma 3 for some but not all possible
values of W and F , so they are not ‘general realizations of
the biquadratic minimum function’.

The realization of biquadratic minimum functions with RLC
networks containing seven or fewer elements was reconsidered
in [27], and the networks in Figs. 3 and 4b were discovered.
There, it is shown that the networks in Fig. 4 are the only
seven-element realizations of certain biquadratic minimum
functions, e.g., (s2+ 1

2s+ 2
3 )/(s2+ 1

3s+ 3
2 ), which has the form

indicated in Lemma 3 with K = ω0 = F = 1 and W = 2
3 .

V. RLC REALIZATIONS OF MINIMUM FUNCTIONS

In this section, we investigate the realization of general (not
necessarily biquadratic) minimum functions with RLC net-
works containing limited numbers of energy storage elements.
We state the main results in Theorems 7 and 8, which adopt
the network classification scheme described in Appendix A.

Theorem 7. Let N be an RLC network whose impedance
H(s) is a minimum function. Then N contains at least three
energy storage elements. Moreover, if N contains exactly three
energy storage elements, then H(s) is the impedance of a
network from Q7 (see Fig. 7).

Theorem 8. Let N be an RLC network whose impedance
H(s) is a minimum function. If N contains four or fewer
energy storage elements, then H(s) is the impedance of a
network from one of the classes defined in Figs. 7 to 11

The proofs of Theorems 7 and 8 come at the end of
this section, and rely on Lemmas 9–13. The structure of
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the argument is as follows. We let N be a network whose
impedance satisfies the properties required of a minimum
function, and we consider a sinusoidal trajectory of N at
the frequency ω0 (i.e., the driving-point and internal element
current and voltages all vary sinusoidally at this frequency).
From equation (1), the energy supplied to N over a single
period of the sinusoidal trajectory is equal to the energy
dissipated in N over the same interval. But the properties of a
minimum function imply that the energy supplied to N over a
single period is zero, so there is no energy dissipated in N . In
particular, there are no currents flowing through the resistors
in N . More generally, there are subnetworks within N which
are blocked, i.e., they have no current flowing through them,
and their vertices are all at the same potential. Also, the only
unblocked elements are energy storage elements. We then find
that if N contains four or fewer energy storage elements, then
N must comprise the one-ports N̂1 to N̂5 connected as in Fig.
12 (e.g., N11 in Fig. 11 has this form, where N̂1 is the one-
port corresponding to the parallel connection of a resistor and
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11a, N12a, and N i
12a: A = 0, B,C,D,E > 0; N11b, N i

11b,
N12b, and N i

12b: C = 0, A,B,D,E > 0

a capacitor in series with another resistor). Further conditions
(mainly relating to the absence of poles and zeros at the origin
and infinity) then result in Theorems 7 and 8.

To formalise this argument, we use the hierarchical graph
theory based approach to the analysis of RLC networks
outlined in Appendix B (see also [24], [27]). The reader
who wishes to follow the detailed proofs in this section is
advised to read that appendix now. It contains numbered notes
(B1, B2, etc) which will be referred to in the proofs. Formal
definitions for the terminology in this section can also be
found in that appendix (e.g., subnetwork, one-port, sinusoidal
trajectory, driving-point trajectory, phasor current and voltage).
We emphasise here the distinction between a subnetwork
and a one-port (which is a special type of subnetwork). For
example, the two capacitors in network N11 in Fig. 11 form
a subnetwork of N11, but this is not a one-port. Also, without
loss of generality, we will only consider networks which are
biconnected (see B5).

Lemma 9. Let N be an RLC network with impedance H(s),
and let N comprise the one-ports N̂1, . . . , N̂m. Consider a
sinusoidal trajectory of N at an arbitrary but fixed frequency
ω ∈ R. Denote the impedance of the one-port N̂k by Zk(s),
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its phasor current by ĩk, and its phasor voltage by ṽk (k =
1, . . . ,m). Then the following hold:

1. If Zk(s) has a pole at s = jω, then ĩk = 0, otherwise
ṽk = Zk(jω)̃ik.

2. Suppose that either (i) H(s) has a pole at s = jω, or (ii)
< (H(jω)) = 0. If Zk(s) does not have a pole at s = jω
and <(Zk(jω)) 6= 0, then ĩk = ṽk = 0.

Proof: To show condition 1, we let ik(t) = <(̃ikejωt)
and vk(t) = <(ṽkejωt) for all t ∈ R. Then col

(
ik vk

)
is

a sinusoidal driving-point trajectory (at frequency ω) for the
one-port N̂k, so condition 1 follows from note B11.

For condition 2, we denote the phasor current and voltage
for the source by ĩ and ṽ, respectively. From B8, we obtain

ṽ∗ĩ+ ĩ∗ṽ =
m∑
k=1

ṽ∗k ĩk + ĩ∗kṽk. (1)

From note B11, if H(s) has a pole at s = jω (resp., H(jω) =
0), then ĩ = 0 (resp., ṽ = 0), and so ṽ∗ĩ = ĩ∗ṽ = 0. Otherwise,
ṽ∗ĩ+ ĩ∗ṽ = < (H(jω))

∣∣̃i∣∣2. Hence, the left-hand side of (1) is
zero if either H(s) has a pole at s = jω, or < (H(jω)) = 0.
Furthermore, if Zk(s) has a pole at s = jω, then ĩk = 0 by
condition 1, and so ṽ∗k ĩk = ĩ∗kṽk = 0. Otherwise, ṽ∗k ĩk+ĩ∗kṽk =
< (Zk(jω))

∣∣̃ik∣∣2, which is non-negative since Zk(s) is PR.
Since all terms in the summation in (1) are non-negative then
they must all be zero in order that their sum is zero. Hence,
if Zk(s) does not have a pole at s = jω and < (Zk(jω)) 6= 0,
then ĩk = 0, so ṽk = Zk(jω)̃ik = 0 by condition 1.

From the above lemma, if N is an RLC network which
realizes a minimum function, then for any sinusoidal trajectory
of N at the minimum frequency ω0 there can be no current
through or voltage across the resistors in N . We call the
resistors blocked, in accordance with the following definition.

Definition 10. Let N be an RLC network and let n̂ be a (not
necessarily one-port) subnetwork of N . For an arbitrary given
trajectory of N , we call n̂ blocked if both the current through
and the voltage across all of the elements in n̂ are identically
zero, and unblocked otherwise. We call n̂ a maximal-blocked
subnetwork of N if it is blocked and it is not contained within
any larger blocked subnetwork of N .

We now describe the structure of any RLC network whose
impedance has a minimum frequency ω0 in terms of its
maximal-blocked subnetworks and unblocked elements (with
respect to a sinusoidal trajectory at frequency ω0). In the
following lemma, we let ω0 > 0 be fixed but arbitrary (and
consistent with the ω0 in Appendix A).

Lemma 11. Let N be an RLC network with impedance H(s)
which is not lossless, does not have a pole at s = jω0, and
satisfies < (H(jω0)) = 0 and = (H(jω0)) 6= 0. There exists
a sinusoidal trajectory of N at frequency ω0 for which the
corresponding driving-point trajectory is non-zero. Moreover,
for any such trajectory, the following hold:

1. Neither the driving-point current nor the driving-point
voltage are identically zero.

2. All resistors in N are blocked.

3. If the source is incident with a vertex in a maximal-
blocked subnetwork of N , then an unblocked element is
also incident with this vertex.

4. If an unblocked element is incident with a vertex in
a maximal-blocked subnetwork of N , then either (i)
the source, or (ii) a second unblocked element, is also
incident with this vertex.

5. Neither (i) the source, nor (ii) an unblocked element, can
be incident with two vertices of the same maximal-blocked
subnetwork of N .

If, in addition, N contains four or fewer energy storage
elements, then the following hold:

6. There are either three or four unblocked elements in N ,
and each of these is an energy storage element.

7. There are either one or two maximal-blocked subnetworks
of N , and each of these subnetworks is a one-port.

8. Let n̂a be one of the maximal-blocked one-ports in N .
Then by either shorting or opening n̂a in N we obtain
an RLC network Na whose impedance Ha(s) satisfies
Ha(jω0) = H(jω0). Also, when applicable, let n̂b be
the second maximal-blocked one-port in N , and suppose
n̂b is also a one-port in Na. Then by either shorting or
opening n̂b in Na we obtain an RLC network Nb whose
impedance Hb(s) satisfies Hb(jω0) = H(jω0).

Proof: From B11, there exists a sinusoidal trajectory of
N at frequency ω0 with a non-zero driving-point trajectory.
We consider any such trajectory; we denote the impedance of
N̂k by Zk(s), its phasor current by ĩk, and its phasor voltage
by ṽk (k = 1, . . . ,m); and we denote the phasor current and
voltage of the source by ĩ and ṽ, respectively.

Proof of 1 Since H(s) does not have a pole at s = jω0,
H(jω0) 6= 0, and col

(̃
i ṽ
)
6= 0, then it follows from note B11

that ĩ 6= 0 and ṽ 6= 0.
Proof of 2 If the element N̂k is a resistor, then Zk(s)

does not have a pole at s = jω0 and < (Zk(jω0)) 6= 0, hence
ĩk = ṽk = 0 by Lemma 9.

Proof of 3 Let n̂ be a maximal-blocked subnetwork in
N , and let xa be a vertex in n̂. If the source is incident with
xa, but no unblocked elements are incident with xa, then ĩ = 0
by Kirchhoff’s current law. This contradicts condition 1.

Proof of 4 Let n̂ and xa be as in the proof of 3. If only
one unblocked element N̂k is incident with xa, and the source
is not incident with xa, then ĩk = 0. As N̂k is a resistor,
inductor, or capacitor, then Zk(s) does not have a pole at
s = jω0, so ṽk = Zk(jω0)̃ik = 0 by Lemma 9. Thus, n̂ is
not a maximal-blocked subnetwork: a contradiction.

Proof of 5 Let n̂ be a maximal-blocked subnetwork in N ,
and suppose either (i) the source, or (ii) a single unblocked
element N̂k, is incident with two vertices xa and xb in n̂.
Since n̂ is connected, then there is a path between xa and
xb in n̂. In case (i), by considering Kirchhoff’s voltage law
for the circuit comprised of the union of this path and the
source, it is evident that ṽ = 0, which contradicts condition
1. Similarly, in case (ii), we find that ṽk = 0. Similar to the
proof of 4, since N̂k is either a resistor, capacitor, or inductor,
and ṽk = 0, we conclude that ĩk = 0, so n̂ is not a maximal-
blocked subnetwork: a contradiction.
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Proof of 6 Since H(s) is not lossless, then N must
contain at least one resistor [13, Section III]. It then follows
from condition 2 that there is at least one maximal-blocked
subnetwork in N . Now, let n̂ be a maximal-blocked subnet-
work, and suppose n̂ contains exactly p vertices at which either
(i) the source, or (ii) an unblocked element, is incident. It
follows from conditions 1–5 that there must be at least 2p−1
unblocked elements in N , and all of these are energy storage
elements. Since N is biconnected (see note B5), then p ≥ 2.
Moreover, if there are four or fewer energy storage elements
in N , then we require p = 2, implying that there must be
either three or four unblocked elements in N .

Proof of 7 Suppose there are exactly q maximal-blocked
subnetworks n̂1, . . . , n̂q in N . From the proof of 6, there
are exactly two vertices of n̂k at which unblocked elements
are incident (k = 1, . . . , q). This implies that each maximal-
blocked subnetwork of N is a one-port. Since, in addition, any
vertex in N is in at most one maximal-blocked subnetwork,
then there are exactly 2q vertices in the maximal-blocked
subnetworks of N at which unblocked elements are incident.
Furthermore, from conditions 3 and 4, then each of these
vertices is incident with either 2 unblocked elements or 1
unblocked element and the source. As each element (and the
source) is incident with exactly two vertices, then there must
be at least 2q−1 unblocked elements in N . Thus, if there are
four or fewer energy storage elements in N , then q ≤ 2.

Proof of 8 From B13, the network Na (and Nb when
applicable) has a sinusoidal trajectory at frequency ω0 whose
driving-point trajectory is the same as the driving-point tra-
jectory of N considered in this proof. Since this driving-point
trajectory is non-zero, then condition 8 follows from B11.

In [13], the realization of minimum functions using series-
parallel networks was considered. We now generalize [13,
Theorem 5].

Lemma 12. Let N be an RLC network which contains four or
fewer energy storage elements, and let the impedance of N be
a minimum function. Then N cannot be a series connection,
nor a parallel connection, of two RLC networks.

Proof: Suppose that N is a series connection of the RLC
networks N̂1 and N̂2. Then H(s) = Z1(s) + Z2(s) where
H(s), Z1(s), and Z2(s) are the impedances of N, N̂1, and
N̂2, respectively (see note B10). Now, let ω0 be a minimum
frequency. Then neither Z1(s) nor Z2(s) have any poles on
jR ∪ ∞, and < (Z1(jω0)) = < (Z2(jω0)) = 0 [13, Lemma
1]. In particular, neither Z1(s) nor Z2(s) is lossless, so both
N̂1 and N̂2 contain at least two energy storage elements [13,
Lemma 2]. Since = (H(jω0)) 6= 0 then either = (Z1(jω0)) 6=
0 or = (Z2(jω0)) 6= 0, so either N̂1 or N̂2 contain at least three
energy storage elements by Lemma 11. Hence, N contains at
least five energy storage elements: a contradiction.

The case where N is a parallel connection of two RLC
networks is similar, and completes the proof.

We now describe those RLC networks containing four
or fewer energy storage elements which realize a minimum
function.

Lemma 13. Let N be an RLC network containing four or

fewer energy storage elements, and let the impedance of N
be a minimum function (with minimum frequency ω0). Then
N comprises the one-ports N̂1 to N̂5 connected as in Fig. 12,
and N̂1 to N̂5 satisfy at least one of the following conditions.

1. N̂1 contains only resistors, N̂2 and N̂3 are both capac-
itors (resp., inductors), N̂4 and N̂5 are both inductors
(resp., capacitors), and Z2(jω0)(Z3(jω0) + Z4(jω0)) +
Z4(jω0)(Z3(jω0) + Z5(jω0)) = 0.

2. N̂1 and N̂2 are both capacitors, N̂3 contains only
resistors, N̂4 and N̂5 are both inductors, and
Z1(jω0)Z2(jω0) = Z4(jω0)Z5(jω0) where Z1(jω0) 6=
−Z4(jω0) and Z1(jω0) 6= −Z5(jω0).

3. N̂1 contains resistors together with at most one en-
ergy storage element, N̂2 contains only resistors, N̂3

contains only capacitors (resp., inductors), N̂4 and N̂5

contain only inductors (resp., capacitors), and Z3(jω0) =
−Z4(jω0) = −Z5(jω0).

4. N̂1 and N̂2 each contain only resistors, N̂3 is a capacitor
(resp., inductor), N̂4 comprises a series or parallel con-
nection of an inductor and capacitor, N̂5 is an inductor
(resp., capacitor), and Z3(jω0)=−Z4(jω0)=−Z5(jω0).

Proof: Let H(s) denote the impedance of N . Since H(s)
is a minimum function, then it satisfies the conditions in
Lemma 11. We will first show that N comprises the one-ports
N̂1, . . . , N̂5 connected as in Fig. 12, and one of the following
two conditions holds:

(a) Exactly one of the one-ports N̂1, . . . , N̂5 corresponds to
a maximal-blocked subnetwork, and the remaining one-
ports are comprised of energy storage elements.

(b) Exactly two of the one-ports N̂1, . . . , N̂5 correspond to
maximal-blocked subnetworks, these two one-ports are
not incident with the same vertex, and the remaining one-
ports are comprised of energy storage elements.

To show this, we note initially that N comprises either one
or two maximal-blocked subnetworks which are one-ports,
and either three or four unblocked elements which are all
energy storage elements, by Lemma 11. Now, let G denote
the associated graph of N (we recall that G includes an
edge corresponding to the source). Then G contains at most
seven edges, is biconnected, and, by Lemma 12, it must not
correspond to a series or parallel connection of two RLC
networks. By [30, p. 326], it must be either the complete
graph on four vertices (graph Ga in Fig. 13), or the graph
obtained by replacing any single edge in this graph by either
two edges in series or two in parallel (graphs Gb and Gc in
Fig. 13). By Lemma 12, if G takes the form of Gb (resp., Gc),
then neither of the edges connected in series (resp., parallel)
can correspond to the source. Thus, irrespective of whether G
takes the form of Ga, Gb or Gc, we find that N comprises
the one-ports N̂1, . . . , N̂5 connected as in Fig. 12. Also, from
Lemma 11, then either (a) or (b) must hold.

To complete the proof, we will show that condition 1 or 2
(resp., 3 or 4) must hold in case (a) (resp., (b)). To show this,
we note initially that H(s) has no poles or zeros on jR∪∞,
so N must not contain a driving-point L-cut-set, C-cut-set,
L-path or C-path (see B14).
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Case (a) Without loss of generality, we can let the
blocked subnetwork be either N̂1 or N̂3 (this follows from B6).
Furthermore, the remaining subnetworks must each comprise
a single energy storage element.

Suppose initially that N̂1 corresponds to the blocked one-
port. Then, with Ȟ1(s) and Ȟ2(s) as in Fig. 14, we require
Ȟ1(jω0) = Ȟ2(jω0) by condition 8 of Lemma 11. Since, in
addition, N must not contain a driving-point L-cut-set, C-cut-
set, L-path or C-path, we find that condition 1 must hold.

Next, suppose that N̂3 corresponds to the blocked one-
port. Then, with Ȟ3(s) and Ȟ4(s) as in Fig. 15, we require
Ȟ3(jω0) = Ȟ4(jω0). As N must not contain a driving-point
L-cut-set, C-cut-set, L-path or C-path, we find that condition
2 must hold.

Case (b) Without loss of generality, we can let the
blocked subnetworks be N̂1 and N̂2 (this again follows from
B6). Also, since there must be at least three energy storage
elements which are not in these one-ports, and N contains four
or fewer energy storage elements, then at least one of these two
one-ports must contain only resistors. Hence, without loss of
generality, we can let N̂2 contain only resistors. Now, with
H̄1(s), H̄2(s), H̄3(s), and H̄4(s) as in Fig. 16, we require
H̄1(jω0) = H̄2(jω0) = H̄3(jω0) = H̄4(jω0) by Lemma 11.
This implies

Z3(jω0) = −Z4(jω0) = −Z5(jω0). (2)

There are now three cases to consider: (i) N̂3, N̂4 and N̂5

each comprise one energy storage element, and N̂1 contains
resistors and at most one energy storage element; (ii) N̂3

comprises two energy storage elements, N̂4 and N̂5 each
comprise one energy storage element, and N̂1 contains only
resistors; and (iii) N̂4 comprises two energy storage elements,
N̂3 and N̂5 each comprise one energy storage element, and
N̂1 contains only resistors.

In case (i), equation (2) implies that N̂4 and N̂5 must
comprise energy storage elements of the same type, and of
opposite type to N̂3, and so condition 3 holds.

In case (ii), equation (2) implies that N̂4 and N̂5 comprise
energy storage elements of the same type. If N̂3 comprises an
inductor and a capacitor, then N̂3 contains a driving-point L-
cut-set, C-cut-set, L-path or C-path, so N̂3 must contain only
one type of energy storage element. From equation (2), this
energy storage element is of opposite type to those in N̂4 and
N̂5. Thus, condition 3 also holds in this case.

In case (iii), equation (2) implies that N̂3 and N̂5 comprise
energy storage elements of opposite types, and the energy
storage elements in N̂4 cannot all be of the same type as N̂3.
It is then clear that either condition 3 or 4 holds.

Note that each of the one-ports in Lemma 13 contain at most
two types of elements. Using established results concerning
such networks, we now prove Theorems 7 and 8.

Proof of Theorem 7: The impedance of any RLC network
containing only one type of element is equivalent to the
impedance of a single element of that type. Theorem 7 then
follows from B9 and Lemma 13, noting that condition 3 in that
lemma must hold if N contains exactly three energy storage
elements.

N̂4

N̂1

N̂3

N̂2

N̂5

Z4(s)

Z1(s)

Z3(s)

Z2(s)

Z5(s)

Fig. 12. Network described in Lemma 13.

Ga Gb Gc

Fig. 13. Three biconnected graphs with seven or fewer edges.

Proof of Theorem 8: It is well known that the impedance
of any RLC network which contains only two types of element
is equivalent to the impedance of one of the Cauer canonical
networks (see, e.g., [31]). Theorem 8 then follows from B9
and Lemma 13.

VI. RLC REALIZATIONS OF BIQUADRATIC MINIMUM
FUNCTIONS

In this section, we prove Theorems 4 and 5. This involves
determining which of the networks in Lemma 13 realize
biquadratic minimum functions. The networks in Figs. 9 and
10 are eliminated by the following lemma.

Lemma 14. Let N be an RLC network whose impedance
is a biquadratic minimum function. Then the resistors in N
cannot all be contained in a single one-port subnetwork of N
comprised of resistors alone.

Proof: Let H(s) denote the impedance of N , Then H(s)
has neither a pole nor a zero at s = 0 or s =∞. Also, H(s)
takes the form indicated in Lemma 3, whence W > 0 and
W 6= 1, and so H(0) 6= H(∞).

Now, suppose all the resistors in N are contained in a single
one-port N̂k comprised of resistors alone. Then the impedance
of N̂k is equal to some positive constant R, and the impedance
of N is the same as the network Na obtained by replacing the
one-port N̂k in N with a single resistor N̂ of resistance R
(see note B9). By applying the results in B14 inductively to
open all the capacitors and short all the inductors in Na, we
obtain a network Nb which is either (i) the resistor N̂ , (ii)
an open circuit, or (iii) a short circuit. Again from B14, since
H(s) does not have a pole or zero at s = 0, then Nb must be
the resistor N̂ , and H(0) = R. Similarly, by considering the
network obtained by shorting all the inductors and opening
all the capacitors in Na, we conclude that H(∞) = R. This
implies H(0) = H(∞): a contradiction.

Using an algebraic argument, we now prove Theorem 4. In
this proof, we use the notation Rk(p(s), q(s)) to denote the
Sylvester determinants of two polynomials p(s) = pms

m +
pm−1s

m−1 + · · · and q(s) = qns
n + qn−1s

n−1 + · · · , where
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N̂2N̂2

N̂3

N̂3

N̂4N̂4

N̂5

N̂5

Z2(s)Z2(s)

Z3(s)

Z3(s)

Z4(s)Z4(s)

Z5(s)

Z5(s)

Ň1 Ň2

Fig. 14. Networks Ň1 and Ň2 described in the proof of Lemma 13. Ň1

(resp., Ň2) is obtained by opening (resp., shorting) N̂1 in the network N in
Fig. 12. Here, Ȟ1 = ((Z3 +Z5)(Z2 +Z4) +Z2Z4)/(Z2 +Z3 +Z5), and
Ȟ2 = Z5(Z2Z3 +Z2Z4 +Z3Z4)/((Z3 +Z4)(Z2 +Z5) +Z3Z4), where
Ȟ1 and Ȟ2 denote the impedances of Ň1 and Ň2, respectively.

N̂2N̂2

N̂1N̂1

N̂4N̂4

N̂5N̂5

Z2(s)Z2(s)

Z1(s)Z1(s)

Z4(s)Z4(s)

Z5(s)Z5(s)

Ň3 Ň4

Fig. 15. Networks Ň3 and Ň4 described in the proof of Lemma 13. Ň3

(resp., Ň4) is obtained by opening (resp., shorting) N̂3 in the network N in
Fig. 12. Here, Ȟ3 = (Z1 + Z5)(Z2 + Z4)/(Z1 + Z2 + Z4 + Z5), and
Ȟ4 = (Z1Z4(Z2 +Z5)+Z2Z5(Z1 +Z4))/((Z1 +Z4)(Z2 +Z5)), where
Ȟ3 and Ȟ4 denote the impedances of Ň3 and Ň4, respectively.

N̂4

N̂4

N̂4N̂3

N̂3

N̂5

N̂5 N̂5

Z4(s)

Z4(s)

Z4(s)Z3(s)

Z3(s)

Z5(s)

Z5(s) Z5(s)

N̄1

N̄2 N̄3 N̄4

Fig. 16. Networks N̄1, N̄2, N̄3, and N̄4 described in the proof of Lemma 13.
N̄1 (resp., N̄2) is obtained by opening (resp., shorting) N̂2 in the network Ň1

in Fig. 14; and N̄3, (resp., N̄4) is obtained by opening (resp., shorting) N̂2 in
the network Ň2 in Fig. 14. Here, H̄1 = Z3+Z4+Z5, H̄2 = Z4, H̄3 = Z5,
and H̄4 = Z3Z4Z5/(Z3Z4 +Z3Z5 +Z4Z5), where H̄1, H̄2, H̄3, and H̄4

denote the impedances of N̄1, N̄2, N̄3, and N̄4, respectively.

pm 6= 0 and qn 6= 0:

Rk(p(s), q(s)) :=

∣∣∣∣∣∣∣∣∣
pm pm−1 ···
0 pm pm−1 ···

. . .
qn qn−1 ···
0 qn qn−1 ···

. . .

∣∣∣∣∣∣∣∣∣
}
n− k rows}
m− k rows

,

for k = 0, 1, . . . , (min {m,n} − 1). From [13, Theorem 15],
p(s) and q(s) have at least r roots in common (counting
according to multiplicity) if and only if R0(p(s), q(s)) =
· · · = Rr−1(p(s), q(s)) = 0.

Proof of Theorem 4: That N contains at least three
energy storage elements and at least two resistors follows
from Theorem 7 and Lemma 14. Since H(s) is a biquadratic
minimum function, then H(s) takes the form indicated in

Lemma 3. Also, by direct calculation, the impedances of N1

and N2 satisfy conditions (a) and (b), respectively. Now, let N
contain exactly three energy storage elements. It then follows
from Theorem 7 and Lemma 14 that H(s) is the impedance
of a network from Q7 (see Fig. 7). To complete the proof, we
will show that the functions described in (a) and (b) are the
only biquadratic minimum functions which can be realized as
the impedance of a network from Q7.

We first consider those circumstances in which the
impedance H7(s) of network N7 in Fig. 7 takes the form
indicated in Lemma 3. We thus require H7(jω0) = KFj,
H7(0) = KW 2, and H7(∞) = K. For H7(jω0) = KFj,
we require C = KF , and hence F > 0 which implies
0 < W < 1. Let g1 := K/A and g2 := K/B. Then, we
require g1, g2 > 0 and

1
g1 + g2

=
H7(0)
K

= W 2, and
g1 + g2
g1g2

=
H7(∞)
K

= 1. (3)

Now, let p(s) and q(s) be the polynomials of degree three
in s such that p(0) = ω3

0 and p(s)/q(s) = H7(s)/(KF ). It
is easily verified that the terms in p(s) and q(s) of degree
three in s cannot be zero, so for H7(s) to be biquadratic we
require R0(p(s), q(s)) = F 2ω9

0(g1 − g2)2(1 + F 2g1g2)4 = 0.
Together with (3), and the conditions F, ω0, g1, g2 > 0, this
implies g1 = g2 = 2 and W = 1/2. Thus, if the impedance of
a network from N7 is a biquadratic minimum function, then
condition (a) holds.

By a duality argument (see Appendix A) it is easily shown
that if the impedance of a network from N d

7 is a biquadratic
minimum function, then condition (b) holds. This completes
the proof.

Proof of Theorem 5: Since H(s) is a biquadratic min-
imum function, then it takes the form indicated in Lemma
3. Direct calculation verifies that the impedances of networks
N3, N4, N5, and N6 satisfy conditions (c), (d), (e), and (f),
respectively. Now, let N contain at most four energy storage
elements. It then follows from Theorem 7 and Lemma 14
that H(s) is the impedance of a network from one of the
network classes in Figs. 7, 8, and 11. We will show that the
functions described in conditions (a)–(f) of Theorems 4 and
5 are the only biquadratic minimum functions realized as the
impedance of a network from one of these classes. The case
of N belonging to Q7 was considered in the proof of Theorem
4, so there are three remaining cases to consider:

(i) N belongs to Q8 (see Fig. 8).
(ii) N belongs to one of the classes N11, N i

11, N11a, N i
11a,

N11b or N i
11b (see Fig. 11).

(iii) N belongs to one of the classes N12, N i
12, N12a, N i

12a,
N12b or N i

12b (see Fig. 11).

Case (i) Let the impedance H8(s) of network N8 in Fig.
8 take the form indicated in Lemma 3. For H8(jω0) = KFj
we require D = F > 0, which implies 0 < W < 1. Let g1 :
= K/A, g2 := K/B, and c2 := KF/C, and so g1, g2, c2 > 0.
Then we require

1
g1 + g2

=
H8(0)
K

= W 2, and
1
g2

=
H8(∞)
K

= 1. (4)
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Next, let p(s) and q(s) be the polynomials of degree four
in s such that p(0) = (1 + c2)ω4

0 and p(s)/q(s) =
H8(s)/(KF ). We find that the terms in p(s) and q(s) of
degree four in s cannot be zero, so for H8(s) to be bi-
quadratic we require R0(p(s), q(s)) = R1(p(s), q(s)) = 0.
Here, R0(p(s), q(s)) = c2ω

16
0 (1 + c2)(1 + F 2g1g2)4f2

1 and
R1(p(s), q(s)) = −c2ω9

0(1 + F 2g1g2)2f2 where f1 and f2
are both polynomials in c2, g1, g2 and F . We thus require
f1 = f2 = 0, so, in particular, R0(f1(F ), f2(F )) = c62g

10
2 (1+

c2)2(c22g1 + 2c2(g1 − g2) + g1 − 3g2)2 = 0. Taken together
with (4) and the conditions c2, g1, g2 > 0 and 0 < W < 1, this
implies g1 = (1−W 2)/W 2, g2 = 1, c2 = (2W−1)/(1−W ),
and W > 1/2. Then R0(p(s), q(s)) = 0 and F > 0 imply
F = W

√
2W − 1/(1−W ), so condition (c) holds. It is then

easily shown from duality and frequency inversion arguments
(see Appendix A) that, in case (i), one of the conditions (c)–(f)
must hold.

Case (ii) We let the impedance H11(s) of N11 in Fig. 11
take the form indicated in Lemma 3. For H11(jω0) = KFj
we require E = F , which implies F > 0 and 0 < W < 1.
Let r1 := A/K, g3 := K/B, g2 := KC, and c1 := KF/D,
so g3, c1 > 0 and r1, g2 ≥ 0. Then, by considering H11(0)
and H11(∞), we obtain

1 + r1g2
g2(1 + r1g3) + g3

= W 2, and
1 + r1g3

g3
= 1. (5)

Let p(s) and q(s) be the polynomials of degree four in s such
that p(0) = F (1 + r1g2)ω4

0 and p(s)/q(s) = H11(s)/(KF ).
We find that the terms in p(s) and q(s) of degree four
in s cannot be zero, so for H11(s) to be biquadratic we
require R0(p(s), q(s)) = R1(p(s), q(s)) = 0. In this case,
R0(p(s), q(s)) = F 4ω16

0 c1(c21(r1 + F 2g3)2 + F 2(1 + r1g2 +
F 2g2g3)2)2f2

1 and R1(p(s), q(s)) = −F 2c1ω
9
0f2 where f1

and f2 are both polynomials in c1, r1, g2, g3, and F . We
thus require R0(f1(c1), f2(c1)) = F 10g5

3(r1g3 − 1)((g2(1 −
r1g3)(r1 +F 2g3)+F 2g2

3 +g3r1−1)2 +g2
3F

2)2(g3(3−r1g3 +
r1g2(2−r1g3))−g2) = 0, and f1 = c1(1−r1g3)+F 2g3(g3−
g2(1−r1g3)) = 0. Taken together with (5), and the conditions
r1, g2 ≥ 0, g3, c1 > 0, this implies r1 = (g3 − 1)/g3,
g2 = g3(4− g3)/(g3− 2)2, c1 = 2F 2g2

3/(2− g3)2, W = 1/2,
and 1 ≤ g3 ≤ 4, g3 6= 2, so condition (a) of Theorem 4
holds. Thus, we conclude by duality and frequency inversion
arguments that, in case (ii), one of the conditions (a) or (b) in
Theorem 4 must hold.

Case (iii) Let the impedance H12(s) of network N12 in
Fig. 11 take the form indicated in Lemma 3. In this case,
H12(jω0) = KFj implies E = F , and so F > 0 and
0 < W < 1. Now, let r1 := A/K, g2 := KC, g3 := K/B,
and x1 := KF/D, so g3, x1 > 0 and r1, g2 ≥ 0. Then let
p(s) and q(s) be the polynomials of degree 4 in s such that
p(0) = r1x1ω

4
0 and p(s)/q(s) = H12(s)/(KF ). We find that

the terms in p(s) and q(s) of degree four in s cannot be zero,
and in this case we find R0(p(s), q(s)) = −F 6ω16

0 x1((F 2g3+
r1)2x2

1 + F 2(1 + r1g2 + F 2g2g3)2)2f2
1 and R1(p(s), q(s)) =

F 6ω9
0f2 where f1 and f2 are both polynomials in x1, r1, g2, g3,

and F . We thus require R0(f1(x1), f2(x1)) = −F 2g5
3((g2(1−

r1g3)(r1+F 2g3)−g3r1)2+g2
3F

2)2(g3−g2(1−r1g3))(g2(1−
r1g3)2 + g3(1 + r1g3)) = 0, together with f1 = g3(1 −

r1g3)x1 + g3− g2(1− r1g3) = 0. It may be verified that these
equations have no solution for r1, g2 ≥ 0 and g3, x1, F > 0. It
follows from duality and frequency inversion arguments that
H(s) cannot be biquadratic in case (iii): a contradiction.

Proof of Theorem 6: Condition 1 follows from Theorems
4 and 5. To see condition 2, first note from Theorem 2 and
Lemma 3 that H(jω0) = ω0Xj = KFj, so X = KF/ω0.
Thus, F, ω0,K > 0 imply X > 0, so H(s) is realized as the
impedance of the networks on the top left and bottom right of
Figs. 4a and 4b by Theorem 2, where µ, H(µ), α and Hr(s)
are as defined in that theorem. It it is then easily verified that
when H(s) takes the form indicated in Lemma 3, then µ,
H(µ), α and Hr(s) are as in condition 2. Since H(µ)/Hr(s)
and H(µ)Hr(s) are both positive constants, then both N̂1 and
N̂2 can be replaced with a resistor. Condition 3 may then be
shown similarly.

VII. CONCLUSIONS

The networks discovered in the 1950s [10]–[12], which
simplify the famous Bott-Duffin networks [9], contain a sur-
prisingly large number of energy storage elements, and have
non-minimal state-space realizations with states as inductor
currents and capacitor voltages. In this paper, we showed
that these networks actually contain the least possible number
of energy storage elements for realizing certain impedances
(almost all biquadratic minimum functions). In particular, we
proved six theorems on the realization of minimum functions
with RLC networks. The main argument was summarised after
Theorem 8. It is based on the observation that, for an RLC
network N realizing a minimum function, and a sinusoidal
trajectory of N at the minimum frequency, there is no energy
dissipated in N over a single period, so only the energy storage
elements can transmit current at this frequency.
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APPENDIX A
NETWORK CLASSIFICATION

Here, we provide some network classification terminology,
which enables a concise presentation of our main results.

As in [13], we will define networks using diagrams within
figures (e.g., N1 in Fig. 7), in which we indicate the driving-
point terminals with dots, we write the impedance of an
element above the element, and we list constraints on the
element impedances in the figure’s caption. Each diagram also
defines a network class corresponding to the set of all networks
of the type indicated whose element impedances satisfy the
constraints listed in the corresponding caption.

The concepts of duality and frequency inversion in RLC
network analysis were exploited in [13], [22]. As in [13], we
let ω0 > 0 be arbitrary but fixed, and we consider frequency
inversion with respect to ω0. If H(s) is a minimum function
with ω0 a minimum frequency, then so too are 1/H(s) and
H(ω2

0/s) [13]. In particular, consider the parametrisation of
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a minimum function described in Lemma 3 as a function of
s,K, ω0,W, and F , i.e.,

H(s,K, ω0,W, F ) = K
s2 + ω0(1−W )F

W s+ ω2
0W

s2 + ω0(1−W )
F s+ ω2

0
W

.

Then we note the relationships:

H(ω
2
0
s ,K, ω0,W, F ) = H(s,KW 2, ω0,

1
W ,− F

W 2 ),
and 1

H(s,K,ω0,W,F ) = H(s, 1
K , ω0,

1
W ,− 1

F ).

Now, let N be an RLC network with impedance H(s). Then
N has a frequency inverted network N i whose impedance is
H(ω2

0/s) [13]. If, in addition, N is planar (and H(s) 6≡ 0),
then N has a dual network Nd whose impedance is 1/H(s).
Hence, any given network class N induces a second (possibly
identical) class N i, containing the frequency inverted network
of every single network from N . If, in addition, the networks
in N are planar, then N induces two further classes: (i) N d,
containing the dual network of every single network from N ;
and (ii) N di := (N d)i. Thus, N induces the network quartet
Q, which is the union of N ,N i,N d, and N di if the networks
in N are planar; and the union of N and N i otherwise.

APPENDIX B
HIERARCHICAL ANALYSIS OF RLC NETWORKS

In [24], [27], a framework for the analysis of RLC networks
is presented. This framework is influenced by the behavioral
approach to dynamical systems [1], and graph theory results
from [32] (we note also reference [33], which applies graph
theory results from [32] to the analysis of port-Hamiltonian
systems). In this Appendix, we summarise relevant results
from [27, Part 1], and we refer to [27] for detailed proofs.

B1 A graph is a pair (V,E) where V is a set
{x1, . . . , xn} whose elements are called vertices and E is
a set of unordered pairs of vertices called edges, i.e., E =
{y1, . . . , yq} where yk = (xk1 , xk2) for k = 1, . . . , q and
for some k1, k2 ∈ 1, . . . n. A sequence of edges in a graph
between two vertices xa and xb is called a path from xa to
xb. A circuit is a path from a vertex xa to itself in which
all of the edges are distinct and no vertices other than xa are
repeated. A graph is called connected if, for any given pair of
vertices xa and xb, there is a path from xa to xb. A cut in
a connected graph is a set of edges whose removal partitions
the vertices into two disjoint sets. It is called a cut-set if, in
addition, it contains no subset which is also a cut. A graph
is called oriented when each edge has one of its two vertices
assigned as a head vertex and the other as a tail vertex (we
say the edge is oriented towards the head vertex).

B2 Following [24, Section 3], we associate any given
RLC network N with a connected oriented graph G which
has two designated driving-point vertices and contains edges
y1, . . . , ym corresponding to the elements N̂1, . . . , N̂m in the
network. The edge yk has a current ik, voltage vk, and a rela-
tionship pk( ddt )ik = qk( ddt )vk corresponding to the properties
of element N̂k (k = 1, . . . ,m). There is one additional edge
y0 in G which is incident with the two driving-point vertices,
and has a current −i and voltage v. This corresponds to a
source being connected to N as in Fig. 1 (see Section II).

B3 For the RLC network N in B2, we let

i := col
(
−i i1 · · · im

)
, and v := col

(
v v1 · · · vm

)
. (6)

If (i) pk
(
d
dt

)
ik = qk

(
d
dt

)
vk (k = 1, . . . ,m), and

(ii) i(t) satisfies Kirchhoff’s current law and v(t) satis-
fies Kirchhoff’s voltage law for all t ∈ R, then we call
col
(
i v i1 · · · im v1 · · · vm

)
a trajectory of N , with

col
(
i v
)

the corresponding driving-point trajectory. The be-
havior (resp., driving-point behavior) of N is defined as the set
of all network trajectories (resp., driving-point trajectories).

B4 Kirchhoff’s laws are related to the cut-set and circuit
spaces of a graph (see [24]). These two spaces correspond
to fundamental subspaces of the graph’s incidence matrix.
Specifically, let N and G be as in B2. The incidence matrix M
of G is an n×(m+1) matrix whose ijth entry is−1 (resp., +1)
if edge yj−1 is incident with vertex xi and oriented towards
(resp., away from) xi, and 0 otherwise. It can then be shown
that the R-vector space spanned by the rows of M is the cut-
set space of G (and has dimension n− 1 as G is connected);
the orthogonal R-vector space {z ∈ Rm+1 | Mz = 0} is the
circuit space of G; and Kirchhoff’s current (resp., voltage) law
implies that i(t) (resp., v(t)) is in the circuit (resp., cut-set)
space of G for all t ∈ R [24], [27].

B5 A vertex in a connected graph whose deletion renders
the graph disconnected is called a cut vertex. A graph (or
an RLC network) is called biconnected if it is connected
and it has no cut vertices. A biconnected component of a
graph G is a biconnected subgraph of G which is not a
subgraph of any larger biconnected subgraph of G. Note, if
G contains an edge which is incident with a single vertex
(a loop), then this edge is a biconnected component. It can
be shown that the driving-point behavior of an RLC network
N is unchanged by removing elements which are not in the
biconnected component of N containing the source [27, proof
of Lemma 1.2.3]. Consequently, we restrict our attention in
this paper to biconnected networks.

B6 We consider two networks to be identical if there is
an ordering and orientation of the edges in their respective
graphs such that (i) the two graphs have the same circuit
space and cut-set space; and (ii) the relationships associated
with the respective edges are identical. With this ordering and
orientation, the two networks have the same behavior.

B7 Let N be an RLC network and G the corresponding
graph (as in B2). A non-empty subset n̂ of the elements in
N is called a subnetwork if the corresponding edges form
a connected subgraph of G (we do not allow a subnetwork
to contain the source). Let N̂ be a subnetwork of N which
contains exactly two vertices xa and xb where the source
and/or elements in N but not in N̂ are incident. Then N̂ is an
RLC network with driving-point terminals xa and xb, and we
call N̂ a one-port (subnetwork) in N . For any given trajectory
of N , we define the current î and voltage v̂ in N̂ as follows.
We let î := î+ − î−, where î+ (resp., î−) is the sum of the
currents through the elements in N̂ which are incident with
xa and oriented away from (resp., towards) xa. To define v̂,
we pick an arbitrary path in N̂ from xa to xb, and we let
v̂ := v̂+− v̂−, where v̂+ (resp., v̂−) is the sum of the voltages
across the elements in the path which are oriented with (resp.,
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against) the path. It follows from [27, proof of Theorem 1.9.6]
that v̂ does not depend on the choice of path, and col

(̂
i v̂
)

is
a driving-point trajectory for N̂ .

B8 We say an RLC network N comprises the one-ports
N̂1, . . . , N̂m if each element in N belongs to one and only one
of these m one-ports. There is an associated graph G̃ which
is obtained from the graph G described in B2 by replacing
the edges in G corresponding to the elements in N̂k by a
single edge yk between the driving-point terminals of N̂k (k =
1, . . . ,m). Since N is biconnected (see B5), it is easily shown
that G̃ is too. Now, consider a trajectory of N , let ik denote
the current and vk the voltage in N̂k (k = 1, . . . ,m), let −i
denote the current and v the voltage in the source, and let i
and v be as in (6). Then it can be shown that i(t) (resp., v(t))
is in the circuit (resp., cut-set) space of G̃ for all t ∈ R [27,
proof of Theorem 1.9.6]. Also, if (i) i(t) is in the circuit space
and v(t) is in the cut-set space of G̃ for all t ∈ R, and (ii)
col
(
ik vk

)
is a driving-point trajectory of N̂k (k = 1, . . . ,m),

then col
(
i v
)

is a driving-point trajectory of N . In particular,
since the cut-set and circuit spaces of a graph are orthogonal
(see B4), then iT (t)v(t) = 0 for all t ∈ R.

B9 From B8, it is easily shown that the driving-point be-
havior (resp., impedance) of an RLC network N is unchanged
if we replace a one-port N̂ in N with a network which has
the same driving-point behavior (resp., impedance) as N̂ .

B10 Let N be an RLC network (following B5, N is
biconnected). We say that N is a series (resp., parallel) con-
nection of two RLC networks N̂1 and N̂2 if (i) N̂1 and N̂2 are
both one-ports in N ; (ii) all the elements in N are either in N̂1

or N̂2; and (iii) there is exactly one vertex (resp., two vertices)
where elements from both N̂1 and N̂2 are incident. It is then
easily shown from B9 that H(s) = Z1(s) + Z2(s) (resp.,
1/H(s) = 1/Z1(s)+1/Z2(s)) , where H(s), Z1(s), and Z2(s)
denote the impedances of N, N̂1, and N̂2, respectively.

B11 A trajectory in which the currents and voltages in
the network are all varying sinuoidally at a fixed but arbitrary
frequency ω ∈ R is called a sinusoidal trajectory (at frequency
ω). The corresponding driving-point trajectory is called a
sinusoidal driving-point trajectory. The existence of a non-
zero sinusoidal driving-point trajectory at frequency ω for
any given RLC network N and ω ∈ R is guaranteed by
[24, Theorem 5]. Consider a sinusoidal trajectory of N and
a one-port N̂k in N . It is easily shown that the current and
voltage in N̂k are also varying sinusoidally (and correspond
to a sinusoidal driving-point trajectory of N̂k). In other words,
there exist ĩk, ṽk ∈ C such that the current ik and voltage vk
in N̂k satisfy ik(t) = <(̃ikejωt) and vk(t) = <(ṽkejωt) for all
t ∈ R. We call ĩk the phasor current, and ṽk the phasor voltage,
of N̂k (corresponding to this specific sinusoidal trajectory).
Also, the driving-point current i and voltage v take the forms
i(t) = <(̃iejωt) and v(t) = <(ṽejωt), respectively, for all
t ∈ R and for some ĩ, ṽ ∈ C, and we call ĩ the phasor current,
and ṽ the phasor voltage, of the source. Finally, denoting the
impedance of the network by H(s), then ĩ = 0 if H(s) has a
pole at s = jω, with ṽ = H(jω)̃i otherwise [24, Theorem 5].

B12 Let N be an RLC network, and let N̂ be a one-port
in N with driving-point vertices xa and xb. By opening (resp.,

shorting) N̂ in N , we mean the operation of removing all of
the elements in N̂ from N (resp., connecting the two vertices
xa and xb in N ), and then removing all elements which are not
in the same biconnected component as the source. We note that
the resulting network Na could contain no elements, with the
source incident with two distinct vertices (resp., two coincident
vertices), in which case Na represents an open circuit (resp.,
short circuit), and Na does not possess an impedance (resp.,
the impedance of Na is identically zero).

B13 Let N be an RLC network comprising the ele-
ments N̂1, . . . , N̂m; let Ñ be a one-port in N ; let Na be
obtained by opening (resp., shorting) the one-port Ñ in N ,
and (without loss of generality) let Na comprise the elements
N̂1, . . . N̂r; and let b := col

(
i v i1 · · · im v1 · · · vm

)
be a sinusoidal trajectory of N at frequency ω. If the
phasor current (resp., voltage) in Ñ is zero, then ba :=
col
(
i v i1 · · · ir v1 · · · vr

)
is a sinusoidal trajectory of

Na [27, proof of Lemma 3.5.10]. In particular, if N̄ is a one-
port in N and also in Na, then it has the same phasor current
and voltage in the two sinusoidal trajectories b and ba, so
we may repeat this process with the one-port N̄ if its phasor
current or voltage is also zero.

B14 Let N be an RLC network with impedance H(s).
We say that N has a driving-point C-cut-set (resp., L-cut-set)
if removal of all the capacitors (resp., inductors) in the network
leaves the driving-point terminals disconnected, and a driving-
point C-path (resp., L-path) if there is a path between the
driving-point terminals comprised solely of capacitors (resp.,
inductors). It is well known that (i) H(s) has a pole at s = 0
(resp., s =∞) if N has a driving-point C-cut-set (resp., L-cut-
set); and (ii) H(∞) = 0 (resp., H(0) = 0) if N has a driving-
point C-path (resp., L-path) [34, Theorem 8.3]. Now, suppose
H(s) does not have a pole at s = 0 (resp., s =∞), and let Na
be the network obtained by either opening (resp., shorting) a
capacitor in N , or shorting (resp., opening) an inductor in N .
Then Na has impedance Ha(s) which satisfies Ha(0) = H(0)
(resp., Ha(∞) = H(∞)) [27, Corollary 3.5.11].

APPENDIX C
SYNTHESIS OF PASSIVE MECHANICAL CONTROLLERS

Figure 2 (see Section II) indicates the properties of the
two-terminal mechanical components: dampers, springs, and
inerters [14]. Using the force-current analogy, there is a one to
one correspondence between these elements and the electrical
elements resistors, inductors, and capacitors (see Fig. 2). This
analogy extends to the interconnection laws: the net sum of
all currents/forces at any vertex is zero; and the net sum of all
voltages/velocities around any circuit is zero.

Note that there are restrictions to the analogy between
a damper-spring-mass network and an RLC network [14].
Specifically, the force applied to an inerter is proportional to
the relative acceleration of its two terminals, whereas for the
mass it is proportional to its acceleration relative to ground
(formally, the fixed point in the inertial reference frame).
Consequently, a mass is analogous to a grounded capacitor, so
damper-spring-mass networks are analogous to RLC networks
in which all capacitors are grounded. On the other hand,
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every single RLC network has an equivalent damper-spring-
inerter network. The transfer function from the force applied
to the damper-spring-inerter network to the relative velocity
of the network’s terminals is equivalent to the impedance of
the corresponding RLC network.

For reasons of cost, complexity, reliability, regulations,
and power requirements, it is often desirable in mechanical
applications to use a passive controller such as a damper-
spring-inerter network. Applications of damper-spring-inerter
networks to vehicle suspension, train suspension, motorcycle
steering compensators, and building suspension are described
in [14]–[21]. The present paper considered the realization
of a PR impedance using the minimum possible number of
elements, and is therefore relevant to the design of passive
mechanical controllers.
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