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ABSTRACT 

The ability to recognize faces varies considerably between individuals, but does 

performance co-vary for tests of different aspects of face processing? For 397 

participants (of whom the majority were university students) we obtained scores on the 

Mooney Face Test, Glasgow Face Matching Test (GFMT), Cambridge Face Memory 

Test (CFMT) and Composite Face Test. Overall performance was significantly correlated 

for each pair of tests, and we suggest the term f for the factor underlying this pattern of 

positive correlations.  However, there were large variations in the amount of variance 

shared by individual tests: The GFMT and CFMT are strongly related, whereas the 

GFMT and the Mooney test tap largely independent abilities. We do not replicate a 

frequently reported relationship between holistic processing (from the Composite test) 

and face recognition (from the CFMT)—indeed, holistic processing does not correlate 

with any of our tests. We report associations of performance with digit ratio and autism-

spectrum quotient (AQ), and from our genome-wide association study we include a list 

of suggestive genetic associations with performance on the four face tests, as well as with 

f. 
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1. INTRODUCTION 

Face recognition is singularly important for human social interaction (Bruce and 

Young, 2012), but not everyone is equally good at recognizing faces. Indeed, there are 

large individual differences: Some people cannot recognize faces at all, while others 

remember practically every face they see (Burton et al., 2010; Duchaine et al, 2007; 

Russell et al., 2009). In some situations, quantifying the ability to detect, discriminate and 

recognize faces is of great practical value—for example, in the screening of border-

control officers (Burton and Jenkins, 2011). However, in the history of understanding 

perceptual and cognitive processes, the measurement of individual differences has led 

also to theoretical insights. Thus Peterzell and Teller (2000) used a covariance analysis to 

identify sub-channels within the visual system that are specific to particular spatial 

frequency bands; and in the specific case of face processing, studies of individual 

differences have shown that there is remarkably little overlap between general 

intelligence and the specific ability to recognize faces (Wilmer et al., 2014; Shakeshaft & 

Plomin, 2015) 

Several tests have been developed to measure the ability to detect faces or to 

remember them, but no single test assesses all aspects of face processing. We here ask to 

what extent different measures co-vary. For a large sample of healthy participants, we 

established the distribution of individual performance on four well-established tests of 

face processing: The Mooney Face Test, the Glasgow Face Matching Test, the 

Cambridge Face Memory Test, and the Composite Face Test.  

The stimuli of the classical Mooney Face Test consist of seemingly unrelated 

patches of pure black and pure white, which, without apparent conscious effort on the 

viewer’s part, suddenly arrange themselves to form the percept of a face (Mooney, 1957a, 

1957b). This process of organization is referred to as closure. The objective of the Mooney 

test is to detect the face, and the test is considered a test of face detection and of holistic 

processing—the processing of faces as a whole as opposed to processing of individual 

features separately. 

The Glasgow Face Matching Test (GFMT) measures discrimination between 

unfamiliar faces. Participants are shown two photographs of faces and asked to indicate 

whether they are of the same person, or of different persons (Burton et al., 2010). 

Contrary to intuition, performance is far from perfect and there are marked individual 

differences. 

The Cambridge Face Memory Test (CFMT) is widely used to assess face recognition 
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ability and is often administered via the Internet (Duchaine and Nakayama, 2006; Wilmer 

et al., 2010). Individuals with prosopagnosia show significantly lower performance than 

controls (Duchaine and Nakayama, 2006), and performance is highly heritable (Wilmer et 

al., 2010). 

The Composite Face Test is often-used but unstandardized: Many researchers have 

created their own version (Richler et al., 2011; Richler and Gauthier, 2014; Rossion, 

2013; Young, Hellawell and Hay, 1987). In the Composite test, the participant makes a 

same/different judgment between the top half of the ‘study’ face and the top half of the 

subsequently presented ‘target’ face, while ignoring the bottom halves. Face stimuli are 

created by combining a top half and a bottom half, either of the same face or of different 

faces; the two halves are either aligned or misaligned. On a given trial, both—or either—

the top and the bottom half of each face may differ between the study face and the target 

face, or may be the same. The test is designed to tap into holistic processing: The bottom 

half should influence the perception of the top half in the aligned conditions, since then 

all the features cohere in a Gestalt; and if the top halves are the same but the bottom 

halves differ, this holistic process would interfere with making a correct judgment.  

All four tests previously have been compared to other tests, though not 

necessarily to one another. Foreman (1991) tested 127 participants on a visual-search 

task, the Mooney test, and two other tests of closure (the Gollin Incomplete Figures Test 

and the Poppelreuter test), but found no significant correlation in performance between 

the Mooney test and any of the other tests. This suggests that Mooney performance is 

independent of visual-search efficiency, and that the Mooney test does not tap the same 

processes as the two other tests of closure. 

Burton and colleagues (2010) compared the Glasgow Face Matching Test to 

three measures of visual processing in a sample of 300 participants. GFMT performance 

correlated significantly and moderately strongly with matching of familiar line drawings 

of figures (r = .42, p < .001), and significantly but less strongly with recognition memory 

for faces (r = .29, p < .001). There was no significant correlation with visual short-term 

memory for objects (r = .05, p > .05). 

Bowles and colleagues (2009) report a significant and strong correlation (r = –.61, 

p < .001, N = 124) between the Cambridge Face Memory Test and the Cambridge Face 

Perception Test, which asks participants to sort a row of faces from “most similar” to 

“most dissimilar” in comparison to a target face; the correlation is negative because the 

measure of the latter test is the number of errors, rather than number correct, as is the 
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case for the former). Wilmer and colleagues (2012; 2014) report a significant and sizeable 

correlation between the CFMT and a Famous Faces Test (r = .52, N = 1,219), but only 

relatively low correlations between the CFMT and two other memory tests: The Abstract 

Art Memory Test (r = .26, N = 1,469) and a Verbal Paired-Associates Memory Test (r = 

.18, N = 1,469). It is on the basis of these—and other—results, that Wilmer and 

colleagues argue that face recognition is an independent skill, exhibiting high correlations 

with other tasks of face processing, but low correlations with other abilities, such as 

general memory. 

Several studies have investigated the relationship between face recognition and 

holistic processing, but results are mixed: Some report a positive correlation—either 

strong (DeGutis et al., 2013; Richler et al., 2011) or moderate (Wang et al., 2012)—

whereas others observe no significant correlation (Konar et al., 2010). The interpretation 

of these studies is complicated by differences in both methodology and data analysis 

(DeGutis et al., 2013; Richler and Gauthier, 2014; Rossion, 2013).  

In the present study, a large cohort of participants completed four tests that 

measure different aspects of face processing. The tests were selected to reliably assess as 

many different aspects of face processing as possible, while keeping our online test 

battery sufficiently brief as to encourage a high rate of participation and completion.  

Additionally, we hold genetic and phenotypic data for our participants from their 

previous visits to our lab. Face recognition previously has been shown to be strongly 

heritable (Shakeshaft & Plomin, 2015; Wilmer et al., 2010), to be impaired in people with 

autism (e.g. Weigelt et al., 2012), and to be related to digit ratio (Leow and Davis, 2012). 

We are in a position to report results from a genome-wide association study (GWAS) 

that we conducted on participants’ performance on our four face tests. We also report 

results from correlations of performance on our four tests with both autism-spectrum 

quotient and digit ratio. 
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2. METHODS 

 

2.1. Participants 

Our 397 participants (252 female) were a subset of a cohort of 1,060 who had 

previously completed a battery of perceptual tests in our laboratory as part of the 

PERGENIC project (Goodbourn et al., 2012; Lawrance-Owen et al., 2013; Verhallen et 

al., 2014). Participants were healthy young adults between the ages of 18 and 42 (M = 24 

years, SD = 4.3), all of European descent. When tested on their original visit to the 

laboratory, 97% of the present cohort had a (corrected) visual acuity of 0.2 logMAR or 

better. The majority were students at the University of Cambridge. Participants took part 

in order to have a chance of winning a Kindle 3G or Amazon vouchers worth £120, the 

winner being chosen randomly from all who completed the four tests. Ethical permission 

for the study was given by the Cambridge University Psychology Ethics Committee, and 

work was carried out in accordance with the Code of Ethics of the World Medical 

Association (Declaration of Helsinki). Participants gave informed consent before testing 

began. 

 

2.2. Materials 

The Mooney test was classically designed to be administered by personal 

interview; in the current study we use our online, three-alternative forced-choice (3AFC) 

version of the Mooney test (Verhallen et al., 2014). The test uses the original forty 

Mooney (1957a) faces, but each face is paired with two custom-made distractors. The 

position of the target image was random and 3AFC stimuli remained on screen until 

participants made a response by pressing the keys 1, 2 or 3 on their keyboard. The first 

trial, of forty in total, was a practice trial with feedback. 

The shortened version of the Glasgow Face Matching Test was administered 

according to the original procedure (Burton et al., 2010): For forty trials participants had 

to indicate whether two photographs were of the same person or of different persons, by 

pressing the keys L or A on their keyboard, respectively. Each greyscale photograph was 

cropped tightly around the external outline of the face, ears and hair, and was presented 

on a white background. Stimuli remained on screen until participants made a response. 

In line with the original procedure there was no practice trial. 

The Cambridge Face Memory Test was administered according to the original 

procedure (Duchaine and Nakayama, 2006): The first of three sections introduced six 
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different faces for memorization, each presented for three seconds, followed by three 

3AFC tests for each face. Each greyscale photograph was cropped with an oval frame 

that masks external features (hair and ears), and was presented on a black background. 

Sections 2 and 3 used these same six faces to test face memory: Participants were shown, 

for ten seconds at the beginning of each section, all six faces in an array. Sections 2 and 3 

were of increased difficulty because of differing lighting and viewing angles between 

pairs of photographs (section 2) or because of the superposition of noise (section 3). 

One practice trial with feedback preceded the test. 

The Composite Face Test used in this study was the version developed by 

Richler and colleagues (Richler et al., 2011) incorporating stimuli from the Max Planck 

Institute Face Database (Troje and Bülthoff, 1996). There is debate about the differential 

merits of two existing designs, the partial design and the complete design (Richler and 

Gauthier, 2013; Rossion, 2013). By using the Composite test from Richler and colleagues 

we opted for the complete design; we did so because this design also allows us to 

approximate—after data collection—the measure that the partial design would have 

yielded. The test consisted of 160 trials in which a greyscale composite face was shown 

for 200 ms (the study face), followed by a blank inter-stimulus interval of 500 ms and 

then a target composite face shown for 200 ms. Each face was presented on a black 

background, cropped tightly around the external outline of the face including the ears, 

but with the hair and hairline masked. Participants were asked to use their keyboard to 

indicate whether the top halves of the two faces were the same (L-key) or different (A-

key), while ignoring the lower half. The first trial was a practice trial with feedback.  

Each of the 160 trials in the Composite test is categorized on three variables: 1. 

“Similarity:” Whether the top halves of the study and target faces are the same or different 

(this judgment constitutes the task of the participant); 2. “Alignment:” Whether the top 

and bottom halves of the target face are aligned or misaligned (the study face was always 

aligned); and 3. “Congruency:” Whether the similarity of the bottom halves between the 

study and target faces is congruent or incongruent with the similarity of their top halves. 

The measure of interest for the Composite test is not the overall score for all 

these conditions, but rather the holistic index (Richler et al., 2011). First, a specific 

combination of the four conditions (see Supplementary Materials, S.1, for detailed 

calculations) is used to calculate two variables: The condition of interest (i.e. aligned congruent 

trials minus aligned incongruent trials), and the control condition (i.e. misaligned congruent trials 

minus misaligned incongruent trials). Then, the residuals taken from regressing the variation 
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of the control condition out of the condition of interest constitute the holistic index (DeGutis et 

al., 2013). The rationale is that—for the aligned trials—participants who have strong 

holistic processing will experience high interference from the bottom half of the face: If 

the change in bottom halves is congruent with the change in top halves, then these 

participants’ performance is aided, but if the change in bottom halves is incongruent with 

the change in top halves, performance is impaired. For the misaligned trials, the 

assumption is that misalignment breaks holistic processing, since the faces no longer 

form a coherent whole; the misaligned condition is thus not a measure of holistic 

processing. 

 

2.3. Procedure 

The present data were collected online, although all the participants were 

personally known to us from their previous visits to the laboratory. All 1,060 participants 

of the original cohort were sent a web-link to the online tests; 397 of them completed all 

four tests. Each of these 397 participants completed the four tests in the same sequence: 

The modified Mooney Face Test, the Glasgow Face Matching Test, the Cambridge Face 

Memory Test, and the Composite Face Test. No feedback was given for any test, except 

for practice trials as indicated previously. Participants were instructed to respond as 

quickly and as accurately as possible; their response times were recorded, though not 

restricted. Before beginning the tests, participants subjectively rated their face recognition 

ability in response to the question “On a scale of 1 to 10 (with 1 being really bad, and 10 

being really good), where would you place yourself in terms of recognizing faces?” Data 

analysis was performed using R, unless indicated otherwise. 
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3. RESULTS 

  

3.1. Distributions and correlations for the four tests of face processing 

The range of scores is wide for all tests. The mean proportion correct for the modified 

Mooney Face Test is 34.9 trials out of 39 (SD = 2.8, range 25 to 39; 30 participants at 

ceiling), for the Glasgow Face Matching Test 31.5 trials out of 40 (SD = 4.6, range 14 to 

40; four participants at ceiling, five participants at or below chance level), for the 

Cambridge Face Memory Test 54.3 trials out of 72 (SD = 9.1, range 26 to 72; one 

participant at ceiling), and for the Composite Face Test 137.8 trials out of 160 (SD = 

11.6, range 79 to 157; one participant below chance level); as the holistic index is a 

standardized residual, it has a mean of 0 and SD of 1.0 (range −2.62 to 3.53; see Table 2 

for further statistics). To allow comparison of the raw scores of the different tests, we 

give in Table 1 the performance scores converted to percentages.  

 
TABLE 1 

Summary Statistics for the four Tests. The Minimum (Min.), Mean and Maximum (Max.) Scores in 
Percentages, Standard Deviation (SD) in Percentage, Chance of guessing correctly (Chance), and Guttman’s 
Reliability Indices λ2, λ3 (i.e. Cronbach’s alpha) and λ6 for our four Tests: the Modified Mooney Face Test 

(Mooney), the Glasgow Face Matching Test (GFMT), the Cambridge Face Memory Test (CFMT), and 
Overall Raw Score of the Composite Face Test (Comp – Raw Score), including Minimum, Mean, Maximum, 

and Standard Deviation, as well as λ3, for the Holistic Index (Holistic) of the Composite Face Test. 

  Min. Mean Max. SD Chance λ2	 λ3 λ6	
Mooney 64 90 100   7.2 ⅓ .69	 .67 .69	
GFMT 35 79 100 11.5 ½  .72	 .71 .76	
CFMT 36 75 100 12.6 ⅓  .89	 .88 .91	
Composite (Raw Score) 49 86   98   7.3 ½  .88	 .88 .94	
Holistic Index −2.62   0 3.53   1.0 n.a. n.a 1	 .53 n.a.	
 

 

For the Mooney test, our sample’s results are comparable to those reported by 

Vigen and colleagues (1982), who—for a sample of 100 undergraduates—find a mean 

performance of 81.0% correct (SD = 6.6%) using the Mooney stimuli in a lab-based 

experiment. Our participants’ mean score and range of performance for the GFMT are 

comparable to previously reported results (Burton et al., 2010: M = 81%, SD = 9.7%), 

though our distribution extends slightly further at the lower end. Performance on the 

CFMT is also comparable to previous studies (Bowles et al., 2009; Wilmer et al., 2010), 
																																																								
1 Guttman’s λ2 and λ6 both require raw data, and thus cannot be calculated for the holistic index, which 
uses d′. Instead, we manually calculated split-half reliability, the result of which we report in the λ3 column: 
a Spearman-Brown corrected reliability of ρ = .53 (SD = .06), the mean of 5,000 splits of the data. See 
Supplementary Materials (S.2) for details. 
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and overlaps at the lower end with the range of performance by individuals with 

prosopagnosia (Duchaine and Nakayama, 2006). Moreover, the correlations we observe 

when comparing performance of the three parts of the CFMT to one another are almost 

identical to those observed by Duchaine & Nakayama (2006): We observe Spearman’s 

correlations of ρ = .34 between parts 1 and 2, ρ = .41 between parts 1 and 3, and ρ = .74 

between parts 2 and 3. 

When we investigate plots from DeGutis et al., (2013, their Figure 4C), our 

distribution of the holistic index seems similar, though wider; it exhibits kurtosis of .60 

and a slight positive skew of .29 (see also Table 2 for the distributions of d′ broken down 

by condition; and see Figure 2 in §3.5 for a plot of d′ broken down by the conditions 

alignment and congruency).  

 

TABLE 2 
Summary Statistics for the four Conditions of the Composite Face Test. The Minimum (Min.), Mean, 

Maximum (Max.), and Standard Deviation (SD) of d′, as well as the Percentage of Participants who were 
at Ceiling, and the Kurtosis and Skew of the Distribution of d′, separately for the four Conditions Aligned 

Congruent, Aligned Incongruent, Misaligned Congruent, and Misaligned Incongruent.  

  Min. Mean Max. SD % Ceiling Kurtosis Skew 

Aligned Congruent  .12 3.02 3.96 .68 16.4 .74 -.69 
Aligned Incongruent -3.16 1.63 3.96 .94. .8 2.61 -.58 
Misaligned Congruent  .00 2.39 3.96 .71 3.0 .10 -.11 
Misaligned Incongruent -1.82 2.30 3.96 .86 3.5 2.31 -.71 

 

 

Correlations between performances on each pair of tests are highly significant 

(see Table 3), except for pairs that included the Composite Face Test’s holistic index (for 

which p-values ranged between .04 and .53, before Bonferroni correction). However, 

when we simply consider the raw score on the Composite test (the number of trials to 

which a participant responded correctly) we do observe significant correlations with 

performance on each of the other three tests. 

Since the distributions of scores were not normal, we give both Pearson’s r and 

Spearman’s ρ; the corresponding values are similar. For the four tests, the shared 

variance of the significant inter-correlations (estimated from the square of Pearson’s r) 

ranges from a fairly high 23% between the Cambridge Face Memory Test and the 

Glasgow Face Matching Test (see Figure 1A), to a low 4% between the Mooney Face 

Test and the Glasgow Face Matching Test (see Figure 1B).  
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TABLE 3 
Correlations between Performance on Pairs of Tests: Pearson’s r and Spearman’s ρ for all Combinations of the four Tests: The 
modified Mooney Face Test (Mooney), the Glasgow Face Matching Test (GFMT), the Cambridge Face Memory Test 

(CFMT), and the Composite Face Test’s Holistic Index (Holistic; d′), as well as the Composite Face Test’s overall Raw 
Score (Raw Score). All correlations use the full sample size of N = 397, and p-values are uncorrected. Confidence 

intervals at 95% are given between square brackets. 

 Mooney GFMT CFMT Holistic	
  Pearson Spearman Pearson Spearman Pearson Spearman Pearson	 Spearman	

GFMT .20 ** 
[.10, .29] 

.21 ** 
[.11, .30]       	 	

CFMT .31 ** 
[.22, .39] 

.31 ** 
[.22, .40] 

.48 ** 
[.40, .55] 

.49 ** 
[.41, .56]   	 	

Holistic –.06 n.s. 

[–.16, .03] 
–.09 n.s.  
[–.19, .01] 

–.02 n.s.  
[–.11, .08] 

–.01 n.s.  
[–.11, .09] 

–.02 n.s.  
[–.12, .08] 

 –.03 n.s.  
[–.13, .07] 	  	

Raw Score .19 * 
[.09, .28] 

.20 ** 
[.10, .29] 

.26 ** 
[.17, .35] 

.33 ** 
[.24, .41] 

.40 ** 
[.31, .48] 

.42 ** 
[.34, .50] 

–.30 ** 
[–.39, –.21]	

–.26 ** 
[–.35, –.17]	

 
* p < .001 

** p ≪ .0001 
n.s. = not significant 

 

 

To judge whether all trials of each of the four tests that we used were 

informative, we investigate performance per item, for each test. This item analysis shows 

that, for the GFMT and the Composite Face Test, no item is solved by all participants, 

whereas for the modified Mooney Face Test two items are solved by all participants 

(items 7 & 17), and for the CFMT, one (item 1). Participants perform below chance level 

on one item in the GFMT (item 27) and on one item in the Composite Face Test (item 

3). In Table 1 we also report the internal reliabilities of the four tests calculated using 

Guttman’s λ6 (Guttman, 1945; Revelle and Zinbarg, 2009); we also report Guttman’s λ2 

and λ3 (i.e. Cronbach’s alpha) to enable comparison with other studies that report them. 

Since the calculation of Guttman’s λ2 and λ6 requires raw performance data, we manually 

calculate the Spearman-Brown corrected split-half reliability of our holistic index, which 

we also report in Table 1 (see Supplementary Materials, S.2, for details).  

 



	 12	

 
 
Figure 1. Scatterplots comparing normalised performance (z-scores) across two tests. Panel A shows the 
two tests with the highest correlation: The Cambridge Face Memory Test and the Glasgow Face Matching 
Test (Pearson’s r = .48). Panel B shows the two tests with the lowest correlation: The modified Mooney 
Face Test and the Glasgow Face Matching Test (Pearson’s r = .20). Point size is scaled linearly to reflect 
the number of participants with that particular combination of scores. To aid interpretation on these 
normalized axes, we include the dashed, grey line (x = y), upon which all points would fall in the case of a 
perfect correlation. 
 

 

To investigate whether a task is generally performed instantaneously, or rather 

benefits from longer exposure times, we correlate performance on our four tests with the 

amount of time taken for each test. We observe a significant correlation between time 

taken and performance for the Glasgow Face Matching Test only: Participants who took 

longer tended to have a higher score, although only 6% of variance in accuracy could be 

predicted from speed (Spearman’s ρ = .23 [.14, .33], r2 = .06, p = 2.3�10-6). 

 

3.2. A common factor underlying performance on tests of face processing: f 

Although the several tests vary in the extent that they correlate with one another 

(Table 3), all pairs of measures (except those including the holistic index) do exhibit 

positive correlations, much in the way that the very diverse subtests of the Wechsler 

Adult Intelligence Scale exhibit a pattern of positive correlations. We therefore 

conducted a factor analysis on scores from the four tests, excluding the holistic index. As 

our non-normally distributed scores may violate assumptions of normally distributed 

residuals, we applied a rank-based inverse normal transformation by which scores are 

converted to rank orders, with each quantile of the resulting distribution mapped on to 

the corresponding quantile of a normal distribution. We also included four non-face 

measures of visual perception from the PERGENIC test battery: ‘contrast sensitivity’, 
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i.e. thresholds for detecting sinusoidal gratings of 3 cycles per degree; ‘coherent form 

(sine wave)’, i.e. thresholds for detecting the orientation of sinusoidal gratings formed by 

sinusoidally varying dot density; ‘coherent form (Glass patterns)’ i.e. thresholds for 

detecting the orientation of gratings formed by Glass patterns of varying coherence; and 

‘coherent motion’, i.e. percentage of coherent dots needed to report direction in an array 

of moving dots (for methods see Goodbourn et al., 2012 and Bosten et al., 2015). We 

selected these measures from the larger battery because they test a range of detection and 

integration processes that might or might not share variance with different components 

of face processing. We used SPSS version 21 for the factor analysis. The method of 

extraction was PCA, and we applied a Varimax rotation. We held data on all measures 

entered into the factor analysis for 376 of our sample of 397 participants. 

The factor analysis identified three factors (by inspection of the Scree plot) that 

explained a cumulative variance of 61.6% (29.5, 20.4 and 11.7% respectively), and which 

had Eigenvalues of 2.4, 1.6 and .9, respectively. The first factor loaded positively and 

strongly on the four face measures (see Table 4), but not on the other measures of form 

and motion perception.  The second factor loaded strongly and positively on the Mooney 

test, on ‘coherent form (Glass patterns)’, and on coherent form (sine wave). The third 

factor loaded strongly and positively on contrast sensitivity and on coherent motion.  

Table 4 gives the loadings of the three factors with Varimax rotation; but the unrotated 

factors gave similar results. 

The first factor of Table 4 recalls the celebrated factor g or ‘general ability,’ which 

Spearman judged to underlie all measures of intelligence (Spearman, 1927).  We assess its 

status in the Discussion below, but for the remainder of the Results refer to it as ‘f.’ 

 

 

TABLE 4 
For each of the Four Face Tests, as well as for Four Non-Face Measures of Visual 

Perception, are listed the Loadings of the Three Factors extracted using Factor 
Analysis. The Loadings given here are the Result of a Varimax Rotation with Kaiser 
Normalization. For our factor analysis, N = 376. For clarity, factor loadings greater 

than .40 are highlighted in boldface. 
 

Test Factor 1 Factor 2 Factor 3 
Mooney .42 .51 –.29 
GFMT .76 .02 –.02 
CFMT .80 .19 .00 
Composite (Raw Score)	 .72 –.03 .20 
Coherent form (Glass patterns) .09 .82 .20 
Coherent form (sine wave) –.06 .76 .35 
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TABLE 4 
For each of the Four Face Tests, as well as for Four Non-Face Measures of Visual 

Perception, are listed the Loadings of the Three Factors extracted using Factor 
Analysis. The Loadings given here are the Result of a Varimax Rotation with Kaiser 
Normalization. For our factor analysis, N = 376. For clarity, factor loadings greater 

than .40 are highlighted in boldface. 
 

Test Factor 1 Factor 2 Factor 3 
Contrast sensitivity .14 .21 .68 
Coherent motion –.01 .11 .80 

 

 

  

3.3 Phenotypic correlates of face-processing ability 

Since our participants had previously visited our lab as part of the PERGENIC 

project, we hold detailed genotypic and phenotypic data for most of them.  

 

Sex & Age. We have previously reported the significant sex difference that we 

observe for performance on the modified Mooney test (Verhallen et al., 2014); we do not 

observe a significant sex difference in performance for any of the other tests, nor for f 

(Cohen’s d ranged from .02 to .31). We observe a significant effect of age for 

performance on the GFMT (Spearman’s ρ = .15 [.05, .24], p = .003), for performance on 

the CFMT (ρ = .20 [.11, .29], p = 5.2�10-5) and for f (ρ = .21 [.11, .30], p = 5.9�10-5); in 

the case of the other measures, Spearman’s ρ ranged from –.04 to .07. 

 

Self-ratings of facial recognition.  Subjective rating of the ability to recognize faces is 

significantly correlated with performance on all four of the face tests (including overall 

raw score on the Composite Face Test) and with f, but not with the holistic index (see 

Table 5). On average, participants rate themselves 6.5 on a scale of 1 to 10 (SD = 1.8) 

with a range covering the full scale.  

 

TABLE 5 
The Spearman Correlation Coefficients and Probability Values (after Bonferroni Correction for six 
Measures) of subjectively-rated Ability with Performance for all four Tests: The modified Mooney 
Face Test (Mooney), the Glasgow Face Matching Test (GFMT), the Cambridge Face Memory Test 
(CFMT), and the Composite Face Test’s Holistic Index (Holistic) as well as overall Raw Score (Raw 
Score). Also included is the Correlation with f. All correlations use the full sample size of N = 397. 

Confidence intervals at 95% are given between square brackets. 
 

Test Spearman’s ρ p 
Mooney .21 [.11, .30] 1.5 × 10-4 
GFMT .29 [.19, .37] 4.4 × 10-8 
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TABLE 5 
The Spearman Correlation Coefficients and Probability Values (after Bonferroni Correction for six 
Measures) of subjectively-rated Ability with Performance for all four Tests: The modified Mooney 
Face Test (Mooney), the Glasgow Face Matching Test (GFMT), the Cambridge Face Memory Test 
(CFMT), and the Composite Face Test’s Holistic Index (Holistic) as well as overall Raw Score (Raw 
Score). Also included is the Correlation with f. All correlations use the full sample size of N = 397. 

Confidence intervals at 95% are given between square brackets. 
 

Test Spearman’s ρ p 
CFMT .41 [.33, .49] 4.8 × 10-17 
Holistic	 .01 [–.09, .11] 1 
Composite (Raw Score) .17 [.07, .27] .004 
f .37 [.28, .45] 1.8 × 10-13 

 

 

Autism-Spectrum Quotient.  Previous studies have reported a link between Autism-

Spectrum Quotient (AQ) and face recognition (Halliday et al., 2014), and since a subset 

of 316 (203 female) of our 397 participants had previously completed the AQ 

questionnaire (Baron-Cohen et al., 2001), we also examined this possible link. The mean 

AQ score in our subset of 316 participants is 17.8 (SD = 7.9), with a range from 3 to 39 

(the maximum possible score is 50); a score of 32 or higher is suggestive of autism-

spectrum disorder (Baron-Cohen et al., 2001). Though we do not observe a significant 

sex difference in AQ score (Mfemales = 17.4, Mmales = 18.7; Mann–Whitney U = 10,002, p = 

.06), the trend is for males to score higher than females.  

When we consider self-rated face-recognition ability, we observe a significant, 

negative correlation with AQ (Spearman’s ρ = –.23, p = 4.8�10-5, with sex as covariate). 

However, we do not observe a correlation between AQ and performance for any of our 

tests, or with the holistic index, or with f; and also not when the effect of sex is removed 

from all variables by means of regression, or when analyses are conducted for females 

and males separately. Our finding contrasts with that of Halliday and colleagues (2014), 

who observed a small, but significant, negative correlation between AQ and performance 

on an immediate memory task using faces (r = –.20, p = .02, N = 124 university 

students); we had 89% power to observe an association of the same magnitude (r2 = .04; 

α = .008, corrected for 6 tests). For another population of undergraduate students, 

Rhodes and colleagues (2013) report correlations between CFMT and AQ that are of 

opposite sign for men and women. Our own results do not replicate these findings, even 

when we follow Rhodes and colleagues in calculating a total score (totaling the raw 

scores of all items, rather than the usual approach of labeling response to items in a 

binary fashion). It is interesting to note however, that Hedley and colleagues (2011) 
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found impairment in face recognition only for individuals actually diagnosed with autism, 

and not as a correlate of autistic traits as measured by the AQ questionnaire.  

It could be the case that the relationship between AQ and face cognition does 

not follow gradually the autistic spectrum, but rather is bimodal, and becomes apparent 

only when comparing two distinct groups. Indeed, we do observe a significant difference 

in CFMT performance when comparing participants with AQ of 32 or higher (N = 21, 

of whom 14 females), to participants with AQ below 32 (N = 295; Mann-Whitney U = 

2127.5, p = .02). The latter group scores half a standard deviation higher than the former 

(M = 75.3% correct vs. 68.9% correct). 

 

Digit ratio. A previous study by Leow and Davies (2012) has linked the face-

inversion effect to digit ratio (Manning et al., 1998); and for the present cohort we 

ourselves have previously reported a significant correlation between digit ratio and 

performance on our 3AFC adaptation of the Mooney test (Verhallen et al., 2014). 

However, we do not observe a significant correlation between digit ratio and 

performance on any of the other three tests, nor with the holistic index, even when the 

effect of sex is removed.  f exhibited a small, positive correlation with digit ratio 

(Spearman’s ρ = .12, p = .02) but this correlation would not survive a Bonferroni 

correction. 

 

Scholastic achievement.  We do not hold IQ scores for our participants, but for a 

subset of our participants (N = 229, of whom 148 were female) we hold self-reported 

scores for the standard British qualification General Certificate of Secondary Education (GCSE; 

M = 7.45, SD = .67, range = 3.56–8.002), which has been shown to correlate highly with 

performance on IQ tests (Deary et al. 2007). Neither f nor any of the individual face 

measures showed a significant relationship to GCSE scores (the strongest correlation 

was with the CFMT: Spearman’s ρ = –.12 [–.25, .00], p = .05).  

 

3.4. Genotypic correlates of face-processing ability 

We have previously reported a significant genetic association with performance 

on the Mooney test that we observed in our genome-wide association study (Verhallen et 

al., 2014). In this study, to allow for multiple comparisons across single-nucleotide 

																																																								
2 For reference: the distribution of GCSE scores for 2009 (the year prior to the initial PERGENIC test 
battery) has a mean of 5.08 (SD = 1.73), with a range from 0 to 8 (Stubbs, 2009). 
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polymorphisms (SNPs), a correction is required for the number of independent genomic 

locations tested. According to the criterion of Li et al. (2012), a p-value of 1.47�10-7 is 

required for an association with any given SNP to achieve significance at α = .05 in our 

study (Verhallen et al., 2014). However, we choose to apply a second rigorous test to 

guard against false positives: A whole-genome permutation analysis (Purcell et al., 2007).  

At the 1.47�10-7 level of probability, we observe a further genetic correlate of 

performance, of ranked overall raw score on the Composite test (p = 1.31�10-7; N = 

369) with rs7701353. This SNP is located in the intergenic region between the genes 

BNIP1 and NKX2–5 on chromosome 5. The minor allele is associated with higher raw 

score on the Composite test, and the minor allele frequency of rs7701353 is .35 in our 

sample; the SNP is in Hardy–Weinberg equilibrium (p = .55). However, this association 

does not survive a permutation procedure (p = .22; 25,000 permutations), and thus we do 

not claim it to be significant.  

We found no significant genetic associate of f, though two SNPs came up as 

‘suggestive’ associations (i.e. associations with an uncorrected probability below 2.95�10-

6, but above 1.47�10-7): rs272708 (p = 1.26�10-6), which lies on chromosome 7, and 

rs4866542 (p = 1.29�10-6), which lies on chromosome 5 (see also Table 6).  These SNPs 

are both intergenic. 

We do not observe any other genetic correlates of performance on the face-

processing tests, nor with the holistic index.  However, the sample for whom we had 

genetic information (N = 370, of whom 235 female) was small by GWAS standards. For 

the guidance of other researchers, we record in Table 6 the SNPs that had suggestive 

associations with our performance measures. Sex was entered as a covariate in all the 

genetic analyses (for a more detailed description of the genetic methods, see Goodbourn 

et al., 2014 and Lawrance-Owen et al., 2013). 
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TABLE 6 
Suggestive SNPs for Performance on three out of four Tests: The Mooney Test (‘Mooney’), the Cambridge 

Face Memory Test (‘CFMT’), and the Composite Face Test, presented separately for the Holistic Index 
(‘Holistic’) and Raw Score (‘Raw Score’). This Table also lists a suggestive Region for the First Factor of our 

Factor Analysis (‘f ’). No suggestive SNPs emerged for the GFMT. For each Test we list the suggestive 
Region, the SNP with the highest Significance Value in that Region (‘Lead SNP’) along with its Significance 

Value, the Gene in which the lead SNP is located (or ‘intergenic’ if it is located in-between Genes), and 
additional suggestive SNPs in that Region. All suggestive SNPs have p-Values below 2.95 × 10-6 and Minor 

Allele Frequencies above 5%. Performance data for all Measures except the Holistic Index are ranked 
before being entered into the Genetic Analysis (see also Verhallen et al., 2014). Genomic references were 

based on the Human February 2009 (GRCh37/hg19) assembly sequence. For further Details of the 
Genome-Wide Association Analysis, see Verhallen et al., 2014. 

Test Region Lead SNP Significance	 Gene	 Additional SNPs	

Mooney 12q24.32 rs9738216 2.09 × 10-7 SLC15A4  

rs1059312 
rs7962918 
rs900982 
rs7960920 
 

      

CFMT	 7p15.3 rs272708 1.68 × 10-7 (intergenic)  

	 1q25.1 rs7520814 1.81 × 10-6 SLC9C2 rs16846206 

	 1p36.21 rs10927998 2.76 × 10-6 KAZN  

	 10p12.1 rs7086007 2.89 × 10-6 KIAA1217 rs10508677 

	      

Holistic	 7q21.13 rs12670363 1.26 × 10-6 STEAP2–AS1  

	      

Raw Score	 16q23.1 rs2454141 2.45 × 10-6 (intergenic)  

	      

f	 7p15.3 rs272708 1.26 × 10-6 (intergenic)  

 5p15.33 rs4866542 1.29 × 10-6 (intergenic)  

 

 

3.5. Absence of a relationship between the holistic index and CFMT performance 

The absence of a correlation between the Composite test’s holistic index and 

performance on the CFMT is surprising, since it contradicts previous findings (DeGutis 

et al., 2013; Richler et al., 2011; Wang et al., 2012). We thus wanted to verify that we had 

enough power to observe an effect, and to make sure that the relationships between the 

various conditions (similarity, alignment, congruency) were similar to those reported by 

previous studies. 

The internal reliability of the holistic index from our data is acceptable (.53); 

together with the internal reliability of the CFMT (.91), the maximum expected 

correlation is √(.53�.91) = .69. This is well above the maximum expected correlations 
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reported in previous studies that did observe a significant correlation between the holistic 

index and CFMT performance (DeGutis et al., 2013; Ross et al., 2014). Indeed, we do 

observe significant correlations with performance on the CFMT for d′ of all conditions 

individually (see Table 7), which is in accordance with previous findings (DeGutis et al., 

2013, their Table 1). 

 
TABLE 7 

Pearson’s r and Spearman’s ρ, and associated p-Values, for Associations between CFMT Performance 
and d′ for all Conditions of the Composite Face Test (“Composite”) individually: For the aligned and 

misaligned Trials, and separately for the aligned congruent, aligned incongruent, misaligned congruent, and misaligned 
incongruent Trials. All correlations use the full sample size of 397. Confidence intervals at 95% are given 

between square brackets. 
 CFMT 
Composite Pearson p Spearman p 
Aligned .36 [.27, .44] 1.15 × 10-13 .37 [.28, .45] 2.86 × 10-14 
  Congruent .32 [.23, .41] 6.26 × 10-10 .31 [.22, .40] 2.09 × 10-10 
  Incongruent .26 [.17, .35] 1.53 × 10-7 .28 [.19, .37] 1.67 × 10-8 
Misaligned .45 [.37, .53] 3.08 × 10-20 .44 [.36, .52] 3.42 × 10-20 
  Congruent .43 [.35, .51] 1.88 × 10-18 .42 [.34, .50] 1.68 × 10-18 
  Incongruent .35 [.26, .43] 1.57 × 10-12 .36 [.27, .44] 5.44 × 10-14 

 
Note: The correlations with CFMT performance—as reported in this table—replicate previous findings (DeGutis et al., 
2013), as opposed to the absence of a correlation when we use the holistic index (see main text). 

 

To investigate further the absence of a correlation between the holistic index and 

CFMT performance, we look into the internal relationships between our trial variables 

(similarity, alignment, and congruency) and find them to be consistent with earlier work 

(e.g. DeGutis et al., 2013; Konar et al., 2010; Richler et al., 2011; Wang et al., 2012). For 

example, investigating the same and different trials, we do not observe a significant 

alignment effect for different trials (Wilcoxon signed-rank W = 36,453, puncorrected = .04, r = 

-.10), but we do for same trials: The mean raw score for misaligned same trials is higher than 

the mean raw score for aligned same trials (34.5 vs. 33.1 trials; W = 21,995, p = 4.44�10-9, r 

= -.29). This finding confirms those of Konar et al. (2010), Richler et al. (2011), and 

Wang et al. (2012).  

Separately, we observe a significantly higher mean raw score for congruent as 

compared to incongruent trials, regardless of alignment (72.4 vs. 65.3 trials; W = 70,649, p 

= 3.75�10-56, r = -.79). Furthermore, we observe a significant interaction between 

congruency and alignment (Friedman χ2 = 582.44, p = 6.45�10-126): The mean raw score 

for congruent trials is significantly higher than that for incongruent trials, but only when trials 

are aligned (W = 73,010.5, p = 7.93�10-63, r = -.84 for aligned trials; W= 32,241.5, puncorrected 
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= .03, r = -.11 for misaligned trials; see Figure 2). This finding confirms that of DeGutis et 

al., 2013.  

The above findings were virtually identical when using d′ instead of raw scores 

(the effect of same and different trials cannot be investigated using d′, since both same and 

different trials are used in calculating d′), and we also obtained very similar results when we 

performed the analyses using A′—an alternative to d′ (Stanislaw and Todorov, 1999). 

 

 
Figure 2. Boxplot illustrating the alignment by congruency interaction for the Composite Face Test. Mean d′ is 
plotted separately for the four conditions, from left to right: Aligned congruent, aligned incongruent, misaligned 
congruent, and misaligned incongruent trials. Within the boxes, horizontal bars indicate the median, and solid 
points indicate the mean; the lines connecting the solid points (a solid line for congruent, and a dashed line 
for incongruent) illustrate the interaction: Mean d′ for aligned congruent trials is significantly higher as compared 
to aligned incongruent trials, while mean d′ for misaligned congruent and misaligned incongruent trials do not differ 
significantly. The bottom and top boundaries of the box indicate the 1st and 3rd quantile, respectively; the 
whiskers (the vertical lines extending from the bottom and top boundaries of the box) extend to the lowest 
and highest value that is within 1.5-times the inter-quartile range (IQR) of their respective boundary. Grey 
open circles are outliers, defined as such by virtue of being 1.5×IQR above or below the 3rd or 1st quantile, 
respectively. Because data are plotted separately per condition, some of the grey dots denote the same 
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participant: of the 19 outliers shown here, 17 are individual participants. In all four conditions, d′ hits 
ceiling (see also Table 2). 
 

Some previous studies have calculated the holistic index using subtraction rather 

than regression. The study most similar to ours is that of Richler et al. (2011), whose 

stimulus set and methods we follow. Those authors calculated a holistic index by 

subtracting the control condition from the condition of interest. We therefore also 

compute a holistic index using subtraction, but again we do not observe a significant 

correlation with performance on the CFMT (Spearman’s ρ = –.05, p = .30; Pearson’s r = 

–.05, p = .36), whereas Richler and colleagues do (Pearson’s r = .40, p = .014).3  

For further examples of data exploration, including the exclusion of outliers and 

use of reaction time instead of accuracy, see the Supplementary Materials (S.3). 

 

  

																																																								
3 In all preceding analyses in this paper we refer to the regression-based holistic index when we write only 
‘holistic index.’ 
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4. DISCUSSION 

 

4.1. f, a general factor underlying the processing of faces 

In the field of intelligence testing, a pattern of positive correlations—the ‘positive 

manifold’—is invariably found amongst the diverse tests of a cognitive battery 

(Mackintosh, 2011).  Spearman adopted the term g for the common factor that emerges 

from a factor analysis of test scores.  Nevertheless, there are groups of sub-tests that 

correlate more strongly with each other than they do with other sub-tests; and Thurstone 

emphasized the specific factors that emerge from a factor analysis. 

In so far as intelligence is heritable, the pattern of one general and other specific 

factors makes good sense.  The construction, maintenance and operation of the central 

nervous system must depend on many thousands of proteins—and the genes that 

encode them.  Most of these genes are polymorphic, either in their coding regions or in 

the non-coding regions that affect their expression.  It is reasonable to suppose that there 

are many polymorphisms that have a general effect throughout the cerebral cortex, while 

there will be many others whose effect is limited to particular processing modules. 

Just as general and specific factors are observed in the case of intelligence tests, it 

reasonable to expect general and specific factors underlying the very complex processes 

that must underlie the discrimination and identification of faces.  In the present study, we 

find highly significant correlations between all pairs of tests, but the correlations differ 

substantially in their magnitude: the shared variance varies from 4% to 23%.  We have 

proposed the term f for the factor on which all the present face tests load, but we 

emphasize that f, like g, is no more than a summary of a pattern of correlations and 

should not be reified.  In the case of g we now know—from Genome-wide Complex 

Trait Analysis—that it has a heritability of the order of 50%, but we know equally firmly 

that it cannot be identified with any single polymorphic gene or even with a small 

number of genes (Davies et al., 2011; Plomin & Deary, 2015).  

We also emphasize that f may not be specific to faces.  Our results show that 

several low-level visual functions—contrast sensitivity, recognition of oriented gratings 

and perception of coherent motion—do not load on this factor; but the possibility 

remains open that tests of, say, object recognition would load on f.  Further factor-

analytic studies of face and non-face tests offer an attractive route for understanding the 

nature of f. 

It is instructive that f does not correlate significantly with GCSE scores, our 
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surrogate measure of g.  This finding is consistent with earlier studies (using the 

Cambridge Face Memory Test) that have found little or no correlation between general 

intelligence and the ability to process faces (Wilmer et al., 2014; Shakeshaft & Plomin, 

2015). We must emphasize, however, that a large part of the present sample comprises 

undergraduate students at a selective university, and is thus restricted in range of 

intelligence; this would limit our ability to detect any relationship that may be present in a 

more diverse sample. 

Of the four tests of face processing, only the Mooney test loads markedly on the 

second factor of Table 4.  This is the factor on which the two tests of ‘coherent form’ 

load very strongly.  Perhaps what the three tests have in common is the requirement to 

integrate local visual features across space.  In other words, they perhaps all require the 

(still-mysterious) process of ‘perceptual organization’.  However, the detection of 

coherent motion—which nominally requires similar processes—does not load on this 

factor, but loads strongly on the third.  

 

4.2. Specific sub-processes in the perception of faces 

The four tests of face perception considered here vary in the extent to which they 

engage different sub-processes required for the perception of faces. Traditional models 

of the analysis of faces propose two main sub-mechanisms: “structural encoding” and 

“face recognition units” (Bruce & Young, 1986), or, in another terminology, “early 

perception of facial features” and “perception of unique identity” (Haxby et al., 2000). 

Each of these stages, of course, is likely to require many specific sub-stages.  Freiwald 

and Tsao (2010) distinguished six interconnected face-selective regions of the macaque 

temporal lobe, and identified some of these regions with distinct levels of processing: In 

the middle lateral and middle fundus patches, neurons were view-specific; in the anterior 

lateral area, neurons were often tuned to mirror-symmetric views; and in the anterior 

medial area, neurons were most selective for identity and tended to generalize across 

many viewpoints. 

Let us consider one particularly interesting result from the present study, the low 

level of shared variance between the Mooney test and the Glasgow Face Matching Test. 

These results could perhaps be taken to signify that the Mooney test is more a test of 

closure (a process not required for the GFMT), and that the GFMT is more a test of 

image comparison (a process not required for the Mooney test). However, the relatively 

high shared variance (10%) between the Mooney test and the Cambridge Face Memory 
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Test does suggest that the Mooney test probes sources of variance common to other 

tests of face processing. For instance, the Mooney test requires the participant to 

construct—from the two-dimensional, two-tone image—a coherent three-dimensional 

model both of the light source and of the face (Moore & Cavanagh, 1998); and in 

performing this feat of internal modeling the participant is likely to draw on stored 

experiences of faces of different age, sex and demeanor. Many of the required underlying 

processes will have a less prominent role when a participant performs the Glasgow Face 

Matching Test, in which the participant is asked to compare only two-dimensional 

images from similar viewpoints. It may also be relevant that the final phase of the CFMT 

requires participants to recognize faces in images degraded with random visual noise; it is 

possible that detection of faces in the two-tone, thresholded Mooney images relies to 

some extent on the same visual processes as does the extraction of faces embedded in 

noise.4 

The Glasgow Face Matching Test and Cambridge Face Memory Test have the 

highest shared variance: 23%. This is perhaps surprising, because the GFMT primarily 

entails face discrimination, while the CFMT requires face recognition; the latter process relies 

on learning and memory in a way that the former does not. Furthermore, the stimuli 

used in these two tests differ markedly. Of particular note is that head outline and hair 

are masked for the CFMT faces, while both are visible in the GFMT; discrimination and 

recognition performance for unfamiliar faces may rely heavily on such features (Young et 

al., 1985). 

The correlation we observe here between the GFMT and CFMT (r = .48) is 

substantially stronger than the correlation that Burton and colleagues (2010) observe 

between the GFMT and a custom-made face recognition task (r = .29). In fact, Burton 

and Jenkins (2011) argue that unfamiliar faces are processed as objects rather than faces. 

If this were indeed the case, then the high shared variance that we observe between a 

recognition test (CFMT) and an unfamiliar face test (GFMT) could indicate that object-

recognition processes are also involved in the recognition of faces (as in the CFMT), or 

rather that the faces in the CFMT remain effectively unfamiliar. Alternatively, it could be 

that the ‘recognition process’ applied during the CFMT involves a ‘discrimination 

process’ between the three faces concurrently presented in the CFMT’s 3AFC 

paradigm—a process akin to that used during the GFMT.  The high correlation we 

observe is unlikely to be due to similarity of stimuli between the GFMT and CFMT: The 

																																																								
4 We thank an anonymous reviewer for this suggestion.	
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images of the two tests come from different databases, and differ as to whether external 

features such as face shape and hair are visible. In addition, the low correlation between 

GFMT and face recognition reported by Burton and colleagues (2010) was observed 

even though their two tests used images from the same database.  

 

4.3. The holistic index 

Despite our large sample size, we do not observe a correlation between the holistic 

index (ostensibly the measure of interest for the Composite test) and performance on any 

of the other tests, whereas many previous studies report a strong, positive correlation 

with CFMT performance or a similar measure of face recognition (DeGutis et al., 2013; 

Richler et al., 2011; Wang et al., 2012). Our results are more in accord with those of 

Konar et al. (2010), who also do not observe a significant relationship between holistic 

processing and face identification. However, their task of face identification was arguably 

more a task of face discrimination (akin to the GFMT), and oddly enough we do find a 

significant correlation between the holistic index and CFMT performance when we pair 

the idiosyncratic manner in which Konar et al. (2010) calculated the holistic index with a 

regression-based analysis (see Supplementary Materials, S.3). However, by that point the 

calculated statistic has become conceptually meaningless. Indeed, most studies that 

administer the Composite test use either different test versions, or different ways of 

calculating the holistic index, or both. The comparison of results is thus undermined.  

Although Richler and colleagues (2014) have recently developed a new, 3AFC 

version of the Composite test that could address the aforementioned issues, the holistic 

index may not reflect a single source of variation: Independently of being good or bad at 

holistic processing, individuals may vary in the ability to decide actively whether or not to 

use holistic processing. Indeed, it is interesting to note that d′ values for the four 

conditions separately do correlate significantly and strongly with CFMT performance, and 

that overall raw score on the Composite test correlates significantly (and substantially) 

with performance on all three other face tests. These correlations suggest that the basic 

task of judging whether the top halves of two faces are the same or different taps into 

common face-processing abilities. 

It is interesting that we do not find a relationship between Autism-Spectrum 

Quotient and holistic index, given the extensive evidence that people with autism, and 

perhaps too some of their relatives, differentially process details at the expense of the 

perceptual Gestalt (Frith, 2012; Gauthier et al., 2009).  However, other studies have 
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reported intact holistic face processing in autistic individuals (e.g. Cleary et al. 2015; 

Joseph et al. 2003). 

 

4.4. Self-rating of face-recognition ability 

It is striking that a single self-rating of the ability to recognize faces accounts for 

so much of the variance in CFMT performance (17%). The correlation we observe (r = 

.41) is slightly higher than a previously reported correlation between CFMT performance 

and participants’ agreement with the statement “I can recognize famous celebrities in 

photos or on TV” (r = .37; Wilmer et al., 2014). However, our correlation is almost 

double that obtained when participants judged their ability in comparison to “the average 

person” (r = .22; Bowles et al., 2009). The latter question might be an external judgment 

(a question of comparison to an unknown other, thus risking confounds of self-image), 

whereas our question might tap an internal notion of ability. 

 

4.5. Absence of genetic associations 

Although our sample of 370 participants is large by the standards of phenotypic 

studies, it is small as a genome-wide association study. Thus it may not be remarkable 

that we fail to identify significant genetic associations of the four face tests in addition to 

the one association with Mooney performance we have previously reported (Verhallen et 

al., 2014).   
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SUPPLEMENTARY MATERIALS 

 

S.1. Calculation of the holistic index 

The first step in calculating the holistic index is to calculate d′ from Signal Detection 

Theory (Stanislaw and Todorov, 1999) for each alignment by congruency condition (i.e. 

separately for aligned-congruent trials, aligned-incongruent trials, misaligned-congruent trials, and 

misaligned-incongruent trials). Each of these four conditions has 40 trials: 20 same trials and 

20 different trials (160 trials in total). In the calculation of d′—which is done for each 

condition independently—the hit rate is defined as the total number of “Same” 

responses to the same trials within that condition, divided by the number of these same 

trials; the false-alarm rate is defined as the total number of “Same” responses to different 

trials within that condition, divided by the number of these different trials. Thus we have, 

for each participant, four measures of d′, one for each condition. It is important to note 

that in the calculation of d′, hit rates and false-alarm rates are converted to z-scores. 

Should the hit rate or false alarm rate be one or zero, the z-score would be infinite, 

rendering subsequent calculations impossible. Therefore, we applied a log-linear correction 

to both hit rates and false-alarm rates, by adding +.5 to the number of “Same” responses 

in the numerator, and by adding +1 to the number of trials in the denominator (Hautus, 

1995; Stanislaw and Todorov, 1999). 

The next step in calculating the holistic index is to use the computed d′ values to 

calculate the condition of interest (by subtracting d′ of the aligned incongruent trials from d′ of 

the aligned congruent trials) and the control condition (by subtracting d′ of the misaligned 

incongruent trials from d′ of the misaligned congruent trials). Finally, we regress the control 

condition from the condition of interest; the residuals from this analysis constitute the holistic 

index. 

 

S.2. Calculation of the split-half reliability for the holistic index 

To calculate the split-half reliability of the holistic index, we split the data of the four 
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conditions by generating—independently for each condition—a random sequence of ten 

numbers (without replacement) between one and twenty, because there are twenty same 

trials, or hit trials, and twenty different trials, or false alarm trials, per condition. The 

random sequence of ten numbers comprised the ten same and ten different trials of one 

subset; the remaining numbers between one and twenty comprised the trials of the other 

subset. We then calculated—for each subset—d′ for the condition of interest and d′ for 

the control condition, and subsequently the holistic index using regression; for both 

calculations we used the same method as described in the main text. Finally, we 

calculated the Spearman correlation between the holistic indices of the two subsets: For 

5,000 splits of the data, the mean Spearman-Brown corrected correlation was ρ = .53 (SD 

= .06). 

 

S.3. Further analysis of the holistic index1 

The absence of a correlation between the holistic index from the Composite Face Test 

and performance on the Cambridge Face Memory Test is surprising, since it contradicts 

previous findings (DeGutis et al., 2013; Richler et al., 2011; Wang et al., 2012). Although 

d′ is a measure free of bias, it still makes certain assumptions about the data: The 

distributions of hit rates and of false-alarm rates both should be normal, and should 

exhibit similar standard deviations (Pastore et al., 2003; Stanislaw & Todorov, 1999). We 

found our distributions (for the Composite test) to be approximately normal, but 

standard deviation differed between hit rates and false-alarm rates on the aligned-

incongruent condition. We thus verified our calculation of d′ by calculating A′ for all four 

conditions, and subsequently recalculating the holistic index (Macmillan & Creelman, 

2005; Stanislaw & Todorov, 1999). We specified hit rate and false-alarm rate in the same 

way as for the calculation of d′, and then calculated—for each condition independently—

A′ as described by Stanislaw and Todorov (1999, p. 142). We used these four measures to 

calculate the condition of interest and the control condition, and subsequently the 

holistic index, using the same methods as previously described (see the main text). We 

did not observe a significant correlation between the holistic index derived from A′ and 

																																																								
1 If only one Spearman statistic is reported, it is always calculated using the holistic index based on the 
regression method, and reported as the only statistic because it is nearly identical to the result when using 
the holistic index based on the subtraction method. If Pearson’s statistics are not reported, this is because 
they are nearly identical to the reported Spearman statistics; this is also true for the subtraction method 
when only one (the regression) statistic is reported.  
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performance on the CFMT (Spearman’s ρ = −.10, puncorrected = .05), nor for that matter 

with performance on the Mooney Test (Spearman’s ρ = −.10, puncorrected = .06) nor with 

the GFMT (Spearman’s ρ = −.05, puncorrected = .36). Our A′ and d′ holistic indices 

correlated significantly and positively (Spearman’s ρ = .88, p = 2.3 × 10−132), and the 

split-half reliability of the holistic index derived from A′ was a Spearman–Brown 

corrected correlation of ρ = .47 (SD = .08), the mean of 5,000 iterations. However, since 

the results with A′ are similar to d′, and the two correlate significantly, but also because 

A′ might underestimate ability in the presence of bias (Pastore et al., 2003), we will 

continue to use the holistic index based on d′. 

The four studies that investigate the link between the holistic index and face 

recognition also report the relationships between individual conditions (i.e. similarity, 

alignment, and congruency) of the Composite test. Additionally, some report the effect of 

removing outliers, of calculating the holistic index using the partial design, and of using 

reaction times to calculate the holistic index instead of using accuracy. To further verify 

and understand our findings, we set out to trace the variety of steps that previous studies 

had taken, and took a few more of our own. 

 

S.3.1. The Effect of Excluding Outliers 

In addition to the analyses described in the main text, and to ensure that our failure to 

replicate previous findings was not due to outliers, we inspected d′ within each of the 

four conditions, and found a few participants showing values below zero (i.e. a lower hit 

rate than false alarm rate). We feared these participants might have switched response 

keys, or that they were judging the change in the bottom halves of the faces rather than 

the change in the top halves. We thus excluded any participant whose d′ values were 

below zero for any condition, and recalculated the holistic index. Twelve participants 

were excluded from the analysis; the correlation between the holistic index and CFMT 

performance remained non-significant (Spearman’s ρ = –.01, p = .89).  

An alternative method of spotting participants who potentially were using the 

wrong strategy, or who had switched response keys, is to omit any participant who 

responds correctly to fewer than half of the same incongruent misaligned trials, or to fewer 

than half of the different incongruent misaligned trials. Since the misaligned condition does not 

require holistic processing, a consistent response of “Different” on same incongruent trials 

(where the bottom halves are different but the top halves are the same) or of “Same” on 
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different incongruent trials (where the bottom halves are the same but the top halves are 

different), would likely be due to a wrong strategy (attending to the bottom halves 

instead of the top halves), or be due to reversal of the response keys. We excluded any 

participant who fulfilled either of the two criteria, and recalculated the holistic index. 

Sixty-one participants were excluded from the analysis; the correlation with CFMT 

performance remained negligible and non-significant (Spearman’s ρ = –.03, p = .51).  

Another method of classifying outliers would be to remove any participant with 

d′ values (in any, or multiple, of the four conditions) that were 1.5 times the inter-quartile 

range above or below the 3rd or 1st quartile, respectively (see the grey, open circles in 

Figure 2 in the main text). This criterion excluded 17 participants from the analysis; the 

correlation between holistic index and performance on the CFMT remained negligible 

and non-significant (Spearman’s ρ = –.03, p = .58). 

 Since prosopagnosics are thought to be impaired at holistic processing, we 

investigated whether excluding them from the sample would influence the test statistic. 

We excluded any participant whose CFMT performance was two standard deviations 

below the mean (Duchaine and Nakayama, 2006) and recalculated the correlation 

between CFMT performance and the holistic index: Eleven participants were excluded, 

and the correlation remained negligible and non-significant (Spearman’s ρ = –.04, p = 

.42). 

 

S.3.2. Partial Design 

Konar et al. (2010), and Wang et al. (2012), both used the partial design, instead of the 

complete design that is used in the current study and in the studies by Richler et al. 

(2011) and by DeGutis et al. (2013). The partial design does not have a congruency 

condition, since between the study and target faces the bottom halves are always 

different. In the terminology of the complete design, the different trials of a partial design 

are always congruent (because both the top halves as well as the bottom halves differ 

between the study face and the target face), whereas the same trials are always incongruent. 

Thus, to investigate the partial design using our data from the complete design, we 

considered only the same-incongruent trials and the different-congruent trials from both aligned 

and misaligned conditions. However, there has been extensive debate about the differential 

merits of the partial design and the complete design (for details the reader is referred to 

Rossion, 2013, and the reply to that paper by Richler and Gauthier, 2013). What must be 
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kept in mind are the possible differences in response bias for the two designs: our 

‘partial-design measure’ that we calculate from our complete-design data could still be 

influenced by the fact that our trials were part of the complete design (although, see the 

Supplementary materials in Richler et al., 2011 for a counterargument). 

In order to approximate a comparison to previous partial-design studies, we 

calculated the holistic index for the partial design as follows: d′ for the condition of 

interest was calculated using the response of “Same” on same incongruent-aligned trials 

as hits, and the response of “Same” on different-congruent aligned trials as false alarms; 

d′ for the control condition was calculated using the response of “Same” on same-

incongruent-misaligned trials as hits, and the response of “Same” on different-

congruent-misaligned trials as false alarms. We again calculated the holistic index using 

both the regression method and the subtraction method as detailed above. 

Like Konar et al. (2010), we did not observe a significant correlation between 

performance on the CFMT and the holistic index (based on d′) using the partial design 

and the subtraction method (Spearman’s ρ = –.07, p = .14), and neither when using the 

regression method (Spearman’s ρ = .09, p = .08). Wang et al. (2012) also did not observe 

a significant correlation with the holistic index based on accuracy (although they did 

observe a significant correlation with the holistic index based on reaction time; see the 

following subsection). However, they calculated their measure of holistic processing in a 

slightly different way:2 

 

ℎ"#$%&$'	$)*+,	 = 	 .#$/)+*	 − 	1$%.#$/)+*.#$/)+*	 + 	1$%.#$/)+* 

  

using only the scores on same trials. We also applied this formula to our data, using only 

the incongruent trials in order to replicate the partial design (i.e. we used raw scores on 

same-incongruent-aligned trials for the ‘aligned’ variable, and raw scores on same-incongruent-

misaligned trials for the ‘misaligned’ variable). We did not observe a significant correlation 

with performance on the CFMT (Spearman’s ρ = –.03, p = .53), confirming the results 

(Pearson’s r = .03, p = .61) of Wang et al. (2012). Our findings for the holistic index 

																																																								
2 In their Supplementary material, Wang et al. (2012) describe using an equation in which ‘aligned’ and 
‘misaligned’ had swapped places (i.e. misaligned – aligned) to calculate the holistic index based on d′. Yet, 
in their main text, they mention that they used the equation given here for both the holistic index based on 
reaction times, as well as for the holistic index based on d′. We assume the Supplementary material 
contained a typographical error, and we will use the equation provided here. 
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based on d′ and using the partial design are thus in accordance with the findings of both 

Konar et al. (2010) and Wang et al. (2012). 

Konar et al. (2010) also did not observe a significant correlation between holistic 

index and face recognition, but although their calculation was almost identical to ours 

and to those of other previous studies, they report that they swapped the variables within 

the equation: Instead of subtracting the control condition from the condition of interest 

(aligned – misaligned), they subtract the condition of interest from the control condition 

(misaligned – aligned). It is unclear whether or not this is a typographical error, since the 

only effect that swapping the variables would have is a change of the sign of the 

correlation. However, we felt adventurous and inverted the regression calculation of the 

holistic index using the partial design—regressing the condition of interest from the 

control condition, i.e. misaligned ∼ aligned, instead of vice versa, as done by DeGutis et al. 

(2013) and by us in our previous (standard) calculation using d′ and the regression 

method. Now, we observed a significant, positive correlation with CFMT performance 

(Spearman’s ρ = .26, p = 1.97 × 10−7). However, if we follow current theory, the measure 

that we obtained here reflects mostly non-holistic processing, as all variation from the 

condition of interest has been removed. The significant correlation with CFMT 

performance that we suddenly observe here is thus not with a measure of holistic 

processing. 

 

S.3.3. Reaction times3 

In some studies, results were different when using reaction time as compared to accuracy 

(or d′ computed from accuracy). For example, Wang et al. (2012) observed a significant, 

though modest correlation between face-recognition performance and the holistic index 

based on reaction time (Pearson’s r = .13, p < .05), but did not observe a significant 

correlation when using the holistic index based on accuracy (Pearson’s r = .03, p = .61), 

as described above. To compare, we calculated the holistic index based on reaction time,4 

using the formula from Wang and colleagues, which uses the partial design: (aligned – 

misaligned) divided by (aligned + misaligned). As with accuracy, we did not observe a 

																																																								
3 All trials are taken into account for calculations using reaction time, not just the trials on which the 
participant scored correctly.	
4 As opposed to the calculation of d′, where same and different trials are used for hits and false alarms, the 
calculation of reaction time simply pools the two types of trials. This results in four reaction-time averages 
for each of the four conditions. However, owing to a technical error we have reaction times only for the 
first 80 trials (out of 160 trials in total). 
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significant correlation with CFMT performance (Spearman’s ρ = –.03, p = .58; Pearson’s 

r = .08, p = .09). 

Konar et al. (2010) did not find a significant correlation for accuracy, or for 

reaction time. When we used their formula of aligned minus misaligned trials, we did not 

observe a significant correlation with reaction time (Spearman’s ρ = .12, puncorrected = .02; 

Pearson’s r = .08, p = .09). However, as with accuracy, we did find a significant though 

marginal correlation when using regression, instead of subtraction, in this formula 

(Spearman’s ρ = .15, p = .003; Pearson’s r = .13, p = .01). Unfortunately, Konar et al. 

(2010) do not report results using the regression method, thus we cannot compare our 

results to theirs. 

Finally, the formula we had used to calculate the holistic index based on d′ (see 

the main text), we also applied to reaction time: Mean reaction time for aligned-congruent 

trials minus mean reaction time for aligned-incongruent trials constituted the condition of 

interest, while mean reaction time for misaligned-congruent trials minus mean reaction time 

for misaligned-incongruent trials constituted the control condition. Subsequently, subtracting 

the control condition from the condition of interest, or regressing the control condition 

from the condition of interest and taking the residuals, constituted the holistic index for 

the subtraction and regression methods, respectively. Using this formula, we did not 

observe a significant correlation between performance on the CFMT and the holistic 

index based on reaction time when using the regression method (Spearman’s ρ = –.10, 

puncorrected = .04; Pearson’s r = –.06, p = .26), nor when using the subtraction method 

(Spearman’s ρ = –.03 , p = .55; Pearson’s r = –.07, p = .14). 

For this last holistic index based on reaction time, we calculated the Spearman–

Brown corrected split-half reliability in the same way as we had previously done for the 

holistic index based on d′ (see §S.1). With 5,000 splits of the data, mean ρ was .26 (SD = 

.08). The upper-bound correlation with CFMT performance was thus √.26 × .91 = .49. 

The reliability of this measure was low, because we had reaction times only for the first 

half of our test (trials 1 to 80, out of 160 trials in total) owing to a technical error; though 

reliability remains slightly higher than the reliability of .43 reported by Wang et al. (2012), 

who did observe a significant effect. 

 

S.3.4. Conclusion 
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Although our data contained a non-trivial ceiling effect (especially for the aligned-congruent 

trials) we consistently did not observe a correlation between the holistic index based on 

d′, and face recognition as indexed by the CFMT, using testing methods as well as 

statistical analyses that in previous studies resulted in significant correlations. There were 

only two instances in which we did observe a significant correlation with CFMT 

performance, both of which used a combination of calculations not previously reported: 

one, when using the idiosyncratic formula of Konar et al. (2010) for d′ from the partial 

design, but substituting subtraction with regression (Spearman’s ρ = .26, p = 2.0 × 10−7); 

and two, when using the idiosyncratic formula of Konar et al. (2010) for reaction times 

from the partial design, but again substituting subtraction with regression (Spearman’s ρ 

= .15, p = .003). 

Our investigation into the various methods of data analysis highlights the 

complexity of the current holistic-processing literature: The contradictory results of the 

various studies seem to be confounded by numerous differences between them. Not only 

are different stimulus sets and different experimental methodologies used for both the 

holistic index (the complete vs. the partial design) as well as for the measure of face 

recognition (the CFMT vs. other, unstandardized tests), but the methods of data analysis 

differ as well: The holistic index has been calculated using subtraction, regression, or 

even a custom calculation such as Wang et al., 2012; and the exact sequence of 

conditions within these calculations (whether the control condition is subtracted or 

regressed from the condition of interest, or vice versa) has been varied. With stimuli, 

experimental methods, and methods of data analysis that are all unstandardized, it 

remains very difficult to draw firm and equivocal conclusions as to how strong (or weak) 

the relationship between holistic processing and face recognition ability might be. 
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