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Abstract  
 

Background: According to Cobanoglu et al and Murphy, it is now widely 

acknowledged that the single target paradigm (one protein/target, one disease, one 

drug) that has been the dominant premise in drug development in the recent past is 

untenable. More often than not, a drug-like compound (ligand) can be promiscuous – 

that is, it can interact with more than one target protein. 

 

In recent years, in in silico target prediction methods the promiscuity issue has been 

approached computationally in different ways. In this study we confine attention to 

the so–called ligand-based target prediction machine learning approaches, commonly 

referred to as target-fishing.  

 

With a few exceptions, the target-fishing approaches that are currently ubiquitous in 

cheminformatics literature can be essentially viewed as single-label multi-

classification schemes; these approaches inherently bank on the single target 

paradigm assumption that a ligand can (somehow) home in on one specific target. In 

order to address the ligand promiscuity issue, one might be able to cast target-fishing 

as a multi-label multi-class classification problem.  

 

For illustrative and comparison purposes, single-label and multi-label Naïve Bayes 

classification models (denoted here by SMM and MMM, respectively) for target-

fishing were implemented. The models were constructed and tested on 65,587 

compounds/ligands and 308 targets retrieved from the ChEMBL17 database. 
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Results: SMM and MMM performed differently. According to Recall and Precision 

evaluation metrics employed to compare the target prediction performance of the two 

models for 16,344 test compounds/ligands, the MMM model returned recall and 

precision values of 0.8058 and 0.6622, respectively; the corresponding recall and 

precision values yielded by the SMM model were 0.7805 and 0.7596, respectively. 

However,  at a significance level of 0.05 and one degree of freedom McNemar’s test 

performed on the target predication results  returned by SMM and MMM for the 

16,344 test ligands gave a p-value <  7. ×10
–5

 (χ
2
 value of 15.656), in favour of the 

MMM approach: The MMM model correctly predicted the targets of 262 test 

compounds, which the SMM model wrongly predicted; and the SMM model correctly 

predicted the targets of 178 test compounds, which the MMM model wrongly 

predicted.  

Conclusions: The target prediction results obtained in this study lend support (albeit 

statistically) to the argument against the single target paradigm. The results also 

indicate that multi-label multi-class approaches are more robust and apt than the 

ubiquitous single-label multi-class schemes when it comes to the application of 

ligand-based classifiers to target-fishing.  

  

Keywords: Multi-label classification ; Ligand promiscuity ; Probabilistic 

classifier  
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Background  
 

It is now widely acknowledged that the single target paradigm (i.e. one protein/target, 

one disease, one drug) that has been the dominant premise in drug development in 

recent past is untenable as both drug-like compound (ligand) and target protein can be 

promiscuous [1][2]. More often than not, a ligand can simultaneously interact with 

multiple proteins in a human cell; this observation can also be true with target proteins 

[2][3]. For example, according to Mestres [4], there is on average 6 – 7 annotated 

targets per drug in DrugBank [5]. It is, therefore, important that ligand (and protein) 

promiscuity is taken into consideration when developing in silico target protein 

prediction models.  In this regard, significant efforts have been made in recent years 

to take into account the promiscuity issue when devising in silico target protein 

prediction models [1]–[3][6]–[9] (and references there in). The state-of-the-art 

methods that consider ligand (and protein) promiscuity when predicting target 

proteins can be broadly divided into three categories namely ligand-based [1][3][6] 

[7][10][11], target-structure-based [1][3][6][8], and ligand-target-pair-based  

[1][3][6][9].  In this study we confine attention to ligand-based machine learning 

approaches, commonly referred to as target-fishing.  

 

The central idea that constitutes the nub of the ligand-based machine learning 

approach is that a new ligand sharing enough structural similarity to a set of reference 

ligands annotated against known target proteins has a high probability of showing 

activity against the predefined target proteins [6] (and references therein).  

 

The target-fishing approach began to appear in the cheminformatics literature over the 

last decade and a half [10]–[21]. According to Rognan [6], the target-fishing methods 
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all share three basic components:-- using a given data set comprising a set of 

reference ligands, a set of target proteins and a bipartite activity relation between the 

targets and ligands in the two sets, a model is constructed such that for a new ligand 

the model returns the appropriate targets against which this ligand shows activity. 

 

As far as we are aware, at the time of writing, the ligand-based machine learning 

approaches – with few exceptions (see the Previous Work Section) – utilised in 

cheminformatics explicitly or implicitly assume that the target proteins against which 

the reference ligands are annotated are mutually exclusive [3][6][10][11][15][17] 

[22]–[24] (and references therein).  It is assumed a ligand can (somehow) home in on 

one single protein in the midst of the multitude of proteins in a human cell, which is 

the very assumption deemed questionable [1][2][4], see above. In machine learning 

(and also in statistics), this type of ligand-based target predicting approach can be 

viewed as a single-label multi-class classification problem, vide infra. In contrast, as 

in this work, one might be able to take into account ligand promiscuity by casting the 

ligand-based target prediction task/approach as a multi-label multi-class classification 

problem. That is, the relevant target proteins for a certain ligand need not be mutually 

exclusive. This will be described in detail in the Methods Section. 

 

In any event, in the light of the discussion in the preceding paragraphs the machine 

learning ligand-based target predicting approach (target-fishing) is basically a ligand-

based classification problem [3][6][22]–[24][31], whereby a (machine learning) 

classifier is utilised to predict potential target protein(s) for a given ligand. Thus, 

developing an accurate, computationally efficient and conceptually appropriate 

ligand-based classifier is an important research topic in cheminformatics. To this end, 
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the essence of devising an efficient ligand-based classification model can amount to 

developing a mathematical algorithm that “learns” the chemical structure-biological 

activity relationships (if any) from given set of (reference) ligand chemical structures, 

a predefined set of target proteins and a bipartite activity relation between the 

reference ligands and targets. Once the learning phase of the model/classifier building 

is completed, for a new compound the resultant classifier is expected to accurately 

predict relevant target proteins (in the preselected set of target proteins) against which 

the new compound may show biological activity.  

 

The ligand chemical structure is usually represented as a “vector” (descriptor/feature 

vector) whose elements, ideally, constitute the salient characteristics of the ligand for 

its interaction with potential target protein(s). There are a plethora of chemical 

structure representation schemes that have been suggested over the years [25][26].  

Simply one cannot predicate that a given representation of a chemical structure can 

capture all the subtleties intrinsic to a particular chemical structure of the ligand, 

which might be crucial for the biological effect that a ligand could induce on the 

relevant target proteins. Another source of uncertainty is the certitude that 

measurements of observable biological effects (and subsequently databases based on 

these observations) are inevitably noisy [27][28]; this uncertainty can, in turn, 

introduce another layer of uncertainty in relating the chemical structure of the ligand 

with its observable activity against a target protein. It is, therefore, desirable to 

develop a ligand-based classification approach that takes into account these 

uncertainties. This deems a probabilistic classifier the ideal candidate for the task [19] 

[24][29][30][33]–[35]. 
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In more concrete terms, a ligand-based classifier can be viewed as an algorithm that 

maps a ligand descriptor vector xj to a predefined protein target(s) often referred to as 

classes/labels. Henceforth, all the target labels are collectively denoted 

by  𝐿 = {𝑙1, … , 𝑙𝑘, … , 𝑙|𝐿|} . Usually xj is viewed as a “vector” defined on an m-

dimensional descriptor space 𝜒, where xj = {𝑥𝑗1, … , 𝑥𝑗𝑖 , … , 𝑥𝑗𝑚}. As described before, 

the elements 𝑥𝑗𝑖  are assumed to represent the “relevant” chemical structure 

descriptors/properties of ligand j in relation to the targets. These descriptors can 

assume real or discrete values. In the present work 𝑥𝑗𝑖  are binary, representing the 

absence or presence of a chemical atom environment descriptors in the ligand.  

 

A tacit assumption that is typically made is that one has access to a representative data 

set 𝐷  that adequately captures the bipartite activity relation between the target 

proteins and reference ligand chemical structures: 𝐷 = {( 𝐱𝑗 , 𝑌𝑗), 𝑗 = 1,2, … , 𝑁} 

denoting the 𝑁 available data points, where 𝐱𝑗  ∈ 𝜒 represents ligand 𝑗 and 𝑌𝑗 refers to 

the set of targets against which ligand 𝐱𝑗 is known to be active.  

 

Given 𝐷, the classification task amounts to “learning” or estimating a function (if one 

exists): 

 

 𝑓: 𝜒 → 𝐿      (1) 
 

which not only correctly associates the known label(s)  𝑌𝑗  with their appropriate 

ligand 𝐱𝑗 , but also predicts the correct label(s) for a new ligand that is not included in 

𝐷. In effect, our main task is to come up with a model that elucidates or captures the 

unknown underlying process that might have generated the observed phenomena, i.e. 

the available data set 𝐷, in the first place.  
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In Eq. 1 the function can denote a ligand-based deterministic or probabilistic 

classifier [33]–[37]. In the present work, attention has been confined to Naïve Bayes 

classifiers, which are probabilistic. In this case, both 𝐱𝑗 and  𝑌𝑗  are random variables, 

but for notational simplicity in this work both  𝑌𝑗  and 𝐱𝑗  denote both the random 

variables and the values they may assume. Furthermore, unless stated otherwise, the 

index 𝑗  in  𝐱𝑗 ,𝑌𝑗  and 𝑥𝑗𝑖  and the indices 𝑗   and k in  𝑙𝑘𝑗 are omitted for notational 

clarity, where  𝑙𝑘𝑗  refers to label k for compound 𝑗.  

 

In the pattern recognition literature [38]–[45], when |𝑌| = 1, a classification model is 

referred to as a single-label classifier; but when |𝑌| ≥ 2, the classification model is 

referred to as a multi-label classifier. Furthermore, a classification problem can also 

be referred to as a binary classification problem if |𝐿| = 2  and a multi-class 

classification problem when |𝐿| > 2. Thus, a multi-class classification task can be 

categorised as a multi-label multi-class classification or a single-label multi-class 

classification problem. For an extended and detailed account of the multi-label multi-

class classification topic the reader may consult refs. [38]–[45]. 

 

As discussed in the Previous Work Section (see below), to our best knowledge the 

current target-fishing approaches employed in cheminformatics (with a few 

exceptions) rely on the assumption that a given ligand can only interact with one 

target protein, i.e. |𝑌| = 1 . Thus, a ligand-based target predicting approach, 

probabilistic or not, can be viewed as a single-label classification model. Nonetheless 

|𝐿|  separate single-label classifiers (one classifier per class) are constructed and 

utilised in order to predict potential multiple targets for a given ligand 
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[10][11][13][15] [17][22][23]. These |𝐿| classifiers can be induced binary (one–vs–

all) [10][12][15], or multi-class classifiers “proper” [11][13][17][22][23]. In this work 

we employed the latter classifiers as they are more apt and robust than the one–vs–all 

classifiers [23] in multi-class classification problems. In any event, the high 

probability of a ligand interacting with more than one target protein in nature [1]–[4], 

[47]–[51] – i.e. |𝑌| ≥ 2 – may render the single-label classification approach 

questionable as a  target-fishing scheme.  

 

In the light of our earlier discussion one may consider a ligand-based target prediction 

approach as a multi-label multi-class classification task when |𝑌| ≥2 and |𝐿| > 2. 

Since target proteins/classes are not necessarily mutually exclusive in the case of 

|𝑌| ≥2, a single multi-label multi-class ligand-based classifier should, ideally, be able 

to capture the underlying association (if any) between the chemical structures of the 

ligand and the set of labels 𝑌 ⊆ 𝐿 denoting potential target proteins for this ligand. 

Thus, this single multi-label classifier should, in principle, be able to predict the 

relevant target protein(s) for a given ligand. Having said that, nothing stops one from 

constructing |𝐿| individual induced binary (but “pseudo single-label”) classifiers for 

the same purpose, providing that the given training data set 𝐷  is appropriately 

transformed (for a detailed account of training data set transformation in the multi-

label classification context, see ref. [39]).  It should be noted that there are subtle but 

crucial differences between the induced binary classifiers employed in single-label 

ligand-based models described earlier and the induced binary classifiers (termed 

“pseudo single-label” here) employed in multi-label classification settings. This issue 

is briefly commented on in the Methods Section, but for a more detailed description, 

see ref. [38]. In our present study, |𝐿| individual induced binary “pseudo single-label” 
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classifiers were constructed and employed, where the data transformation scheme 

utilised was binary relevance [39].  

 

Arguably classification approaches based upon Naïve Bayes constitute the bulk of the 

probabilistic classification models for target-fishing [10][12][13][15][19] (and 

references therein). For this reason, we concentrated on this particularly popular 

ligand-based classification model. The popularity of the Naïve-Bayes as a target-

fishing tool can be probably attributed to the fact that building non-Naïve Bayes 

multi-class classifiers (be probabilistic or not) can become conceptually intricate or 

computationally demanding, or both [10][11][17][18][19][22]–[24][35]–[37]. The 

Naïve Bayes approach is: (1) probabilistic; (2) favourably scalable with 𝑚, 𝐿, and 𝑁, 

where 𝑚, 𝐿 and 𝑁 are as defined before; (3) computationally simple to implement; 

and (4) known to yield respectable classification results, despite the flimsiness of the 

rationale upon which the algorithm is based (that is,  descriptors for a ligand are 

conditionally independent of each other given the class label). It is these 

characteristics that give the application of Naïve Bayes based target-fishing 

approaches an edge over other classification algorithms also employed for this 

purpose [19] (and references therein). 

 

Previous Work 

 

For more recent developments on target-fishing approaches, we refer the reader to 

refs. [1][3] and [6]. To our knowledge, there were no research papers, at the time of 

writing, regarding the topic of comparing single-label and multi-label multi-class 

Naïve Bayes classifications for target-fishing. Michielan et al. [20] employed multi-
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label multi-class classification to classify cytochrome p450 substrates. The authors 

employed multi-label multi-class classification models based on SVM, MLK-Nearest-

Neighbour, and Neural Network on a data set of 580 cytochrome p450 substrates and 

seven isoforms. Hristozov et al.[21], also employing SVM, Neural Network, and 

MLK-Nearest-Neighbour methods [42], looked into classifying sesquiterpene lactones 

into seven tribes from the plant family Asteraceae. The two research groups compared 

the performance of single-label and multi-label models, and cautiously noted that 

multi-class classifiers based on the multi-label concept outperformed, or performed 

just as well as their corresponding single-label multi-class classifiers. However, their 

work did not feature the subject matter here: Naïve Bayes algorithms; besides, 

compared to ours their studies covered only seven targets. Wale and Karypis 

employed multi-label ligand-based classification methods [16]. Unlike our study, the 

nub and the main thrust of Wale and Karypis’s work were about comparing how 

different multi-label ligand-based classifiers perform on classifying multi-label 

bioactivity data sets. Similarly Kawai et al.’s study [29] was confined to the analyses 

of the performance of a multi-label ligand-based SVM classifier; the single-label 

aspect did not feature in their work, nor did single-label and  multi-label  Naïve Bayes 

algorithms. 

 

Closely following studies in text mining [52], we implemented and studied a ligand-

based Naïve Bayes multi-label multi-class classification model (MMM) for target-

fishing. We compared this classifier with a single-label multi-class ligand-based 

Naïve Bayes classification model (SMM) designed for the same purpose. Both 

classification models were built and tested on a bioactivity data set extracted from the 
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ChEMBL17 database [53], which comprised 308 protein target classes and 65,587 

compounds.  

  

In the following and preceding sections the words “ligand” and “compound” are used 

interchangeably. Also the terms “class”, “activity”, “label”, “target” and “target 

protein” are employed interchangeably. Single-label and multi-label compounds mean 

that a compound is non-promiscuous and promiscuous respectively. A single-label 

data set refers to a data set containing only single-label compounds, whereas a multi-

label data set refers a dataset comprising promiscuous compounds.  

 

Materials and Methods 

 

Data set 

 

In order to construct the Naïve Bayes models, we used the ChEMBL17 database, 

which comprises more than 1 million annotated compounds and more than 10 million 

bioactivity records covering 9,000 targets. The data set used for this study was a 

subset of ChEMBL17, which consisted of 65,587 unique compounds covering 308 

human targets giving a total of 93,281 ligand-target pairs. Structures with reported 

activities (IC50/ki/kd/EC50) equal or better than 1μM and confidence scores of 8 or 9 

against human protein targets were selected. Although this bioactivity value 

represented highly potent compounds, given the increase in the size of ChEMBL17 

database, it represented a sensible trade-off between biological activity and coverage 

of the chemical space. Only protein classes that contained between 120 and 720 data 

points were selected to ensure that the data set was balanced.  
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Table 1 summarises our ChEMBL17 data set. The table shows that 83.1% of the total 

compounds were annotated against only one target protein, while the remaining 

16.9% of compounds were annotated against two or more protein targets.  

Table 2 and Figure 1a depict the distribution of target proteins in different protein 

families. The majority of target proteins are categorised as enzymes and membrane 

receptors, with enzymes representing 67.8% of all the protein targets/classes in our 

ChEMBL17 data set, and membrane receptors constituting 23% of it. Figure 1b 

depicts the distributions of the enzyme classes. A significant proportion of the enzyme 

families in our data set consisted of the Kinase and Protease classes, with 54% and 

15%, respectively. 7TM1 receptors constitute the bulk (89%) of all the membrane 

receptor classes in our data set (see Figure 1c).  

 

Since there were a significant number of multi-label compounds (more than one-sixth 

of the total number of compounds) in our data set, we believe, this was a suitable data 

set for testing the hypothesis described in the Background Section.  

 

 

 

 

 

 

Compound Descriptors 

 

Compounds were standardized prior to fingerprint generation by ChemAxon’s 

Standardizer [54] using the options “Remove Fragments”, “Neutralize”, “Remove 
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Explicit Hydrogen” and “Tautomerize”. Extended Connectivity Fingerprints (ECFP) 

were employed to describe compound structures [55]–[58]. ChemAxon’s Java API 

[54] was utilized to generate fixed-length ECFP_4 binary fingerprints with a length of 

1,024 bits. 

 

Methods 

 

In this section we briefly describe the single-label and multi-label multi-class Naïve 

Bayes algorithms that were employed in this study. 

 

Naïve Bayes  

 

According to the Naïve Bayes assumption, the descriptors {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑚}  

constituting the elements of the descriptor vector 𝐱  representing the ligand are 

assumed conditionally independent given the class label 𝑙  [19]. In this setting, a 

choice of 𝑓 (in Eq. 1) can be the class posterior probability p(𝑙 | 𝐱) , where  p(𝑙 | 𝐱) 

can be expressed as [19] 

𝑝(𝑙|𝐱) =
∏ 𝑝(𝑥𝑖 | 𝑙)𝑚

𝑖=1  𝑃(𝑙)

𝑝(𝐱)
      (2) 

where 𝑃(𝑙) refers to the a priori probability of the class label 𝑙. This term represents 

one’s state of knowledge about the class label before obtaining the data for the 

ligands. The term  𝑝(𝑥𝑖 | 𝑙) denotes the class (label) conditional probability for 𝑥𝑖 , 

and 𝑝(𝐱) is as defined below; 𝐱, |𝐿| and 𝑚 are as described before. In this study, 𝑥𝑖 is 

binary – i.e. 𝑥𝑖 ϵ {0,1}. Comparatively, it is a simple affair to estimate 𝑃(𝑙). Thus, in 

practice, the estimation of 𝑝(𝑙|𝐱)  reduces to the estimation of  ∏ 𝑝(𝑥𝑖 | 𝑙)𝑚
𝑖=1 , i.e. 

the 𝑝(𝑥𝑖 | 𝑙)’s.  
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Single-label Multi-class Naïve Bayes 

 

In the single-label multi-class Naïve Bayes model employed in this work, where 

|𝑌| = 1 and|𝐿| > 2,  𝑝(𝐱) was expressed as 𝑝(𝐱) = ∑ ∏ 𝑝(𝑥𝑖 | 𝑙)𝑚
𝑖=1  𝑃(𝑙) 

|𝐿|
𝑙=1 .  

The class conditional probability 𝑝(𝑥𝑖 | 𝑙) was estimated as 

𝑝(𝑥𝑖 |𝑙) =  
 1 + 𝑛𝑖𝑙

+

2 +  𝑛𝑙
                  (3)  

where 𝑛𝑖𝑙
+ denotes the number of times that the 𝑖 𝑡ℎ descriptor  𝑥𝑖 assumes the value 1 

in class 𝑙 and 𝑛𝑙  is the number of instances in the training set belonging to class 𝑙. The 

a priori probability of each class 𝑃(𝑙) was  estimated as 

𝑃(𝑙) =  
𝑛𝑙

𝑁
                                 (4)  

where 𝑁 denotes the total number of single-label training data points. (𝐱, |𝐿| and 

𝑚 are as described before.) 

 

One classifier was built for each target protein 𝑙 using Eqs. 2 – 4 and the compounds 

in the training data set that were annotated against this target only. For predicting 

potential target proteins for a new compound, SMM computes |𝐿|  class/target 

posterior probability values and outputs the class with the highest posterior 

probability value.  

 

Multi-label Multi-class Naïve Bayes 

 

The multi-label multi-class Naïve Bayes algorithm, with |𝑌| ≥ 2  and |𝐿| >2, was 

implemented based on Wei et al. [52], where a binary relevance transformation [39] 

was utilised. However, any other appropriate transformation of the training data set 
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could have been employed [39]. Wei et al.’s approach is briefly described below for 

completeness. For a detailed account and more erudite description of what 

transforming the training data set entails in the multi-label context, the reader is 

referred to ref. [39].   

 

Using Eqs. 2 – 4 and a binary relevance transformation |𝐿|  induced binary (but 

“pseudo single-label”) classifiers,  𝐻𝑙: 𝜒 → {𝑙, ¬𝑙}, were constructed – one for each 

unique label 𝑙  in the set 𝐿 . This means, to construct the |𝐿| binary classifiers, the 

original data set 𝐷 was transformed into |𝐿| data sets 𝐷𝑙 , where each one of them 

contains all the instances of the original data set 𝐷. Each compound is labelled active 

if it is labelled 𝑙 in the original data set and otherwise labelled negative by the class 

label ¬𝑙. Note that in the multi-label Naïve Bayes case, unlike the single-label Naïve 

Bayes discussed in the Background Section, a compound in the training set needs not 

be a single-label compound. That is, the induced binary classifiers are not strictly 

single-label classifiers in the multi-label case – hence, the attribute “pseudo single-

label”.  

 

To predict the appropriate class labels (potential target proteins) for a new test 

compound 𝐱, the multi-label multi-class classification scheme outputs the union of the 

labels predicted by the |𝐿| classifiers, 𝑍: 

𝑍 = ⋃{𝑙: 𝐻𝑙(𝐱) ≥   𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}

𝑙 ∈𝐿

 (5) 

where 𝐻𝑙(𝐱) denotes 𝑝(𝑙|𝐱) for compounds 𝐱. Here 𝑝(𝑙|𝐱) was computed via Eq. 2; 

𝑝(𝐱)  was given by  𝑝(𝐱) = ∏ 𝑝(𝑥𝑖 | 𝑙)𝑚
𝑖=1  𝑃(𝑙) +  ∏ 𝑝(𝑥𝑖  |¬𝑙)𝑚

𝑖=1  𝑃(¬𝑙) ;  𝑝(𝑙) =  
𝑛𝑙

𝑁
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,whereas 𝑝(¬𝑙) =  1 − 𝑝(𝑙);  and 𝑝(𝑥𝑖  | 𝑙) and 𝑝(𝑥𝑖 |¬𝑙) were estimated by using Eq. 

3.  

 

The parameter 𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 was tuned/optimised by using cross-validation based on the 

Recall – Precision scheme.  

 

Computational Details 

 

Model Evaluation Schemes 
 

In the multi-label multi-class classification case, a class prediction made by a multi-

label multi-class model (MMM) can be fully correct, partially correct or fully wrong. 

Hence, the evaluation schemes for MMM are more complicated than those employed 

for evaluating the generalisation ability of a single-label multi-class model (SMM), 

whose prediction can only be fully correct or fully wrong. In order to make the 

comparison of MMM and SMM as equitable as possible, a rejection threshold value 

was not specified. Instead, in both MMM and SMM, a class prediction is arbitrarily 

assigned to one class when two or more classes are equally predicted.  

    

We employed Recall and Precision evaluation schemes. 

 

For MMM, recall and precision evaluation measures based on ref. [44] are widely 

employed in the machine learning  literature; we followed suit:  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

|𝑇|
 ∑

|𝑌𝑗 ∩ 𝑍𝑗|

|𝑍𝑗|

|𝑇|

𝑗=1

     (6) 
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𝑟𝑒𝑐𝑎𝑙𝑙 =  
1

|𝑇|
 ∑

|𝑌𝑗 ∩ 𝑍𝑗|

|𝑌𝑗|

|𝑇|

𝑗=1

            (7) 

where 𝑇  denotes the multi-label test data set which has |𝑇|  examples (𝐱𝑗 , 𝑌𝑗), 𝑗 =

1 … |𝑇|, 𝑌𝑗  ⊆ 𝐿; and 𝑍𝑗 = ⋃ {𝑙: 𝐻𝑙(𝐱𝑗) ≥   𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}𝑙 ∈𝐿   represents the set of labels 

to which 𝐱𝑗 is predicted to belong. 

 

However, in the case of SMM, recall and precision values are computed (per class) as 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                     (8) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                            (9) 

where “𝑇𝑃” denotes the number of compounds that the model assigns to their actual 

target,  (say) target A;  “𝐹𝑁” refers to the number of compounds annotated against 

target A, but assigned to other targets, whereas “𝐹𝑃 ” represents the number of 

compounds whose  associated target was  wrongly predicted to be target A.  

 

Evaluating the generalisation ability of SMM – using Eqs. 8 and 9 – was 

straightforward. However, the same cannot be said about MMM because in this case 

the predictions can be partially correct, fully correct and fully wrong. Thus, to make 

the comparison of the classification performance of the two models on the single-label 

data set at hand as equitable as possible, only the predicted class label in the top 

position of the predicted set of class labels 𝑍𝑗 for compound 𝐱𝑗 is considered as the 

predicted class label when computing |𝑌𝑗 ∩ 𝑍𝑗| in Eqs. 6 and 7. It should be noted 

that, while this approach puts the “recalls” in Eq. 7 and Eq. 9 on equal footings, it 

heavily penalises the precision value in the MMM case as the denominators in Eqs. 6 

and 8 indicate.  
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 Model Construction and Testing 

 

Our ChEMBL17 data set was randomly split into two portions – 70% of it as a 

training set 𝑆, and from the remaining 30%, only single label compounds as a test set.  

 

Using the 70% ChEMBL17 dataset allotted to training, the multi-label multiclass 

classification and single-label multiclass classification models based on the Naïve 

Bayes concept were generated, see Methods.   

 

The multi-label multiclass classification model (MMM) was built on the available 

training data set 𝑆. The single-label multiclass classification model (SMM) was built 

only on single-label training data set. This specific training data set was generated 

from 𝑆 by simply associating each compound with only one of its targets, where the 

target with the highest measured bioactivity was retained. 

 

To compare the classification performance of MMM and SMM (on the remaining 

30% of our ChEMBL17 data set) we utilised the two evaluation schemes described in 

the previous section.  

 

The Recall and Precision metrics were used to compare the performance of the two 

models on the single-label data set. In SMM there was no parameter to estimate. 

However, in MMM, the optimal choice of the 𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  value (described in the 

Methods Section) had to be estimated, which was achieved via 5-fold cross validation 

on the training set. The best threshold value for each fold was computed and the mean 
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value of these threshold values was considered as the “optimal” 𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value.  For 

all the results given in the following section 𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 was set to 0.999. 

 

 

 

Results and Discussion 
 

It is worthy of note that the classification predictions (and the subsequent analyses) 

presented in this study were retrospective in the sense that the predicted targets were 

known beforehand. 

 

Classification Performance  

 

The two classification models, MMM and SMM, were tested on predicting the 

appropriate targets for 16,344 test compounds distributed over 308 target proteins. 

Columns 2 and 3 in Table 3 demonstrate the target prediction performance of the two 

models for the test data set: SMM returned recall and precision values of 0.7805 and 

0.7596 (Column 2), respectively; the corresponding recall and precision values 

yielded by MMM were 0.8058 and 0.6622 (Column 3), respectively.   

 

 SMM yielded a better precision value for the test data set, but this could be attributed 

to the Recall and Precision evaluation metrics employed. As described in the Methods 

Section, this evaluation scheme heavily penalises (see the denominators in Eqs. 6 and 

8) the precision value returned by MMM. The scheme, however, puts the recalls 

returned by MMM (Eq. 7) and SMM (Eq. 9) on equal footings.  In this case the 
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MMM classifier returned better recall value than the SMM classifier.  Since the 

Recall – Precision metric was inconclusive, further analyses were performed. These   

analyses revealed that MMM and SMM statistically behave differently, based on our 

dataset For example, at a significance level of 0.05 and with one degree of freedom, 

McNemar's test performed on the MMM and SMM target prediction results for the 

test  set yielded  a p-value < 7. ×10
–5

 and χ
2
 values of 15.657 – in favour of the MMM 

approach; because the targets for 178 test compounds were wrongly predicted by the 

MMM model (but correctly predicted by the SMM model), whereas the targets for 

262 test compounds were correctly predicted by the MMM model (but wrongly 

predicted by the SMM model), see Table 4.  

 

These analyses suggest that MMM statistically generalises better than SMM based on 

the training data sets utilised. Thus, one could argue that the target-fishing results 

yielded by our multi-label and single-label models certainly – albeit statistically – 

lend support to the argument against the single-target paradigm and target-fishing 

methods that are based on this paradigm. 

 

Conclusion  
 

In this work two in silico ligand-based target prediction models – single-label multi-

class and multi-label multi-class Naïve Bayes classifiers – were constructed and tested 

on a large data set of bioactivity data extracted from the ChEMBL17 database. 

Statistically, the multi-label multi-class classification model (MMM) significantly 

outperformed its corresponding single-label multi-class classification model (SMM) 

on predicting the appropriate target proteins for 16,344 ChEMBL17 test compounds.  
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At a significance level of 0.05 and with one degree of freedom, McNemar's test 

performed on the MMM and SMM target prediction results for the test compounds   

yielded a p-value < 7. ×10
–5

 and χ
2
 value of 15.657, in favour of MMM.  

 

The target prediction results obtained are in line with the hypothesis set out within this 

study, i.e., it is not appropriate, nor is it adequate to universally employ single-label 

multi-class ligand-based classification approaches for target-fishing. Thus, based on 

the data sets utilised in this work, one may conclude that out of the two classification 

approaches (SMM and MMM) tested, the multi-label multi-class model (MMM) is 

robust and more apt (and should be utilised) for ligand-based target-fishing purposes 

– the subject matter in this study. 
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Figure 1 - Protein target distribution in the ChEMBL17 data set. 

 

 

Figure 1a: Protein target distribution among protein families in the ChEMBL17 data 

set. Figure 1b: The distribution of protein targets in enzyme families. Figure 1 c: The 

distribution of protein targets in membrane receptor families. 
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Tables 

Table 1 – Distribution of the compounds and their associated protein targets in our 

ChEMBL17 dataset.  

  

Number of 

Annotated 

Targets 

1 2 3 4 5 6 7 8 9 ≥ 10 

Number of 

Compounds 

54,563 7,937 1,571 321 240 191 132 60 42 530 

% of Total 

Number of 

Compounds 

83.1% 12.1% 2.39% 0.49% 0.36% 0.29% 0.2% 0.09% 0.06% 0.8% 

 

The table shows that 83.1% of the total compounds were annotated against only one 

target protein, while the remaining 16.9% of compounds were annotated against two 

or more protein targets; just over one-sixth of our ChEMBL17 dataset comprises 

multi-label ligands. 
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Table 2 - Distribution of target proteins in different protein families in our ChEMBL17 

dataset. 

 

 Enzyme membrane 

receptor 

transcription 

factor 

ion 

channel      

 

transporter cytosolic 

other 

Unclassified secreted 

Number 

of 

Classes 

209 

 

71 7 4 7 8 1 1 

% of 

Total 

Classes 

67.85% 23.05% 2.27% 1.29% 2.27% 2.59% 0.32% 0.32% 

 

90.90% of the protein targets are enzymes and membrane receptors, with enzymes 

representing 67.85% of all the protein targets, and membrane receptors constituting 

23.05%. 
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Table 3 – Recall and Precision values returned by MMM and SMM on predicting 

the target proteins for the 16,344 test compounds.  

 

Model SMM MMM 

Recall 0.7805 0.8058 

Precision 0.7596 0.6622 
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Table 4 – The McNemar’s test for the 16,344 test compounds.  

 

 Number of test compounds 

MMM predicted correctly while 

SMM predicted incorrectly 

262 

MMM predicted incorrectly while 

SMM predicted correctly 

178 

McNemar's test Result 15.6568 (7.594e-5) 

 

The McNemar’s test at a significance level of 0.05 and with one degree of freedom, 

on the MMM and SMM target prediction results for the test set yielded a p-value < 7. 

×10
–5

 and χ
2
 value of 15.657. 

 


