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FOURIER RESTRICTION TO POLYNOMIAL CURVES I:

A GEOMETRIC INEQUALITY

SPYRIDON DENDRINOS AND JAMES WRIGHT

Abstract. We prove a Fourier restriction result for general polynomial curves
in R

d. Measuring the Fourier restriction with respect to the affine arclength
measure of the curve, we obtain a universal estimate for the class of all polyno-
mial curves of bounded degree. Our method relies on establishing a geometric
inequality for general polynomial curves which is of interest in its own right.
Applications of this geometric inequality to other problems in euclidean har-
monic analysis have recently been established.

1. Introduction

Recently there has been considerable attention given to certain euclidean har-
monic analysis problems associated to a surface or curve (for example, the problems
of Fourier restriction and the smoothing effects of generalised Radon transforms)
where the underlying euclidean surface or arclength measure is replaced by the so-
called affine surface or arclength measure. See [1], [3], [5], [8], [10], [11], [13], [15],
[16], [17], [19], [20], [21], [22], [23], [24], [25], [26] and [27]. This has the effect of
making the problem affine invariant as well as invariant under reparametrisations
of the underlying variety. For this reason there have been many attempts to ob-
tain universal results, establishing uniform bounds over a large class of surfaces or
curves. The affine surface or arclength measure also has the mitigating effect of
dampening any curvature degeneracies of the surface or curve and therefore the
expectation is that the universal bounds one seeks will be the same as those arising
from the most non-degenerate situation.

In this paper we establish such a result for the problem of Fourier restriction to
a general polynomial curve in Rd. More specifically, if Γ : I → Rd parametrises a
smooth curve in Rd on an interval I , set

LΓ(t) = det(Γ′(t) · · ·Γ(d)(t));

this is the determinant of a d × d matrix whose jth column is given by the jth
derivative of Γ, Γ(j)(t). The affine arclength measure ν = νΓ on Γ is defined on a
test function φ by

ν(φ) =

∫

I

φ(Γ(t))|LΓ(t)| 2
d(d+1) dt;

one easily checks that this measure is invariant under reparametrisations of Γ.
A basic problem in the theory of Fourier restriction is to determine the exponents

p and q so that the apriori estimate

‖f̂ |Γ‖Lq(Γ,dν) ≤ C‖f‖Lp(Rd) (1)
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holds uniformly for a large class of curves Γ. This problem was first considered
by Sjölin in [28] where he showed that (1) holds uniformly over all smooth convex
curves in the plane if and only if p′ = 3q (here p′ denotes the conjugate exponent
to p; p′ = p/(p − 1)) and 1 ≤ p < 4/3. See also [20]. The convexity assumption
implies that LΓ(t) remains single-signed and Sjölin produced a plane curve Γ where
LΓ rapidly changes sign and (1) fails for any p′ = 3q and 1 < p < 4/3 (Sjölin’s
argument establishing (1) for convex curves works for any smooth plane curve as
long as the number of sign changes of LΓ remains bounded).

By considering the non-degenerate example Γ(t) = (t, t2, . . . , td) where LΓ ≡ con-
stant, one sees that in order for (1) to hold with a uniform constant C independent

of the interval I where Γ : I → Rd, we must have p′ = d(d+1)
2 q and 1 ≤ p < d2+d+2

d2+d .
The former restriction follows from a simple scaling argument whereas the latter
restriction follows from work of Arkipov, Kuratsuba and Chubarikov [2]. Further-
more, Drury [14] showed that these restrictions on p and q are sufficient for (1) to
hold for this non-degenerate example (see also the recent work of Bak, Oberlin and

Seeger [3]). We note here that on the critical line p′ = d(d+1)
2 q, (1) becomes affine

invariant; that is, (1) remains unchanged if we consider any affine transformation
of Γ.

In higher dimensions the problem of understanding when (1) holds was first
considered by Drury and Marshall [16] (see also [15] and [17]). Recently Bak,

Oberlin and Seeger [3] have shown that if p′ = d(d+1)
2 q and 1 ≤ p < d2+d+2

d2+d , then

(1) holds for Γ(t) = (|t|a1 , . . . , |t|ad) where a1, . . . , ad are any real numbers and the
constant C may be taken to depend only on p and d; in particular, it may be taken
to be independent of the exponents (a1, . . . , ad). Our purpose here is to initiate an
extension of the theory to general polynomial curves Γ(t) = (P1(t), . . . , Pd(t)) where
each component Pj is a real polynomial. We consider the curve as parametrised
over the entire real line.

Theorem 1.1. The inequality (1) holds for all polynomial curves of bounded degree

if p′ = d(d+1)
2 q and 1 ≤ p < d2+2d

d2+2d−2 . More precisely, the constant C may be taken
to depend only on p, d and the degrees of the polynomials defining Γ.

Remarks 1.2.

• A preliminary (more restrictive) result was obtained earlier in [12].

• We expect Theorem 1.1 to remain true in the larger range 1 ≤ p < d2+d+2
d2+d .

• By considering the class of polynomial curves with bounded degree, we
control the number of sign changes of LΓ which seems natural in light of
Sjölin’s counterexample. Furthermore as remarked above, Sjölin’s argument
extends to cover the two dimensional case of Theorem 1.1 although his
argument differs from ours in this special case.

Notation: Let A, B be complex-valued quantities. We use the notation A . B
or A = 0(B) to denote the estimate |A| ≤ C|B| where C depends only on d and
the degrees of the polynomials defining the curve Γ. We use A ∼ B to denote
the estimates A . B . A. Finally we will be making various decompositions of
R into disjoint intervals {I} and it will be convenient to keep all intervals I open;
therefore, a decomposition R = ∪I will in fact mean R = ∪I .

We wish to express our gratitude to Fulvio Ricci for many valuable discussions
at an earlier stage of this project.
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2. Outline of proof

By following Christ’s argument in [9] which establishes (1) for the non-degenerate

case Γ(t) = (t, t2, . . . , td) in the range 1 ≤ p < d2+2d
d2+2d−2 , matters are reduced to

establishing two properties about

ΦΓ(t1, . . . , td) = Γ(t1) + · · · + Γ(td) :

Key properties

(a) ΦΓ is 1-1;

(b) |JΦΓ (t1, . . . , td)| ≥ C
∏d

j=1 |LΓ(tj)| 1d
∏

j<k |tj − tk|
where JΦΓ(t1, . . . , td) = det(Γ′(t1) · · ·Γ′(td)) is the determinant of the Jacobian
matrix for the mapping ΦΓ.

Even in the non-degenerate case Γ(t) = (t, t2, . . . , td), ΦΓ is not quite 1-1 but
it is d! to 1 off a set of measure zero. Furthermore in this case, the geometric
inequality (b) alluded to in the abstract is an equality.

For polynomial curves both (a) and (b) are false in general. However we will
find a decomposition of R = ∪I into a bounded number (depending only on d
and the degrees of the polynomials defining Γ) of disjoint open intervals so that
on each Id, ΦΓ is d! to 1 off a set of measure zero and the geometric inequality
(b) holds. Therefore, by restricting the original operator to each I and applying
Christ’s argument, we obtain a proof of the theorem.

The decomposition is produced in two stages. The first stage produces an el-
ementary decomposition of R = ∪J so that on each interval J , various polyno-
mial quantities (more precisely, certain determinants of minors of the d× d matrix
(Γ′(t) · · ·Γ(d)), including LΓ) are single-signed. This allows us to write down a
formula relating JΦΓ and LΓ. When d = 2 this formula is particularly simple;
namely,

JΦΓ (s, t) = P ′
1(s)P

′
1(t)

∫ t

s

LΓ(w)

P ′
1(w)2

dw

for any s, t ∈ J (here Γ = (P1, P2)). From this, using an argument of Steinig [29],
one can establish the injectivity of ΦΓ on {(t1, . . . , td) ∈ Jd : t1 < · · · < td}. Next
we decompose each J = ∪I further so that on each Id, (b) holds. More precisely,
we have

|JΦΓ(t1, . . . , td)| ≥ C

d∏

j=1

|LΓ(tj)|
1
d

∏

j<k

|tj − tk| (2)

for all (t1, . . . , td) ∈ Id where C depends only on d and the degrees of the poly-
nomials defining Γ. This is the geometric inequality referred to above which has
already found applications in the theory of generalised Radon transforms; see [13].

This second stage decomposition J = ∪I is much more technical and derived from
a certain algorithm which uses two further decomposition procedures generated by
individual polynomials; one of these decomposition procedures has been used in
other problems and first appeared in [6]. The algorithm exploits in a crucial way
the affine invariance of the inequality (2); that is, the inequality is invariant under
replacement of Γ by AΓ for any invertible d × d matrix A.
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The paper is organised as follows. The next section will reduce the proof of The-
orem 1.1 to the Key properties above; most notably, to the geometric inequality
(2). The following two sections will set up the initial decomposition on which the in-
jectivity property of the Key properties will then be established on each subinterval
in Section 6. The next three sections are devoted to developing and implementing
an algorithm to carry out the secondary decomposition into subintervals on which
the geometric inequality (2) of the Key properties will hold. Sections 10 and 11 will
reduce the geometric inequality to two combinatorial lemmas and the final section
of the paper is devoted to these combinatorial issues.

3. Reduction to the geometric inequality

In this section we will sketch the argument of Christ in [9] and show how it
quickly reduces matters to the Key properties in the previous section. More pre-
cisely we will assume that we have achieved the decomposition of R = ∪I into 0(1)
disjoint open intervals so that the following two properties hold for each I :

(P1) for each permutation π of {1, . . . , d}, the map

ΦΓ(t1, . . . , td) = Γ(t1) + · · · + Γ(td)

is 1-1 on the region

Dπ = {(t1, . . . , td) ∈ Id : tπ(1) < · · · < tπ(d)};

(P2) for (t1, . . . , td) ∈ Id,

|JΦΓ(t1, . . . , td)| ≥ C

d∏

j=1

|LΓ(tj)|
1
d

∏

j<k

|tj − tk|

where C depends only on d and the degrees of the polynomials defining Γ. Re-
call that JΦΓ(t1, . . . , td) = det(Γ′(t1) · · ·Γ′(td)) is the determinant of the Jacobian
matrix for the mapping ΦΓ.

To prove Theorem 1.1 we see by duality that it suffices to show

‖ĝdν‖p′ . ‖g‖q′(dω) , (3)

where

dν(φ) =

∫

I

φ(P (s))|L(s)| 2
d(d+1) ds and dω(φ) =

∫

I

φ(s)|L(s)| 2
d(d+1) ds .

Now, with gdν ∗ . . .∗gdν denoting the d-fold convolution of gdν with itself, we have

‖ĝdν‖d
p′ = ‖ĝdν

d‖p′/d = ‖ ̂gdν ∗ . . . ∗ gdν‖p′/d ≤ ‖gdν ∗ . . . ∗ gdν‖r , (4)

where dr′ = p′ by the Hausdorff-Young inequality. Note that because 1 ≤ p <
d(d+2)

d(d+2)−2 , we have 1 ≤ r ≤ 2. Now

gdν ∗ . . . ∗ gdν(φ) =

∫

Id

φ
( n∑

i=1

P (ti)
) d∏

i=1

g(ti)|L(ti)|
2

d(d+1) dt ,
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where t = (t1, . . . , td). If Sd denotes the permutations of {1, . . . , d},

gdν ∗ . . . ∗ gdν(φ) =
∑

π∈Sd

∫

Dπ

φ
( d∑

i=1

P (ti)
) d∏

i=1

g(ti)|L(ti)|
2

d(d+1) dt

=
∑

π∈Sd

∫

∆π

φ(x)

d∏

i=1

g(ti)|L(ti)|
2

d(d+1)
1

|J(t)|dx ,

where in the second inequality we perform the change of variables x = (x1, . . . , xd)

= Γ(t1) + · · · + Γ(td)
[
so that for each 1 ≤ k ≤ d, xk =

d∑

i=1

Pk(ti)
]

separately on each region Dπ, and which is well defined by (P1). Here ∆π is the
image of the region Dπ under the transformation defined by the change of variables
and J = JΦΓ . Hence

gdν ∗ . . . ∗ gdν =
∑

π∈Sd

d∏

i=1

g(ti)|L(ti)|
2

d(d+1)
1

|J(t)|χ∆π
.

Therefore

‖gdν ∗ . . . ∗ gdν‖r ≤
∑

π∈Sd

∥∥∥
d∏

i=1

g(ti)|L(ti)|
2

d(d+1)
1

|J(t)|χ∆π

∥∥∥
r

=
∑

π∈Sd

(∫

Dπ

d∏

i=1

|g(ti)|r|L(ti)|r
2

d(d+1)
1

|J(t)|r−1
dt
) 1

r

,

by changing variables back. From the geometric inequality (P2) it follows that

‖gdν ∗ . . . ∗ gdν‖r

≤
∑

π∈Sd

(∫

Dπ

d∏

i=1

|g(ti)|r |L(ti)|r
2

d(d+1)
− r−1

d

∏

k<l

|tl − tk|1−rdt

) 1
r

.

Finally we use the following result of Christ [9].

Proposition 3.1. If 0 ≤ γ then

∫ d∏

i=1

f(xi)
∏

1≤i<j≤d

|xi − xj |−γdx1 . . . dxd ≤ C‖f‖d
p,

for all f , if and only if γ < 2/d, 1 ≤ p < d and p−1 + γ(nd − 1)/2 = 1.

We use this proposition with γ = r−1. One can easily check that r−1 < 2/d since

dr′ = p′ and p < d(d+2)
d(d+2)−2 . As a result, we obtain

‖gdν ∗ . . . ∗ gdν‖r .

(∫

I

(|g(t)|r|L(t)| 1d +r( 2
d(d+1)−

1
d
))p̃dt

) d
p̃r

,

where

1

p̃
+ (r − 1)

d − 1

2
= 1. (5)
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By (4) we see that the required relations for (3) to hold are

p̃r = q′ and
p̃

d
+ rp̃

(
2

d(d + 1)
− 1

d

)
=

2

d(d + 1)
.

These can be verified by algebraic calculations, using (5), dr′ = p′ and 1
q = d(d+1)

2
1
p′ .

4. Preliminaries for the initial decomposition

Our main goal is to produce a decomposition of R = ∪I into 0(1) disjoint open
intervals so that properties (P1) and (P2) in the previous section hold for each
interval I . As indicated in Section 2 this will be carried out in two stages. The
first stage is elementary and this section is devoted to the necessary preliminaries
needed for this initial decomposition.

Our analysis will be based on examining the polynomial

LΓ(t) = det(Γ′(t) · · ·Γ(d)(t))

introduced in the definition of the affine arclength measure of Γ. Without loss
of generality we may assume that LΓ is not the zero polynomial since otherwise
the estimates (1) are trivial. From this assumption our initial goal is to deduce
that various polynomials formed via the determinant of certain minors of the d× d
matrix (Γ′(t) · · ·Γ(d)(t)) are also not the zero polynomial.

Notation: For any k-tuple of real polynomials Q = (Q1, . . . , Qk), set

LQ1...Qk
(t) = det

(
Q′(t) · · ·Q(k)(t)

)
.

In particular, if Γ = (P1, . . . , Pd) is our original polynomial curve, LΓ = LP1...Pd
.

Lemma 4.1. If Q1, . . . , Qk, P, R are k + 2 real polynomials so that LQ1...QkP is
not the zero polynomial, then

(LQ1...QkR

LQ1...QkP

)′
=

LQ1...QkPRLQ1...Qk

[LQ1...QkP ]2
. (6)

Remark: This lemma can be viewed as a generalisation of the quotient rule for
differentiation. In fact, the k = 0 case simply states

(LR

LP

)′
=
(R′

P ′

)′
=

R′′P ′ − R′P ′′

P ′2
=

LPR · 1
L2

P

.

Proof The formula (6) is a consequence of a well- known determinant identity. If A
denotes an `×` matrix, let [r1, . . . , rk; c1, . . . , ck] = detB where B is the submatrix
of A obtained by deleting the rows r1, . . . , rk and columns c1, . . . , ck of A. The
following is an instance of Sylvester’s Determinant Identity (see for example, [4])

[` − 1, `; `− 1, `] · detA = [`; `][`− 1; ` − 1] − [`; `− 1][` − 1; `]. (7)

To establish (6) it suffices to show

(LQ1...QkR)′LQ1...QkP − LQ1...QkR(LQ1...QkP )′ = LQ1...QkPRLQ1...Qk
(8)
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and we will do this by applying (7) to the (k + 2) × (k + 2) matrix A defining
LQ1...QkRP so that detA = LQ1...QkRP . Note that [LQ1...QkR(t)]′

=
d

dt




det




Q′
1 · · · Q

(k)
1 Q

(k+1)
1

...
...

...

Q′
k · · · Q

(k)
k Q

(k+1)
k

R′ · · · R(k) R(k+1)







= det




Q′
1 · · · Q

(k)
1 Q

(k+2)
1

...
...

...

Q′
k · · · Q

(k)
k Q

(k+2)
k

R′ · · · R(k) R(k+2)




= [k + 2; k + 1].

Similarly L′
Q1...QkP = [k + 1; k + 1]. Since LQ1...Qk

= [k + 1, k + 2; k + 1, k + 2], we

see that (8) follows from (7).

Using Lemma 4.1 we now show that various polynomials associated to LΓ =
LP1...Pd

are nonzero if our basic assumption that LΓ is not the zero polynomial is
in force.

Lemma 4.2. If LΓ = LP1...Pd
is not the zero polynomial, then for every distinct

k-tuple (j1, . . . , jk), 1 ≤ jr ≤ d, LPj1 ...Pjk
is not the zero polynomial.

Proof We proceed by induction on k; the case k = 1 being trivial since if LPj
=

P ′
j ≡ 0 for some 1 ≤ j ≤ d, then the jth row P ′

jP
′′
j · · ·P (d)

j in the d × d matrix(
Γ′(t) · · ·Γ(d)(t)

)
vanishes identically.

We argue by contradiction; fix (j1, . . . , jk), set (Q1, . . . , Qk) = (Pj1 , . . . , Pjk
)

and suppose LQ1...Qk
is the zero polynomial. By the induction hypothesis

LQ1...Qk−2Qk−1
is not the zero polynomial and so Lemma 4.1 implies

d

dt

( LQ1...Qk−2Qk

LQ1...Qk−2Qk−1

)
≡ 0.

Hence LQ1...Qk−2Qk
(t) = cLQ1...Qk−2Qk−1

(t) for some absolute constant c (not de-
pending on t) and so LQ1...Qk−2(Qk−cQk−1) ≡ 0 which by Lemma 4.1 implies

d

dt

(LQ1...Qk−3(Qk−cQk−1)

LQ1...Qk−3Qk−2

)
≡ 0.

Therefore,

LQ1...Qk−3(Qk−cQk−1) = bLQ1...Qk−3Qk−2

or

LQ1...Qk−3Qk
= cLQ1...Qk−3Qk−1

+ bLQ1...Qk−3Qk−2

for some absolute constants b and c.
Continuing in this way we obtain, for each 0 ≤ j ≤ k − 2, absolute constants

c1, . . . , ck−j−1 so that

LQ1...QjQk
= c1LQ1...QjQk−1

+ · · · + ck−j−1LQ1...QjQj+1 .

The case j = 0 yields LQk
= c1LQk−1

+· · ·+ck−1LQ1 or Q′
k = c1Q

′
k−1+· · ·+ck−1Q

′
1.

Differentiating gives

P
(`)
jk

= c1P
(`)
jk−1

+ · · · + ck−1P
(`)
j1
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for every ` ≥ 1 and so the jkth row of the matrix
(
Γ′ · · ·Γ(d)

)
is a linear combination

(as polynomials) of the j1st, . . . , jk−1th rows and this implies LΓ = LP1...Pd
is the

zero polynomial, contradicting our basic assumption.

5. The initial decomposition

We are now in a position to describe the initial decomposition of R = ∪J into
0(1) disjoint open intervals. We will see that on each interval J , the one-to-oneness
property (P1) holds. Later, we will decompose each J further in order to establish
the geometric inequality, property (P2).

Notation: For any sequence (finite or infinite) of real polynomials Q = (Q1, Q2, . . . ),
we set for any j ≥ 1,

LQ,j = LQ1...Qj

so that in particular, LΓ = LΓ,d = LP1...Pd
for our original curve Γ = (P1, . . . , Pd).

For convenience we will often denote LΓ,j simply by Lj for 1 ≤ j ≤ d.

A particular instance of Lemma 4.2 implies that each Lj = LΓ,j , 1 ≤ j ≤ d, is a
nonzero polynomial under our basic assumption that LΓ is nonzero. The real roots
of all the polynomials {LΓ,j}d

j=1 give our initial decomposition R = ∪J into 0(1)
disjoint open intervals so that on each J , every LΓ,j is either strictly positive or
strictly negative.

The main goal of this section is to establish a formula relating the determinant
of the Jacobian matrix for the mapping ΦΓ(t) = Γ(t1) + · · · + Γ(td), JΦΓ(t) =
det
(
Γ′(t1) · · ·Γ′(td)

)
, and the polynomials Lj = LΓ,j , 1 ≤ j ≤ d. This formula

will be valid only on each interval J separately. We will write JΦΓ as a series
of nested iterated integrals. To this end we define a sequence of multi-variate
functions {Ir}d

r=1; for each 1 ≤ r ≤ d, Ir = Ir(x1, . . . , xr) will be a function
of r variables which will be well-defined on Jr for each interval J arising in the
initial decomposition. We define this sequence inductively. For r = 1 we set
I1(x) = Ld−2(x)Ld(x)/[Ld−1(x)]2 and then inductively, define

Ir(x1, . . . , xr) =

r∏

s=1

Ld−r−1(xs)Ld−r+1(xs)

[Ld−r(xs)]2

∫ x2

x1

· · ·
∫ xr

xr−1

Ir−1(y1, . . . , yr−1)dy1..dyr−1.

In order to make sense of Id−1 and Id we set L0 = L−1 ≡ 1. Our goal is to show
that on each Jd,

JΦΓ(t1, . . . , td) = Id(t1, . . . , td). (9)

We begin with an elementary lemma in differential calculus.
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Lemma 5.1. Let {gi}n
i=1 be smooth functions on an open interval J ⊂ R so that

g1 never vanishes on J . If fi = gi

g1
, 2 ≤ i ≤ n, then for (t1, . . . , tn) ∈ Jn,

det




g1(t1) · · · g1(tn)
...

...
gn(t1) · · · gn(tn)




=

n∏

i=1

g1(ti)

∫ t2

t1

. . .

∫ tn

tn−1

det




f ′
2(x1) · · · f ′

2(xn−1)
...

...
f ′

n(x1) · · · f ′
n(xn−1)


 dx1..dxn−1.

Proof Without loss of generality assume t1 < · · · < tn. By factoring g1(ti) out of
the ith column we write

det




g1(t1) · · · g1(tn)
...

...
gn(t1) · · · gn(tn)


 =

n∏

i=1

g1(ti)det




1 · · · 1
f2(t1) · · · f2(tn)

...
...

fn(t1) · · · fn(tn)


 .

Then by conducting column operations the determinant involving the fi’s is equal
to

det




1 0 · · · 0
f2(t1) f2(t2) − f2(t1) · · · f2(tn) − f2(t1)

...
...

...
fn(t1) fn(t2) − fn(t1) · · · fn(tn) − fn(t1)




=

∫ t2

t1

. . .

∫ tn

t1

det




f ′
2(x1) · · · f ′

2(xn−1)
...

...
f ′

n(x1) · · · f ′
n(xn−1)


 dx1..dxn−1.

For fixed x1, x2, . . . , xn−1 except xl and xm with 1 ≤ l < m ≤ n − 1, consider

Ik :=

∫ tk+1

tk

dxl

∫ tk+1

tk

dxmdet




f ′
2(x1) · · · f ′

2(xn−1)
...

...
f ′

n(x1) · · · f ′
n(xn−1)


 .

By interchanging the lth with the mth column we see that Ik is equal to

−
∫ tk+1

tk

dxl

∫ tk+1

tk

dxmdet




f ′
2(x1) · · · f ′

2(xm) · · · f ′
2(xl) · · · f ′

2(xn−1)
...

...
...

...
f ′

n(x1) · · · f ′
n(xm) · · · f ′

n(xl) · · · f ′
n(xn−1)


 .

Thus Ik = −Ik and so Ik = 0. So finally

n∏

i=1

g1(ti)

∫ t2

t1

. . .

∫ tn

t1

det




f ′
2(x1) · · · f ′

2(xn−1)
...

...
f ′

n(x1) · · · f ′
n(xn−1)


 dx1..dxn−1

=

n∏

i=1

g1(ti)

∫ t2

t1

. . .

∫ tn

tn−1

det




f ′
2(x1) · · · f ′

2(xn−1)
...

...
f ′

n(x1) · · · f ′
n(xn−1)


 dx1..dxn−1,

concluding the proof of Lemma 5.1.
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To see (9) define fi,0 = Pi for 1 ≤ i ≤ d and for 1 ≤ k ≤ d define inductively,

fi,k =
f ′

i,k−1

f ′
k,k−1

for k + 1 ≤ i ≤ d. If we set Fk = (fk+1,k , . . . , fd,k)T for each 1 ≤ k ≤ d − 1, then
Lemma 5.1 shows

det
(
F ′

k−1(x1) · · ·F ′
k−1(xd−k+1)

)
= (10)

d−k+1∏

s=1

f ′
k,k−1(xs)

∫ x2

x1

· · ·
∫ xd−k+1

xd−k

det
(
F ′

k(y1) · · ·F ′
k(yd−k)

)
dy1..dyd−k.

Now an application of Lemma 4.1 shows that

f ′
i,k =

(
LP1...Pk−1Pi

LP1...Pk

)′

=
LP1...Pk−1

LP1...PkPi

L2
P1...Pk

(11)

for k + 1 ≤ i ≤ d. In fact to see (11) we proceed by induction on k. For k = 1

f ′
i,1 =

(
LPi

LP1

)′

=
LP1Pi

L2
P1

.

If (11) is true for k = m − 1 then

f ′
i,m =

(
f ′

i,m−1

f ′
m,m−1

)′

=

(
LP1...Pm−2LP1...Pm−1Pi

/L2
P1...Pm−1

LP1...Pm−2LP1...Pm
/L2

P1...Pm−1

)′

=

(
LP1...Pm−1Pi

LP1...Pm

)′

=
LP1...Pm−1LP1...PmPi

L2
P1...Pm

,

where the last inequality follows from Lemma 4.1. Now combining (11) and (10)
iteratively gives (9).

6. Property (P1) – injectivity of ΦΓ

In this section we establish property (P1) for ΦΓ(t) = Γ(t1)+ · · ·+Γ(td) on each
interval J in the initial decomposition of R. To do this we will use the the fact that
JΦΓ(t1, . . . , td) is single-signed and nonzero on DJ = {t = (t1, . . . , td) ∈ Jd : t1 <
· · · < td}; this follows from Lemma 4.2, (9) and our basic assumption that LΓ is
not the zero polynomial. In fact we will need to use this fact for truncations of Γ;
that is, if Q = (P1, . . . , Pµ), 1 ≤ µ ≤ d is a truncation of Γ = (P1, . . . , Pd), then

det
(
Q′(t1) · · ·Q′(tµ)

)
is single − signed and nonzero on DJ,µ (12)

where DJ,µ = {t = (t1, . . . , tµ) ∈ Jµ : t1 < · · · < tµ}. This follows in exactly the
same way as for Γ.

More precisely we have the following proposition whose proof follows an argu-
ment of Steinig, [29] (although rediscovered on several occasions, see e.g., [7]) and
clearly establishes property (P1).

Proposition 6.1. For each interval J in our initial decomposition of R, the map
ΦΓ(t) = Γ(t1) + · · · + Γ(td) is 1-1 on DJ .
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Proof Suppose, in order to obtain a contradiction, that ΦΓ(s) = ΦΓ(t) or

Γ(s1) + · · · + Γ(sd) = Γ(t1) + · · · + Γ(td)

for some s 6= t and s, t ∈ DJ . Hence

0 =

ν∑

j=1

εjΓ(uj)

where 2 ≤ ν ≤ 2d is even, u1 < u2 · · · < uν , each uj ∈ J , εj = ±1 and
∑ν

j=1 εj = 0.

Let αk =
∑k

j=1 εj , 1 ≤ k ≤ ν.

Key observation: {αk}ν
k=1 has at most d − 1 changes of sign.

Thus

0 =

ν∑

j=1

εjΓ(uj) =

ν−1∑

j=1

αj [Γ(uj) − Γ(uj−1)] =

∫ uν

u1

ϕ(u) Γ′(u)du (13)

where ϕ is a step function with at most d− 1 changes of sign. Let I`, 1 ≤ ` ≤ µ, be

the ordered, maximal intervals on which ϕ is constant and nonzero. Thus µ ≤ d .

Consider the µ × µ matrix A =
(
a`,k

)
,

a`,k =

∫

I`

|ϕ(u)|P ′
k(u) du.

The rows of A are linearly dependent by (13). Hence 0 = detA and so

0 =

∫

I1

· · ·
∫

Iµ

|ϕ(u1)| · · · |ϕ(uµ)| det
(
Q′(u1) · · ·Q′(uµ)

)
du1..duµ

where Q = (P1, . . . , Pµ). But this contradicts (12).

7. Two decomposition procedures

We now embark down the road of setting up the less elementary (and more
technical) secondary decomposition of R. To date we have established the initial
decomposition R = ∪J where the property (P1) holds for each J . Simple examples
show that the geometric inequality, property (P2), may not hold on some interval1

J from the initial decomposition and therefore the secondary decomposition is nec-
essary. Consider for the moment the two dimensional case where our original poly-
nomial curve is, say, Γ = (P, Q). In this situation the geometric inequality on an
interval J becomes

∣∣∣ 1

b − a

∫ b

a

R(t) dt
∣∣∣ &

√
|R(b)R(a)| (14)

for any a, b ∈ J , where R = (Q′/P ′)′ is a rational function whose numerator LΓ

and denominator [P ′]2 are assumed not to vanish anywhere on J . If we choose
polynomials P and Q so that Q′(x) = x and P ′(x) = (x + ε)(x − 1 + ε) for some
small ε > 0 then the intervals (−∞,−ε), (−ε, 1 + ε) and (1 + ε,∞) comprise the
initial decomposition and one can easily check that (14) does not hold for a = 0
and b = 1, uniformly in ε > 0. Nevertheless if we further split the interval (0, 1) =
(0,

√
ε)∪(

√
ε, 1) := J1∪J2, then (14) does in fact hold on each J1 and J2 separately.

1We thank Tony Carbery for pointing this out to us.
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We will see that the secondary decomposition procedure described below will insist
on a splitting at

√
ε.

Furthermore observe that (14) cannot hold for general rational functions R.
There is no decomposition of R into 0(1) intervals so that (14) holds for R(t) = 1/t
but such a rational function does not arise as the derivative of another rational
function. To avoid this example one might try to verify (14) for the class of rational
functions R = S/T in reduced form where T has no simple zeros, which includes
the class of derivatives of rational functions. But unfortunately the example R(t) =
(t+2ε)/(t+ε)2 shows (14) fails in a similar way as for 1/t. The fact that (14) holds
(after possibly a further decomposition of J into 0(1) intervals) for the derivative of
a general rational function suggests that there is a significant amount of cancellation
occurring from this derivative which we must exploit more fully. We will do this
via a secondary decomposition, refining the initial decomposition of R = ∪J .

We will develop an algorithm that generates this further decomposition. The
algorithm depends on two decomposition procedures associated to individual poly-
nomials, which we will describe in this section. Given a polynomial Q, these pro-
cedures allow us to decompose any open interval J = ∪I into 0(1) disjoint open
intervals so that on each I , Q(t) ∼ A(t − b)k looks like a centred monomial. Re-
call that the basic geometric inequality in (P2) bounds the determinant JΦΓ of the
derivative map of ΦΓ = Γ(t1) + · · · + Γ(td) from below and, by (9), this reduces
to bounding from below a series of nested iterated integrals involving the func-
tions Ir, 1 ≤ r ≤ d and thus the polynomials Lj = LΓ,j , 1 ≤ j ≤ d. The idea
of the algorithm is to treat each Lj in (9) as an independent polynomial in the
first instance and use the two decomposition procedures in tandem to reduce to
intervals on which each polynomial Lj behaves like a centred monomial (in fact
we will be able to achieve this with the same centre for all Lj !). Therefore we
will reduce to intervals on which JΦΓ becomes a concrete series of nested iterated
integrals involving only monomials with various exponents. Although concrete and
explicit, the desired bound from below for this concrete series of nested iterated
integrals is false in general. For instance, in the two dimensional case, by treating
L2 = LΓ = Q′′P ′ − Q′P ′′ and L1 = P ′ independently in this way (applying the
two decomposition procedures), one can arrive at the rational function R(t) = 1/t
in (14). Therefore it will be essential to recover and exploit the intimate relation-
ships among the various polynomials Lj , 1 ≤ j ≤ d, thereby avoiding certain bad
exponents arising in the reduction to centred monomials. We will do this using the
affine-invariance of the geometric inequality.

We now turn to the two decomposition procedures associated to individual poly-
nomials. We fix an arbitrary open interval J over which we will attempt to describe
the behaviour of a polynomial. The first procedure is more elementary and has the
advantage of describing the polynomial over the entire interval J .

D1 Given a real polynomial Q.
Then J = ∪I can be decomposed into 0(1) open disjoint intervals so that on each

I: Q(t) ∼ A(t− b)k for some A = AI 6= 0, an integer k = kI ≥ 0 and b = bI , the
real part of a root of Q.

To simplify matters we will assume that all the roots of Q are real, the general

case requiring only minor adjustments. To see D1 factor Q(t) = C
∏

(t − ηj)
aj
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where the ηj are the distinct roots of Q and consider the preliminary decomposition
J = ∪Si where

Si = {t ∈ J : |t − ηi| < |t − ηj | ∀j 6= i}.
We will decompose each Si further. Without loss of generality we will describe this
for i = 1. Order the ηj so that |η1 − η2| ≤ · · · ≤ |η1 − ηd′ | and set Ti = {t ∈ S1 :
|t − η1| < 1/2|η1 − ηi|}, 2 ≤ i ≤ d′ so that T2 ⊂ T3 ⊂ · · · ⊂ Td′ ⊂ S1. Finally set

T1 = ∅, Td′+1 = S1 and Ik = Tk+1 \ Tk so that S1 = ∪d′

k=1Ik . We now make two
simple observations.

t ∈ Tk ⇒ 1/2|η1 − ηk′ | ≤ |t − ηk′ | ≤ 3/2|η1 − ηk′ |, k′ ≥ k. (15)

In fact if t ∈ Tk, |t− ηk′ | ≥ |ηk′ − η1| − |t− η1| ≥ 1/2|ηk′ − η1| for any k′ ≥ k. The
other inequality follows in the same manner. The second observation is

t /∈ Tk ⇒ |t − η1| ≤ |t − ηk′ | ≤ 3|t − η1|, k′ ≤ k. (16)

In fact if t /∈ Tk, |η1 − ηk| ≤ 2|t − η1| and so |t − ηk′ | ≤ |t − η1| + |η1 − ηk′ | ≤
|t − η1| + |η1 − ηk| ≤ |t − η1| + 2|t − η1| for any k′ ≤ k. Again the other inequality
follows in the same way. From (15) and (16) we see that if t ∈ Ik,

d′∏

j=1

(t − ηj)
aj ∼ (t − η1)

a1+···+ak

d′∏

j=k+1

(η1 − ηj)
aj

and so Q(t) ∼ A(t − η1)
K where K = a1 + · · · + ak.

Finally we turn to the second decomposition procedure which not only depends
on a polynomial Q but also depends on a given centre b. Here we will attempt to
describe Q on most of J as monomials (with varying exponents) but with a fixed
centre b. This decomposition also has the advantage of being able to avoid certain
exponents arising in the expressions of Q as centred monomials.

D2 Given a real polynomial Q and a centre b ∈ R.
Then J = ∪I can be decomposed into 0(1) open disjoint intervals which fall into
two classes: G (gaps) and D (dyadic).

On I ∈ G: Q(t) ∼ A(t − b)k for some A = AI 6= 0 and an integer k = kI ≥ 0.

On I ∈ D: (t − b) ∼ D for some D = DI 6= 0.

Furthermore, if Q(t + b) =
∑

cktk and ck0 = 0 then no gaps I ∈ G exist on which
Q(t) ∼ A(t − b)k0 .

As mentioned in section 2 this decomposition appears in [6] and so we shall be
brief in its description. Factor Q(t + b) =

∑
cjt

j = B
∏

(t − βj) (the roots βj may
be repeated) and order the roots so that |β1| ≤ |β2| ≤ · · · . Fix a large constant C =
0(1). Our gap intervals will arise from intervals of the form Gj =

[
C|βj |, |βj+1|/C

]

or
[
−|βj+1|/C,−C|βj |

]
and our dyadic intervals arise from intervals of the form

Dj =
[
|βj |/C, C|βj |

]
or
[
−C|βj |, |βj |/C

]
.

Clearly on Dj , t ∼ βj . On Gj ,

Q(t + b) ∼ Btj
∏

k≥j+1

βk ∼ cjt
j
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if C is chosen large enough. The bounds B
∏

k≥j+1 βk ∼ cj for C large enough can

be found in [18]. Therefore cj cannot be zero! Finally we make a translation by b
so that our gap intervals are of the form (Gj + b) ∩ J and our dyadic intervals are
of the form (Dj + b) ∩ J .

8. The two dimensional case

As discussed above we will build an algorithm, using the two decomposition pro-
cedures in the previous section on each polynomial Lj = LΓ,j , 1 ≤ j ≤ d, appearing
in (9) to bound JΦΓ from below. As this algorithm and its implementation are
somewhat involved in general, we choose in this section to illustrate how they work
in the two dimensional case, where everything simplifies greatly. If our curve is
given by Γ = (P, Q), then L1 = P ′ and L2 = P ′Q′′ − P ′′Q′ and (9) simply states

JΦΓ(s, t) = L1(s)L1(t)

∫ t

s

L2(w)

L2
1(w)

dw (17)

for any s, t ∈ J where J is an interval from our initial decomposition of R.
Our goal is to decompose J = ∪I into 0(1) disjoint open intervals so that for

each I ,

s, t ∈ I ⇒
∣∣JΦΓ(s, t)

∣∣ &
√
|L2(s)| |L2(t)| |s − t|. (18)

The algorithm is carried out in d steps (hence only two steps in this section). We
first treat the polynomials L2 and L1 independently and then we will go back and
adjust the steps of the algorithm taking into account the relationship between these
two polynomials.

Step 0: Use D1 with respect to L2 to decompose J = ∪K into 0(1) disjoint open
intervals so that on each

K: L2(w) ∼ A(w − b)k for some A 6= 0, an integer k ≥ 0 and b ∈ R.

Step 1: This step will decompose each interval K from the previous step into
intervals of two types T0 and T1 (in general Step n will produce intervals of 2n

types {Tr}r∈Bn
where Bn is the collection of 0-1 bitstrings of length n, each interval

of a particular type from Step (n − 1) being decomposed into intervals of two
new types). Hence this step will decompose each K = ∪I into 0(1) disjoint open
intervals where either I ∈ T0 or I ∈ T1.

Fix an interval K from Step 0 and use D2 with respect to the polynomial L1

and centre b to decompose K = ∪I into 0(1) disjoint open intervals where each I
is either a gap (G) interval or a dyadic (D) interval. The gap intervals I ∈ G are
our intervals of type T0. Note that on

I ∈ G: L1(w) ∼ A0(w − b)k0 for some A0 6= 0 and an integer k0 ≥ 0.

More accurately we should write A0 = AK,0, k0 = kK,0, etc... but we wish to
emphasise the dependence on the type (T0 in this case) of the particular interval
K in the decomposition at this stage in the algorithm. For notational convenience
we also write b = b0 for the given centre to emphasise that it is a centre associated
to an interval of type T0.
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On the dyadic intervals I ∈ D we have (w− b) ∼ D and therefore L2(w) ∼ ADk

for w ∈ I . We now decompose each I ∈ D further, using D1 with respect to L1,
so that I = ∪I ′ where on each

I ′: L1(w) ∼ A1(w − b1)
k1 for some A1 6= 0, an integer k1 ≥ 0 and b1 ∈ R

(again using the convention above to tag the various parameters A, k and b which
occur with the associated interval type). The intervals I ′ arising here are our
intervals of type T1.

Let us recapitulate: we have decomposed each interval J = ∪I into 0(1) disjoint
intervals of two types T0 and T1. On an interval I of type T0 we have

L2(w) ∼ A(w − b)k, L1(w) ∼ A0(w − b0)
k0 for some A, A0 6= 0, integers k, k0 ≥ 0

and b = b0 ∈ R.

And on an interval I of type T1 we have

L2(w) ∼ A Dk, L1(w) ∼ A1(w − b1)
k1 for some D, A1 6= 0, integer k1 ≥ 0 and

b1 ∈ R.

Finally we decompose each I further in order to avoid the collection of numbers
{b0} and {b1} and arrive at the desired decomposition of R. Recall that we aim
to prove (18) for each interval I in this final decomposition. Let us begin with
intervals I of type T1. From (17) and above we see that for s, t ∈ I ,

JΦΓ(s, t) ∼ (s − b1)
k1(t − b1)

k1

∫ t

s

ADk

(w − b1)2k1
dw.

Therefore to prove (18) it suffices to establish

|s − b|k1 |t − b1|k1

∫ t

s

1

|w − b1|2k1
dw & |s − t|.

We have the following simple lemma which is a special case of a more general result
which we will establish later.

Lemma 8.1. For b /∈ [s, t],
∫ t

s

1

|w − b|σ dw &
|s − t|

|s − b|σ/2|t − b|σ/2

holds if and only if σ ≤ 0 or σ ≥ 2.

Since k1 is a nonnegative integer, 2k1 = 0 or 2k1 ≥ 2, and this establishes (18)
for intervals of type T1.

Now suppose I is an interval of type T0. From (17) and above we see that for
s, t ∈ I ,

JΦΓ(s, t) ∼ (s − b0)
k0(t − b0)

k0

∫ t

s

A

(w − b0)2k0−k
dw.

Therefore to prove (18) it suffices to establish
∫ t

s

1

|w − b0|2k0−k
dw &

|s − t|
|s − b0|k0−k/2|t − b0|k0−k/2
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for s, t ∈ I . By Lemma 8.1 this will be the case if and only if 2k0−k 6= 1! Therefore
we need to avoid the situation where k is odd and k0 = (k+1)/2. We will accomplish
this by adjusting the transition from Step 0 to Step 1. It is important to observe
that the desired geometric inequality (18) is affine-invariant; that is, the inequality
remains unchanged if we replace Γ = (P, Q) by AΓ where A is any invertible 2× 2
constant matrix.

We begin with Step 0 as before which reduces to intervals on which LΓ,2(w) ∼
A(w−b)k. Now assume k is odd (otherwise we do not need any further adjustments).
Before proceeding to Step 1 we prepare our polynomials P and Q accordingly;
looking ahead into Step 1 we see that intervals of type T0 arise from gap intervals

when we employ D2 with respect to LΓ,1 = P ′ and b. Recall that the ‘bad’

exponent k0 = (k + 1)/2 can be avoided in the decomposition procedure D2 if

the polynomial LΓ,1(t + b) =
∑

cjt
j has no c(k+1)/2 coefficient. Therefore, before

moving to Step 1 we apply a certain invertible linear transformation

A =

(
a1 a2

∗ ∗

)
∈ GL2(R)

to Γ = (P, Q) where the row vector ~a = (a1, a2) will be chosen to be nonzero and
the remaining entries chosen to make the matrix invertible. We now check how
this transformation affects our two polynomials L2 = LΓ,2 and L1 = LΓ,1. The
polynomial L2 is only changed by a constant; LAΓ,2 =

(
detA

)
LΓ,2. On the other

hand, if P ′(t + b) =
∑

c1
j t

j and Q′(t + b) =
∑

c2
j t

j , then

LAΓ,1(t + b) =
∑

(a1c
1
j + a2c

2
j )t

j =
∑

~a · ~cj tj

where ~cj = (c1
j , c

2
j ). Therefore we simply choose a nonzero vector ~a so that ~a· ~ck0 = 0

where k0 = (k + 1)/2.
We carry out Step 1 proceeding exactly as before except now using the trans-

formed polynomials AΓ. Observe by homogeneity the inequality (18) is unaffected
by changing L2 = LΓ,2 by a constant. In fact (18), and more generally (2), is
unaffected by changing any of the polynomials Lj , 1 ≤ j ≤ d, by a multiplica-
tive constant. Therefore, for notational convenience, we will systematically sup-
press all multiplicative constants arising when reducing to intervals on which our
various polynomials behave like centred monomials; for example, we will write
LΓ,j(t) ∼ (t − b)k when in fact we mean LΓ,j(t) ∼ A(t − b)k for some A 6= 0. Fur-
thermore we will suppress the constants arising from ‘dyadic’ intervals; for example,
we will write (t−b) ∼ 1 when in fact we mean (t−b) ∼ D for some D 6= 0. On such
intervals the fact that (t−b) ∼ D will have the effect of making various polynomials
behave like constants (for instance, in the discussion above, this makes L2 behave
like a constant) and by homogeneity of (18) or (2), these constants always cancel
out.

9. The algorithm – general case

We now set out the general algorithm, valid in all dimensions, to decompose an
interval J from the initial decomposition of R into 0(1) intervals on which (2) holds.
As discussed in the previous section this will be carried out in d steps.

Step 0: Use D1 with respect to LΓ,d to decompose J = ∪K into 0(1) disjoint
open intervals so that on each
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K: LΓ,d ∼ (t − b)k for some nonnegative integer k = k(K) and real number
b = b(K)

(recall that we are systematically suppressing all multiplicative constants – we in
fact mean LΓ,d ∼ A(t − b)k for some A 6= 0 – which cancel out in (2)). Before we
proceed to the next step we transform Γ in order to avoid certain bad exponents

when we apply D2 . To this end we introduce

A =

(
a1 · · · ad

∗

)
∈ GLd(R)

where the row vector ~a = (a1, . . . , ad) ∈ Rd will be chosen momentarily to be
nonzero and the remaining entries chosen to guarantee that A is invertible but
otherwise chosen in an arbitrary fashion. We note that

LAΓ,d =
(
detA

)
LΓ,d

is only changed by a multiplicative constant and so will not affect (2). On the other
hand, if Γ = (P1, . . . , Pd) and P ′

i (t + b) =
∑

ci
jt

j , then

LAΓ,1(t + b) =
∑

~a · ~cj tj

where ~cj = (c1
j , . . . , cd

j ). We choose ~a = (a1, . . . , ad) to be any nonzero vector which

is orthogonal to the hyperplane H = span{~cbk
d
c+j}d−1

j=1 .

Step 1: In this step we will decompose each K = ∪L from the previous step into
0(1) disjoint open intervals of two types T0 and T1. For an interval L of type T0 we
will associate an exponent (a nonnegative integer) k0 = k0(L) and a centre (a real
number) b0 = b0(L) so that on

L : LAΓ,1(t) ∼ (t − b0)
k0 and LAΓ,d(t) ∼ (t − b)k. (19)

Importantly we will have b = b0 and k0 /∈ {bk
dc+1, . . . , bk

dc+(d−1)}. Furthermore
for an interval L of type T1 we will associate an exponent k1 = k1(L) and a centre
b1 = b1(L) so that on

L : LAΓ,1(t) ∼ (t − b1)
k1 and LAΓ,d(t) ∼ 1. (20)

Here we will have no control over the values of b1 and k1.

To achieve (19) and (20) we use D2 with respect to the polynomial LAΓ,1 and
centre b to decompose K = ∪L into gap (G) intervals or dyadic (D) intervals. Note
that by construction (19) is satisified for our gap intervals L ∈ G and so these are

the intervals of type T0. To arrive at our intervals of type T1 we use D1 with
respect to the polynomial LAΓ,1 to decompose each dyadic L = ∪L′ further into
0(1) disjoint intervals so that on each L′ (20) holds (note that on each dyadic L ∈ D,
LAΓ,d(t) ∼ 1 since (t − b) ∼ 1 on such L). This finishes Step 1.

Step n → Step (n+1): We now describe how we pass from Step n to Step (n+1),
1 ≤ n ≤ d − 2.

The intervals which arise by Step n will be of 2n types Tr, parametrised by 0-1
bitstrings r = r1 · · · rn of length n. Fix an interval J of type Tr; we will have
associated to J a centre (real number) br = br(J) and an exponent (nonnegative
integer) kr = kr(J). Furthermore J will have a unique parent (and grandparent,

etc... all the way back to an interval from Step 0) J̃ from the previous step - Step
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(n − 1) - of type Tr̃ where r̃ = r1 · · · rn−1 and there will have been associated to J̃

a matrix Ar̃ = Ar̃(J̃) ∈ GLd(R) so that on

J : LAr̃Γ,n(t) ∼ (t − br)
kr . (21)

To carry out the decomposition of each interval J = ∪K into intervals of type Tr0 or
type Tr1 at Step (n+1), we will need to construct an appropriate invertible matrix
Ar = Ar(J) (which in fact will leave the first n components of Ar̃Γ unchanged).
For an interval K of type Tr0 we will find a centre br0 = br0(K) and an exponent
kr0 = kr0(K) so that on

K : LArΓ,n+1(t) ∼ (t − br0)
kr0 . (22)

Importantly we will achieve this with br0 = br and some kr0 /∈ {Nr + 1, . . . , Nr +
d − n − 1} where

Nr = bd − n − 1

d − n
krc if r 6= 0 · · · 0, Nr = bd − n − 1

d − n
kr +

k

d − n
c if r = 0 · · · 0.

(23)

For an interval K of type Tr1 we will find a centre br1 = br1(K) and an exponent
kr1 = kr1(K) so that on

K : LArΓ,n+1(t) ∼ (t − br1)
kr1 . (24)

Here we will have no control over the values of br1 and kr1.
Before we see (22) and (24) we construct the invertible matrix Ar = Ar(J) which

will depend on br = br(J) and kr = kr(J) already determined by Step n. In fact

Ar =




In O
a1 a2 · · · ad−n

O ∗


 Ar̃

for an appropriate choice of ~a = (a1, . . . , ad−n) ∈ Rd−n which we now describe. If

Ar̃Γ = (Q1, . . . , Qd), then for 1 ≤ j ≤ d−n, expand LQ1···QnQn+j
(t+ br) =

∑
` cj

`t
`

and set ~c` = (c1
` , . . . , cd−n

` ). Here we are using the notation introduced in section 4
for LQ1···QnQn+j

. Hence

LArΓ,n+1(t + br) =

d−n∑

j=1

ajLQ1···QnQn+j
(t + br) =

∑

`

~a · ~c` t`.

Now choose a nonzero vector ~a ∈ Rd−n orthogonal to the subspace spanned by
{~cNr+1, . . . ,~cNr+(d−n−1)} where Nr is defined in (23).

The procedure to establish (22) and (24) is exactly the same as for (19) and (20);

use D2 with respect to the polynomial LArΓ,n+1 and centre br to decompose J =
∪K into gap (G) intervals or dyadic (D) intervals. Note that, by construction, the
condition after (22) is satisfied for our gap intervals L ∈ G since LArΓ,n+1(t+ br) =∑

cjt
j has the property that the coefficients cNr+` vanish for all ` = 1, 2, . . . d−n−1.

The way we defined Ar guarantees that this is the case. Hence these gap intervals
will be our intervals of type Tr0. To arrive at our intervals of type Tr1 we use

D1 with respect to the polynomial LArΓ,n+1 to decompose each dyadic K = ∪K ′

further into 0(1) disjoint intervals so that on each K ′ (24) holds. This completes
the inductive step from Step n to Step (n + 1).

...
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...
Step (d − 1): We finally arrive at the final step. Let us fix an interval Jr,
r = r1 · · · rd−1, of type Tr at this final step and describe what the algorithm
produces on this interval. To this end let rj = r1 · · · rj when 1 ≤ j ≤ d − 1
(so that rd−1 = r) and let r0 denote the empty string. We have d − 1 invertible
matrices {A, Ar1 , . . . , Ard−2

}, d centres {b, br1 , . . . , brd−1
= br} and d exponents

{k, kr1 , . . . , kr} associated to Jr, its parent, grandparent, etc... all the way back
to an interval J from the initial decomposition at Step 0 (note there is no matrix
Ar as we do not pass from Step (d − 1) to Step d). Let 0 ≤ m ≤ d − 1 be so that
r = r1 · · · rm0 · · · 0 and rm = 1 (m = 0 being the case r = 0 · · · 0). When m ≥ 1 we
have the following properties from our algorithm:

Property 1 On Jr, LΓ,d(t) ∼ 1,

LAΓ,1(t) ∼ 1, . . . , LArm−2
Γ,m−1(t) ∼ 1, LArm−1

Γ,m(t) ∼ (t − brm
)krm ,

LArmΓ,m+1(t) ∼ (t − brm+1)
krm+1 , . . . , LArd−2

Γ,d−1(t) ∼ (t − br)
kr

where krm
≥ 0 is unrestricted but for m + 1 ≤ j ≤ d − 1,

krj
/∈
{
Nrj−1 + 1, . . . , Nrj−1 + d − j

}
where Nrj−1 = b d − j

d − j + 1
krj−1c

(the m = 1 case being interpreted as LΓ,d ∼ 1, LAΓ,1(t) ∼ (t − br1)
kr1 , etc...).

Property 2 For each 0 ≤ j ≤ d− 2, LArj
Γ,j+1 = LArd−2

Γ,j+1 because of the form

of the matrices Arj
. Hence on Jr, if Q = Ard−2

Γ,

LQ,d(t) ∼ 1, LQ,1(t) ∼ 1, . . . , LQ,m−1(t) ∼ 1,

LQ,m(t) ∼ (t − brm
)krm , . . . , LQ,d−1(t) ∼ (t − br)

kr .

Property 3 For m ≤ j ≤ d − 1, brj
= br.

The case m = 0 is special; here r = 0 · · · 0. In this case we have on Jr:

LQ,d(t) ∼ (t − b)k, LQ,1(t) ∼ (t − b)kr1 , . . . , LQ,d−1(t) ∼ (t − b)kr (25)

where k ≥ 0 is unrestricted but each krj
, 1 ≤ j ≤ d − 1 has the restriction krj

/∈
{Mrj−1 +1, . . . , Mrj−1 +d−j} where Mrj−1 = b d−j

d−j+1krj−1 + k
d−j+1c (here kr0 = 0).

We are now in a position to describe our final decomposition of R = ∪I into
0(1) disjoint open intervals so that (P1) and (P2) of section 3 hold for each I . The
initial decomposition together with the algorithm set out in this section produces

a decomposition of R = ∪J so that Properties 1 , 2 and 3 hold on each J (this
is the case when m ≥ 1; property (25) holding for the case m = 0). Now collect
together all the centres {br} associated to each J , its parent, grandparent, etc...
(there are 0(1) such centres) and decompose each J into disjoint open intervals
avoiding these numbers. Thus we finally arrive at our desired decomposition R =
∪I .
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10. Preliminaries for the geometric inequality (P2)

We must verify that (P2) or (2) holds for each I in the final decomposition of R =
∪I described in the previous section. Fix an interval I in this final decomposition
and recall that I ⊂ Jr for a unique interval Jr, r = r1 · · · rd−1, arising in the last
step of our algorithm. Recall also that it suffices to prove (2) for I with Γ replaced
by BΓ for any B ∈ GLd(R) and we will do so for B = Ard−2

. Again we set
Q = Ard−2

Γ and we will use Ir, 1 ≤ r ≤ d to denote iterated integrals, originally
defined in section 5 with respect to Γ, but now we define the Ir with respect to Q.
For t = (t1, . . . , td), we set JQ(t) = det

(
Q′(t1) · · ·Q′(td)

)
and as before we have

JQ(t1, . . . , td) = Id(t1, . . . , td)

for t = (t1, . . . , td) ∈ Id. Our remaining task is to establish

∣∣Id(t1, . . . , td)
∣∣ &

d∏

r=1

|LQ,d(tr)|1/d
∏

r<s

|tr − ts| (26)

for t = (t1, . . . , td) ∈ Id.

We now use Properties 1 , 2 and 3 or (25) to reduce (26) to a concrete
inequality. Let us begin with the case m ≥ 1; to this end we define a concrete
series of iterated integrals which arise when we replace the various polynomials
LQ,j defining the integrals Ir by their associated centred monomials which describe

the behaviour of LQ,j on our interval I . Define S1(t1) = |t1 − br|krd−2
−2kr and then

inductively for 2 ≤ r ≤ d − m,

Sr(t1, . . . , tr) =

r∏

s=1

|ts − br|σr

∫ t2

t1

· · ·
∫ tr

tr−1

Sr−1(w1, . . . , wr−1)dw1..dwr−1

where σr = krd−r−1
+krd−r+1

−2krd−r
for 2 ≤ r ≤ d−m−1 but σd−m = krm+1−2krm

.
Finally for r = d − m + 1 we set Sd−m+1(t1, . . . , td−m+1) =

d−m+1∏

s=1

|ts − br|krm

∫ t2

t1

· · ·
∫ td−m+1

td−m

Sd−m(w1, . . . , wd−m)dw1..dwd−m.
(27)

In this case (m ≥ 1) (26) reduces to

Sd−m+1(t1, . . . , td−m+1) &
∏

1≤r<s≤d−m+1

(tr − ts). (28)

Recall krm
≥ 0 is unrestricted but krj

/∈ {Nrj−1 + 1, . . . , Nrj−1 + d − j} where

Nrj−1 = b d−j
d−j+1krj−1c for m + 1 ≤ j ≤ d − 1.

We end up with a similar inequality to (28) to establish for the case m = 0
(r = 0 · · · 0). Using (25) we see that we need to adjust the formula for Sd−m+1

above when m = 1 slightly; we define S̃d exactly as Sd above in (27) with m = 1
except we change S1 to

S̃1(t1) = |t1 − br|k+krd−2
−2kr .

For 1 ≤ j ≤ d−1, krj
/∈ {Mrj−1+1, . . . , Mrj−1+d−j} where Mrj−1 = b d−j

d−j+1krj−1 +
k

d−j+1c (kr0 = 0) but k ≥ 0 is unrestricted. The inequality to establish in this case
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(m = 0) is

∣∣S̃d(t1, . . . , td)
∣∣ &

d∏

r=1

|tr − br|k/d
∏

1≤r<s≤d

|tr − ts|. (29)

Hence we simply need to prove d concrete inequalities, (28) (cases 1 ≤ m ≤ d−1)
and (29) (case m = 0). The notation r ∈ B of 0-1 bitstrings to enumerate our
exponents kr and centres br served us well for the general algorithm but is no
longer needed and we rewrite (28) and (29) with simpler notation. We begin with
the cases 1 ≤ m ≤ d−1; for n ≥ 2, we start with any sequence of n−1 nonnegative
integers k0, k1, . . . , kn−2 where k0 ≥ 0 is unrestricted but for 1 ≤ j ≤ n − 2,

either kj ≤ n − j − 1

n − j
kj−1 or kj ≥ n − j − 1

n − j
kj−1 + (n − j − 1). (30)

From this sequence kj we form a new sequence σ0 = k1 − 2k0, σ1 = k2 + k0 −
2k1, . . . , σn−2 = kn−3 − 2kn−2 of nonnegative integers. We now consider a nested
series of iterated integrals. Let En = En(x1, . . . , xn, b) be defined as follows: let

Λn−2 =
∫ u2

u1
|w − b|σn−2dw, Λn−3 =

∫ v2

v1

∫ v3

v2

[
|u1 − b||u2 − b|

]σn−3
Λn−2 du1du2 and

more generally, for 3 ≤ r ≤ n,

Λn−r =

∫ y2

y1

· · ·
∫ yr

yr−1

r−1∏

s=1

|zs − b|σn−rΛn−r+1 dz1..dzr−1

and let En =
∏n

s=1 |xs − b|k0 × Λ0. Our desired inequality (28) is implied by the
following proposition.

Proposition 10.1. For any n ≥ 2, x1 < x2 < · · ·xn and b /∈ [x1, xn],

En &
∏

r<s

(xs − xr).

The notational reformulation of (29) is a slight variant of Proposition 10.1. Here
we start with a sequence of d nonnegative integers k0, . . . , kd−2 and k where now
k ≥ 0 is unrestricted but for 0 ≤ j ≤ d − 2 (k−1 = 0),

kj ≤ d − j − 1

d − j
kj−1 +

k

d − j
or kj ≥ d − j − 1

d − j
kj−1 +

k

d − j
+ (d − j − 1).

(31)

We define a sequence σ̃j = σj for 0 ≤ j ≤ d − 3 (where the σj are defined above)
but we define σ̃d−2 = k + kd−3 − 2kd−2. Finally we define Fd = Fd(x1, . . . , xd, b)
exactly as we defined En with n = d except the sequence {σj} is replaced by {σ̃j}.
The inequality (29) follows from the next proposition.

Proposition 10.2. For any x1 < x2 < · · ·xd and b /∈ [x1, xd],

∣∣Fd

∣∣ &

d∏

r=1

|xr − b|k/d
∏

r<s

|xs − xr|.

In the proof of both Propositions 10.1 and 10.2 we may assume, without loss
of generality, that xn or xd < b and for the proof itself we will need to examine
iterated integrals of the form

I =

∫ z2

z1

· · ·
∫ z`

z`−1

`−1∏

r=1

|yr − b|ρr

∏

r<s

|yr − ys| dy1..dy`−1
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where z1 < · · · < z` < b.

Lemma 10.3. If y1 < · · · < yk−1 < w < z < yk+1 < · · · < y`−1 < b, then
∫ z

w

|yk − b|a
∏

r<s

|yr − ys| dyk & Ca,`,k(w, z, b)

∫ z

w

∏

r<s

|yr − ys|dyk (32)

where

Ca,`,k(w, z, b) = max
(
|w − b|a,

|z − b|a+`−k

|w − b|`−k

)
.

Proof We will assume that |w − b| > 9|z − b|; otherwise the proof simplifies.
Consider the following two disjoint subsets of [w, z], L = {w ≤ yk ≤ z : 1/3|w−b| ≤
|yk − b| ≤ 1/2|w − b|} and U = {w ≤ yk ≤ z : 2|z − b| ≤ |yk − b| ≤ 3|z − b|}. On
these subsets it is a simple matter to verify that for r < k, |yr − yk| ∼ |yr − b|, and
for k < s, |yk − ys| ∼ |yk − b|. Hence

∫ z

w

|yk − b|a
∏

r<s

|yr − ys| dyk

&
∏

r<s

r 6=k,s6=k

|yr − ys|
k−1∏

r=1

|yr − b|
[∫

L

+

∫

U

]
|yk − b|a+`−k−1dyk

∼
∏

r<s

r 6=k,s6=k

|yr − ys|
k−1∏

r=1

|yr − b|
(
|w − b|a+`−k + |z − b|a+`−k

)

&
(
|w − b|a +

|z − b|a+`−k

|w − b|`−k

) ∫ z

w

∏

r<s

|yr − ys| dyk

where in the last inequality we used |w − b| ≥ |w − z| and |w − b| ≥ |yk − ys| for
s > k.

We will use the notation ↓ to indicate when we employ the estimate in Lemma
10.3 with |w−b|a and the notation ↑ when we use the estimate with |z−b|a+`−k/|w−
b|`−k. Furthermore we will use the notation ↓ (r) ↓↑ (s) ↑ etc... to indicate we
are using Lemma 10.3 iteratively to estimate an iterated integral (for example, I
above), using the estimate ↓ for the first r integrals and then the estimate ↑ for the
remaining s integrals (so we must have r + s = `−1 if we are indeed estimating the
iterated integral I above). We single out two special estimates for I which follow
from Lemma 10.3:

↓ (` − 1) ↓ : I &

`−1∏

r=1

|zr − b|ρr

∏

r<s

|zr − zs|

and

↑ (` − 1) ↑ : I &
1

|z1 − b|`−1

∏̀

r=2

|zr − b|ρr−1+1
∏

r<s

|zr − zs|.

We put these two estimates for I together to establish the following useful estimate
for I in the case where all the exponents ρr appearing in I are equal. This is the
extension of Lemma 8.1 promised earlier.
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Lemma 10.4. If ρ1 = ρ2 = · · · = ρ`−1 = ρ,

I &
∏̀

r=1

|zr − b| `−1
`

ρ
∏

r<s

|zr − zs|

holds if and only if ρ ≥ 0 or ρ ≤ −`.

Proof We will only prove the sufficiency part of the lemma as this is the only part
that is needed to establish Propositions 10.1 and 10.2 and leave the necessity to the
interested reader.

For ρ ≥ 0, use ↓ (` − 1) ↓ to obtain

I &

`−1∏

r=1

|zr − b|ρ
∏

r<s

|zr − zs| ≥
∏̀

r=1

|zr − b| `−1
`

ρ
∏

r<s

|zr − zs|

since |zr − b| ≥ |z` − b| for 1 ≤ r ≤ ` − 1.
For ρ ≤ −`, use ↑ (` − 1) ↑ to obtain

I &
1

|z1 − b|`−1

∏̀

r=2

|zr − b|ρ+1
∏

r<s

|zr − zs| ≥
∏̀

r=1

|zr − b| `−1
`

ρ
∏

r<s

|zr − zs|

since |z1 − b| ≥ |zr − b| for 2 ≤ r ≤ `.

We now return to En and Fd in Propositions 10.1 and 10.2 and prove a prelim-
inary estimate for these nested series of iterated integrals by making repeated use
of Lemma 10.4. We start with the innermost integral and apply Lemma 10.4 to it;

∫ u2

u1

|w − b|s dw & |u1 − u2|
[
|u1 − b||u2 − b|

] 1
2 s

holds if and only if s ≥ 0 or s ≤ −2. For En, s = σn−2 = kn−3 − 2kn−2 and by (30)
either

i) kn−2 ≤ 1
2kn−3 ⇒ s = σn−2 ≥ 0 or

ii) kn−2 ≥ 1
2kn−3 + 1 ⇒ s = σn−2 ≤ −2.

For Fd, s = σ̃d−2 = k + kd−3 − 2kd−2 and by (31) either

i) kd−2 ≤ 1
2kd−3 + k

2 ⇒ s = σ̃d−2 ≥ 0 or

ii) kd−2 ≥ 1
2kd−3 + k

2 + 1 ⇒ s = σ̃d−2 ≤ −2.

Observe that when we apply Lemma 10.4 iteratively to each successive nested
iterated integral defining either En or Fd we end up with an iterated integral with
the form I above where all the exponents ρr are equal and so Lemma 10.4 can once
again be applied. At the (` − 1)th application (2 ≤ ` ≤ n or d) of Lemma 10.4 we
need to estimate

I` =

∫ z2

z1

· · ·
∫ z`

z`−1

∏

r<t

|yr − yt|
`−1∏

r=1

|yr − b|ρ` dy1..dy`−1

where ρ` = sn−` + `−2
`−1

(
sn−`+1 + · · · + 2

3 (sn−3 + 1
2sn−2)

)
and s = σ for En and

s = σ̃ for Fd (and then n = d).
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Claim 1: For En (and so s = σ), ρ` = kn−`−1 − `
`−1kn−`, 2 ≤ ` ≤ n.

Here we interpret k−1 = 0. To prove this claim we proceed by induction on `; the
case ` = 2 being clear. By induction, for 3 ≤ ` ≤ n, ρ` =

σn−` +
` − 2

` − 1

(
kn−`−

` − 1

` − 2
kn−`+1

)
= kn−`−1+kn−`+1−2kn−`+

` − 2

` − 1
kn−`−kn−`+1

and so ρ` = kn−`−1 − (`/` − 1)kn−`.
By (30) we see that Claim 1 implies that either ρ` ≥ 0 or ρ` ≤ −` only if

2 ≤ ` ≤ n − 1 and so Lemma 10.4 can be applied to these I`.

Claim 2: For Fd (and so s = σ̃), ρ` = kd−`−1 − 1
`−1 (`kd−` − k), 2 ≤ ` ≤ d.

The proof of Claim 2 is the same as Claim 1, proceeding by induction on `. Hence
by (31), Claim 2 implies that either ρ` ≥ 0 or ρ` ≤ −` for all 2 ≤ ` ≤ d and so
Lemma 10.4 can be applied to all the iterated integrals defining Fd giving us the
desired estimate for Fd, completing the proof of Proposition 10.2.

On the other hand, after the (n− 1)st application of Lemma 10.4 to each of the
iterated integrals defining En we have

En &

n∏

r=1

|xr − b|k0

∫ x2

x1

· · ·
∫ xn

xn−1

n−1∏

r=1

|yr − b|− n
n−1 k0

∏

r<s

|yr − ys|dy1..dyn−1.

Unfortunately the exponent k0 ≥ 0 is unrestricted, preventing us to obtain an
unconditional estimate for En. Nevertheless if k0 = 0 or k0 ≥ n − 1, then Lemma
10.4 can be applied once more to conclude En &

∏
r<s |xr − xs|, completing the

proof of Proposition 10.1 in this case.
It still remains to prove Proposition 10.1 but, from above, we may assume 1 ≤

k0 ≤ n − 2.

11. A further reduction

In this section we will reduce the proof of Proposition 10.1 when 1 ≤ k0 ≤ n− 2
to a couple of combinatorial lemmas. To this end we split the analysis into 2n−2

cases, depending on the exact relations among the exponents kj in (30). Here we
reintroduce the notation of 0-1 bitstrings, a bitstring s = ε1 · · · εn−2 of length (n−2)
denotes the following case:

εj = 0 : if kj ≤ n−j−1
n−j kj−1

εj = 1 : if kj ≥ n−j−1
n−j kj−1 + (n − j − 1).

We now give a more refined estimate for En, no longer relying on Lemma 10.4,
but instead using more involved estimates arising from Lemma 10.3. Let us recall
the iterated integrals defining En: Λn−2 =

∫ u2

u1
|w−b|σn−2dw, Λn−3 =

∫ v2

v1

∫ v3

v2

[
|u1−

b||u2 − b|
]σn−3

Λn−2 du1du2 and, for 3 ≤ r ≤ n,

Λn−r =

∫ y2

y1

· · ·
∫ yr

yr−1

r−1∏

s=1

|zs − b|σn−rΛn−r+1 dz1..dzr−1

so that En =
∏n

s=1 |xs − b|k0 × Λ0.
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We first estimate Λn−2, Λn−3, . . . , Λ0 in succession using estimate ↓ (n− j−1) ↓
if εj = 0, or estimate ↑ (n− j−1) ↑ if εj = 1. Therefore inductively (see the special
estimates preceding Lemma 10.4), if

Λj+1 &

∫ y2

y1

· · ·
∫ yn−j−1

yn−j−2

n−j−2∏

r=1

|ur − b|ρj+1
r

∏

r<s

|ur − us|du1..dun−j−2,

then Λj &

∫ z2

z1

· · ·
∫ zn−j

zn−j−1

n−j−1∏

r=1

|yr − b|σj

∫ y2

y1

· · ·
∫ yn−j−1

yn−j−2

n−j−2∏

r=1

|ur − b|ρj+1
r

∏

r<s

|ur − us|du1..dun−j−2dy1..dyn−j−1

&

∫ z2

z1

· · ·
∫ zn−j

zn−j−1

|y1−b|Aj

[n−j−2∏

r=2

|yr−b|Br,j

]
|yn−j−1−b|Cj

∏

r<s

|yr−ys|dy1..dyn−j−1

where

Aj = σj + (1 − εj+1)ρ
j+1
1 − εj+1(n − j − 2)

Br,j = σj + (1 − εj+1)ρ
j+1
r + εj+1(ρ

j+1
r−1 + 1) and Cj = σj + εj+1(ρ

j+1
n−j−2 + 1).

This gives us the following recursive relations for 0 ≤ j ≤ n − 3: ρj
1 = Aj and for

2 ≤ r ≤ n − j − 2, ρj
r = Br,j , and finally ρj

n−j−1 = Cj . Note that ρn−2
1 = σn−2.

Therefore we arrive at

Λ0 &

∫ x2

x1

· · ·
∫ xn

xn−1

n−1∏

r=1

|yr − b|ρr

∏

r<s

|yr − ys|dy1..dyn−1

where ρr = ρ0
r.

For this last iterated integral we use the estimate ↓ (n − 1 − k0) ↓↑ (k0) ↑ to
obtain

Λ0 &
[n−k0−1∏

r=1

|xr − b|ρr

] 1

|xn−k0 − b|k0

[ n∏

r=n−k0+1

|xr − b|ρr−1+1
]∏

r<s

|xr − xs|.

Finally we arrive at

En &

∏n−k0−1
r=1 |xr − b|ρr+k0

∏n
r=n−k0+1 |xr − b|−k0−ρr−1−1

∏

r<s

|xr − xs|.

We will prove the following lemma.

Lemma 11.1.

1. For each 1 ≤ L ≤ n − k0 − 1,

ρ1 + · · · + ρL + Lk0 ≥ 0.

2. For each 1 ≤ L ≤ k0,

−ρn−1 − · · · − ρn−L − L(k0 + 1) ≥ 0.
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Using Lemma 11.1 with our assumption b > xn (and so |x1−b| ≥ · · · ≥ |xn−b|),
we arrive at

En &
|xn−k0 − b|ρ1+···+ρn−k0−1+(n−k0−1)k0

|xn−k0 − b|−ρn−1−···−ρn−k0
−k0(k0+1)

∏

r<s

|xr − xs|.

Thus, finally, the desired estimate En &
∏

r<s |xr−xs| for Proposition 10.1 follows
from the observation

ρ1 + · · · + ρn−1 + nk0 = 0. (33)

To see (33) we first note that for each 0 ≤ j ≤ n − 3,

n−j−1∑

r=1

ρj
r = (n − j − 1)σj +

n−j−2∑

r=1

ρj+1
r .

In fact, from the recursive formulae,

n−j−1∑

r=1

ρj
r = (n − j − 1)σj + (1 − εj+1)

n−j−2∑

r=1

ρj+1
r − εj+1(n − j − 2)

+ εj+1

n−j−1∑

r=2

(ρj+1
r−1 + 1)

= (n − j − 1)σj +

n−j−2∑

r=1

ρj+1
r − εj+1

n−j−2∑

r=1

ρj+1
r + εj+1

n−j−2∑

r=1

(ρj+1
r + 1)

− εj+1(n − j − 2)

= (n − j − 1)σj +

n−j−2∑

r=1

ρj+1
r .

Hence ρ1 + · · · ρn−1 + nk0 =

nk0 +

n−3∑

j=0

(n − j − 1)σj + ρn−2
1 = nk0 +

n−2∑

j=0

(n − j − 1)σj

since ρn−2
1 = σn−2. But σ0 = k1−2k0, σ1 = k2+k0−2k1, . . . , σn−2 = kn−3−2kn−2

implies

nk0 +

n−2∑

j=0

(n − j − 1)σj =

n−2∑

j=0

(
n − j + n − j − 2 − 2(n − j − 1)

)
kj = 0.

It remains to prove Lemma 11.1 but (33) allows us to rewrite the two statements
in that lemma into one. We use the notation a+ = max{a, 0}.
Lemma 11.2. (Reformulation of Lemma 11.1)
For any 1 ≤ L ≤ n − 2,

ρ1 + · · · + ρL + Lk0 ≥ −
(
L − (n − k0 − 1)

)
+

.

In the final part of this section we reduce the proof of Lemma 11.2 to a couple
of combinatorial lemmas. In order to do this we first express ρ1 + · · · + ρL + Lk0

in terms of our exponents {kj} whose restrictions (30), described by the particular
case s = ε1 · · · εn−2 under consideration, are given at the outset of this section.
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We list the first L′, 0 ≤ L′ ≤ L 1’s in s (where L′ = L if the sequence
ε1, ε2, . . . , εn−2 has at least L 1’s; otherwise L′ denotes the total number of 1’s
in this sequence), εj1 = . . . = εjL′

= 1, 1 ≤ j1 ≤ · · · ≤ jL′ ≤ n − 2 if L′ ≥ 1.
The case s = 0 · · · 0 corresponds to L′ = 0. We now list some consequences of
the recursive formulae defining the exponents {ρj

r}: for 1 ≤ j ≤ n − 2 and any
1 ≤ S ≤ n − j − 1,

1. ρj−1
1 + · · · + ρj−1

n−j = (n − j)σj−1 + ρj
1 + · · · ρj

n−j−1;
2. if εj = 0,

ρj−1
1 + · · · + ρj−1

S = Sσj−1 + ρj
1 + · · · ρj

S ;

3. if εj = 1,

ρj−1
1 + · · · + ρj−1

S = Sσj−1 + ρj
1 + · · · ρj

S−1 −
(
(n − j − 1) − S

)
− 1.

Here we are setting ρ−1 = 0. Recall that ρn−2
1 = σn−2 = kn−3 − 2kn−2.

If it exists, let `∗ ≤ L′ denote the least `∗ so that j`∗ ≥ n − L + `∗.
Case 1: Suppose `∗ exists. Then 1., 2. and 3. imply that

ρ1 + · · · + ρL + Lk0 = L(k0 + σ0 + · · · + σj1−1) − (n − j1 − 1) + L − 1

+ (L − 1) (σj1 + · · · + σj2−1) − (n − j2 − 1) + L − 2

...

+ (L − `∗ + 2)(σj`∗−2
+ · · · + σj`∗−1−1) − (n − j`∗−1 − 1) + L− (`∗ − 1)

+ (L − `∗ + 1)(σj`∗−1
+ · · · + σn−L+`∗−2) + (L − `∗)σn−L+`∗−1

+ · · · + 2 σn−3 + σn−2

= kj1 − kj1−1 − (n − j1 − 1) + L − 1 + kj2 − kj2−1 − (n − j2 − 1) + L − 2

...

+kj`∗−1
− kj`∗−1−1 − (n − j`∗−1 − 1) + L − (`∗ − 1) − kn−L+`∗−2.

Hence

ρ1 + · · · + ρL + Lk0 =

`∗−1∑

j=1

[
kj`

− kj`−1 − (n − j` − `)
]

+ (`∗ − 1)
(
L − (`∗ − 1)

)
− kn−L+`∗−2. (34)

Case 2: Suppose `∗ does not exist. Arguing as above we arrive at

ρ1 + · · · + ρL + Lk0 = L(k0 + · · · + σj1−1) − (n − j1 − 1) + L − 1

...

+ (L − L′ + 1)(σjL′−1
+ · · · + σjL′−1) − (n − jL′ − 1) + L − L′

+ ρ
jL′

1 + · · · + ρ
jL′

L−L′ .

Therefore if L = L′ (and then one checks that we are necessarily in Case 2), we
have

ρ1 + · · · + ρL + Lk0 = L(k0 + σ0 + · · · + σj1−1) − (n − j1 − 1) + L − 1

...

+ (σjL−1 + · · · + σjL−1) − (n − jL − 1)
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=

L∑

`=1

[
kj`

− kj`−1 − (n − j` − `)
]
. (35)

If L′ < L, set M = n − jL′ − 1 − (L − L′) ≥ 0. Then ρ
jL′

1 + · · · + ρ
jL′

L−L′

= (L − L′)(σjL′
+ · · · + σjL′+M ) + ρ

jL′+M+1
1 + · · · + ρ

jL′+M+1
L−L′

= (L − L′)(σjL′ + · · · + σjL′+M ) + (L − L′ − 1)σjL′+M+1 + · · · + 2σn−3 + σn−2.

Hence

ρ1 + · · · + ρL + Lk0 =

L′∑

`=1

[
kj`

− kj`−1 − (n − j` − `)
]

+ L′(L′ − 1) − kn−(L−L′)−1. (36)

This last equation (36) includes the case s = 0 · · · 0 in which case we have

ρ1 + · · · + ρL + Lk0 = −kn−L−1.

Furthermore note that (36) is an ‘endpoint’ case of (34); formally taking `∗ = L′+1.
In fact the arguments we develop for Lemma 11.2 in Case 1 work in exactly the
same way as in Case 2 when L′ < L. Therefore we will only prove Lemma 11.2
when L′ = L, using (35), and in Case 1, using (34).

12. Two combinatorial lemmas

In this final section we prove two combinatorial lemmas about our exponents
{kj} whose restrictions (30) are given by s = ε1 · · · εn−2 as explained at the outset
of the previous section.

Key Combinatorial Lemma: For any 1 ≤ L ≤ L′,

L∑

`=1

[
kj`

− kj`−1 − (n − j` − `)
]

≥ −
(
L− (n − k0 − 1)

)
+
.

As explained in the previous section, by (35), the Key Combinatorial Lemma
gives a proof of Lemma 11.2 in the case L′ = L. Furthermore we will use the Key
Combinatorial Lemma to establish Lemma 11.2 in Case 1. of Section 11 (when `∗
exists), thus completing the proof of this lemma and hence the proof of our main
Theorem 1.1. To do this, it suffices by (34) to prove a second combinatorial lemma.

Combinatorial Lemma - 2: With 1 ≤ `∗ ≤ L′ ≤ L as in Section 11, we have

`∗−1∑

`=1

[
kj`

− kj`−1 − (n − j` − `)
]
+ (`∗ − 1)

(
L − (`∗ − 1)

)
− kn−L+`∗−2

≥ −
(
L − (n − k0 − 1)

)
+

.

The proof of the Key Combinatorial Lemma is based in part on the following
lemma.
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Lemma 12.1. If kj`−1 ≥ M(n − j`) − N , for some M , N where 0 ≤ N ≤ n − j`,
then

1) kj`−1
≥ M(n − j`−1 − 1) − N ;

2) −kj`−1 + kj`−1
≥ M(j` − j`−1 − 1).

Proof To prove 1) we prove by induction

kj`−r ≥ M(n − j` + r − 1) − N, 1 ≤ r ≤ j` − j`−1.

The case r = 1 is our hypothesis and if the statement is true for r ≥ 2, then by
(30),

M − N

n − j` + r − 1
≤ kj`−r

n − j` + r − 1
≤ kj`−r−1

n − j` + r
which implies

kj`−r−1 ≥ M(n − j` + r) − N − N

n − j` + r − 1
.

But N ≤ n − j` implies N < n − j` + r − 1 and so

kj`−r−1 ≥ M(n − j` + r) − N,

completing the proof of 1).
To prove 2) we prove by induction

kj`−1+r ≤ kj`−1
− rM, 0 ≤ r ≤ j` − j`−1 − 1. (37)

There is nothing to prove when r = 0 so suppose the statement holds for r − 1;
then

kj`−1+r ≤ n − j`−1 − r − 1

n − j`−1 − r

(
kj`−1

− (r − 1)M
)

< kj`−1
− rM + 1.

The last inequality is true since it is equivalent to

(rM − 1)(n − j`−1 − r) − (r − 1)M(n − j`−1 − r − 1) < kj`−1

⇐⇒ (M − 1)(n − j`−1 − r) + (r − 1)M < kj`−1

⇐⇒ (M − 1)(n − j`−1) + r − M < kj`−1

⇐⇒ r ≤ kj`−1
− (M − 1)(n − j`−1) + M − 1.

But by part 1)

kj`−1
− (M − 1)(n − j`−1 − 1) ≥ M(n − j`−1 − 1) − N − (M − 1)(n − j`−1 − 1)

= n − j`−1 − 1 − N` ≥ j` − j`−1 − 1 ≥ r.

For notational convenience we set

I` = kj`
− kj`−1 − (n − j` − `).

Next we give a corollary of Lemma 12.1.

Corollary 12.2. For any 0 ≤ ` ≤ L − 1, if

kjL−`+1−1 ≥ (M − ` + 1))(n − jL−`+1) − N (38)

with 0 ≤ N ≤ n − jL−`+1, then we have the following implication:
IL + · · · + IL−`+1

≥ (M − ` + 1))(n − jL−`+1) − `(M −L + 1) − kjL−`+1−1
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implies IL + · · · + IL−`

≥ (M − `)(n − jL−`) − (` + 1)(M −L + 1) − kjL−`−1.

Proof By Lemma 12.1, part 2) and (38),

IL + · · · + IL−`+1 + IL−`

≥ (M − ` + 1)(n − jL−`+1) − `(M −L + 1) − (n − jL−` −L + `)

− kjL−`+1−1 + kjL−`
− kjL−`−1

≥ (M − ` + 1)(n − jL−` − 1) − (n − jL−`) + L − ` − `(M −L + 1) − kjL−`−1

= (M − `)(n − jL−`) − (M − ` + 1) + L− ` − `(M −L + 1) − kjL−`−1

= (M − `)(n − jL−`) − (M −L + 1)(` + 1) − kjL−`−1.

We now turn to the proof of the Key Combinatorial Lemma when 1 ≤ L ≤
n − k0 − 1 and do so by induction on L.

L = 1: kj1 − kj1−1 − (n − j1 − 1) ≥ −kj1−1

n−j1
> −1.

The first inequality follows from (30) and the last inequality is equivalent to kj1−1 ≤
n − j1 − 1 but again by (30),

kj1−1 ≤ k0 − j1 + 1 ≤ n − 2 − j1 + 1 = n − j1 − 1,

completing the case L = 1.

Suppose
∑L

`=1 I` ≥ 0 for every 1 ≤ L ≤ L − 1.
Case A: kjL−1 ≤ L(n − jL) − 1. Then by (30),

kjL − kjL−1 − (n − jL − 1) ≥ − kjL−1

n − jL
> −L

and this implies that IL ≥ 0 and so
∑L

`=1 I` ≥ 0 by the inductive hypothesis.
Case B: kjL−1 ≥ L(n − jL). Let 1 ≤ `0 ≤ L − 1 be the least integer value of
1 ≤ ` ≤ L − 1 so that

kjL−`−1 ≤ (L − `)(n − jL−`) − ` − 1.

We observe that such a value of ` exists since

kjL−(L−1)−1 = kj1−1 ≤ k0 − j1 − 1 ≤ (L − (L − 1))(n − jL−(L−1)) − 1 − (L − 1)

since L ≤ n − k0 − 1!

Claim: For 0 ≤ ` ≤ `0,

IL + · · · + IL−` ≥ (L − `)(n − jL−`) − (` + 1) − kjL−`−1.

We prove this by induction on `.
` = 0: kjL−1 ≥ L(n − jL) =⇒ kjL ≥ (L + 1)(n − jL − 1) =⇒

IL = kjL − kjL−1 − (n − jL −L) ≥ L(n − jL) − 1 − kjL−1.

The first implication follows from (30).
The inductive step will follow from Corollary 12.2. First we note that for 1 ≤

` ≤ `0,
kjL−`+1−1 ≥ (L − ` + 1)(n − jL−`+1) − ` + 1.
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Hence Corollary 12.2 with M = L and N = `−1 (note that jL−`+1 ≤ n−2−(`−1) =
n − ` − 1 implies ` − 1 = N ≤ n − jL−`+1) proves the inductive step of the Claim.

Using the Claim with ` = `0 gives

IL + · · · + IL−`0 ≥ (L − `0)(n − jL−`0) − (`0 + 1) − kjL−`0
−1 ≥ 0

since kjL−`0
−1 ≤ (L − `0)(n − jL−`0) − (`0 + 1). Now the induction hypothesis

establishes the Key Combinatorial Lemma when 1 ≤ L ≤ n − k0 − 1.
Next suppose L ≥ n − k0 − 1 and we will prove the Key Combinatorial Lemma

by induction on L; the case L = n − k0 − 1 being done above.

Suppose
∑L

`=1 I` ≥ −(L − (n − k0 − 1)) for every n − k0 − 1 ≤ L ≤ L − 1. If
kjL−1 ≤ (L + 1)(n − jL) − 1, then

kjL − kjL−1 − (n − jL −L) ≥ − kjL−1

n − jL
+ L− 1 > −2. (39)

The last inequality being equivalent to kjL−1/(n − jL) < L + 1 which in turn is
equivalent to kjL−1 ≤ (L + 1)(n − jL) − 1. By induction we have

L−1∑

`=1

I` ≥ −(L − 1 − (n − k0 − 1))

which together with (39) gives
∑L

`=1 I` ≥ −(L− (n− k0 − 1)) as desired. Hence we
may assume

kjL−1 ≥ (L + 1)(n − jL) .

Case A′: kjL−`−1 ≤ (L− `+1)(n− jL−`)− `−1 for some 0 ≤ ` ≤ L− (n−k0 −1).
Let `0 denote the least such value of `.

Claim: For 0 ≤ ` ≤ `0,

IL + · · · + IL−` ≥ (L − ` + 1)(n − jL−`) − 2(` + 1) − kjL−`−1.

We prove this by induction on `.
` = 0: kjL−1 ≥ (L + 1)(n − jL) =⇒ kjL ≥ (L + 2)(n − jL − 1) =⇒

IL = kjL − kjL−1 − (n − jL −L) ≥ (L + 1)(n − jL) − 2 − kjL−1.

The first implication follows from (30).
The inductive step will follow from Corollary 12.2. First we note that for 1 ≤

` ≤ `0,

kjL−`+1−1 ≥ (L − ` + 2)(n − jL−`+1) − ` + 1.

Then Corollary 12.2 with M = L+1 and N = `−1 (note that `−1 ≤ n−jL−`+1 ⇔
jL−`+1 ≤ n − ` + 1 and this follows from (30) and the fact jL ≤ n − 2) proves the
inductive step of the Claim.

Applying the Claim with ` = `0 gives

`0∑

`=0

IL−` ≥ (L − `0 + 1)(n − jL−`0) − 2(`0 + 1) − kjL−`0
−1.
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Using kjL−`0
−1 ≤ (L−`0 +1)(n−jL−`0)−`0−1 and the inductive hypothesis gives

IL + · · · + IL−`0 +

L−`0−1∑

`=1

I`

≥ (L − `0 + 1)(n − jL−`0) − 2(`0 + 1) −
(
L− `0 − 1 − (n − k0 − 1)

)
− kjL−`0

−1

≥ −
(
L − (n − k0 − 1)

)
+ (L − `0 + 1)(n − jL−`0) − (`0 + 1) − kjL−`0

−1

≥ −
(
L− (n − k0 − 1)

)
, finishing Case A′.

Case B′: kj`−1 ≥ (` + 1)(n − j`) − (L − `), for all n − k0 − 1 ≤ ` ≤ L.

Claim 1: kjn−k0−1−1 ≥ (n − k0 − 1)(n − jn−k0−1) − 1.

In fact, from above with ` = n − k0 − 1, it suffices to see

(n − k0)(n − jn−k0−1) −L + n − k0 − 1 ≥ (n − k0 − 1)(n − jn−k0−1) − 1.

This is equivalent to n− jn−k0−1 ≥ L− (n− k0 − 1)− 1 which in turn is equivalent
to jn−k0−1 ≤ n + (n − k0 − 1) − L + 1. But by (30), since jL ≤ n − 2, jn−k0−1 =
jL−(L−(n−k0−1))

≤ n − 2 − (L − (n − k0 − 1)) = n + n − k0 − 1 −L − 2. (40)

Next, let `0 denote the least value of `, 2 ≤ ` ≤ n − k0 − 1 so that

kjn−k0−`−1 ≤ (n − k0 − `)(n − jn−k0−`) − `.

Observe that such a value exists since for ` = n − k0 − 1, (30) implies kj1−1 ≤
k0 − j1 + 1 and k0 − j1 + 1 = n − j1 − (n − k0 − 1).

Claim 2: For 1 ≤ ` ≤ `0,

IL + · · ·+ In−k0−` ≥ (n− k0 − `)(n− jn−k0−`)− [L− (n− k0 − `) + 1]− kjn−k0−`−1.

We prove this by induction on `:
` = 1: In this case we use the Claim in Case A′ with ` = L − (n − k0 − 1) to

deduce

IL + · · ·+ In−k0−1 ≥ (n− k0)(n− jn−k0−1)− 2(L− (n− k0 − 1) + 1)− kjn−k0−1−1.

But (40) implies jn−k0−1 ≤ n + (n − k0 − 1) −L − 1 which is equivalent to

(n − k0)(n − jn−k0−1) − 2(L − (n − k0 − 1) + 1)

≥ (n − k0 − 1)(n − jn−k0−1) − [L − (n − k0 − 1) + 1],

completing the case ` = 1.
We will once again employ Corollary 12.2. But first note, by the definition of `0,

kjn−k0−`+1−1 ≥ (n − k0 − ` + 1)(n − jn−k0−`+1) − (` − 2)

for all 1 ≤ ` ≤ `0. The inductive step of Claim 2 now follows from Corollary 12.2
with M = L and N = ` − 2 (check ` − 2 ≤ n − jn−k0−`+1). This finishes the proof
of Claim 2.

We now use Claim 2 with ` = `0: IL + · · · + In−k0−`0

≥ (n − k0 − `0)(n − jn−k0−`0) − [L− (n − k0 − `0) + 1] − kjn−k0−`0
−1

≥ `0 − [L − (n − k0 − 1) + `0] = −[L− (n − k0 − 1)],
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and together with the inductive hypothesis
∑n−k0−`0−1

`=1 I` ≥ 0 gives

L∑

`=1

I` ≥ −[L− (n − k0 − 1)]

for Case B′ as well. This completes the proof of the Key Combinatorial Lemma.

Finally we turn to the proof of Combinatorial Lemma - 2. Let us recall the
set-up for this lemma: there exists an `∗, 1 ≤ `∗ ≤ L′ which is the smallest value
of ` with the property j` ≥ n − L + `. We wish to prove

`∗−1∑

`=1

I` + (`∗ − 1)
(
L − (`∗ − 1)

)
− kn−L+`∗−2 ≥ −

(
L − (n − k0 − 1)

)
+

.

The case `∗ = 1 is interpreted as −kn−L−1 ≥ −(L − (n − k0 − 1))+ and this is
easily seen to be the case. In fact, by (30), since n − L + 1 ≤ j1, kn−L−1 ≤
k0 − (n − L − 1) = L − (n − k0 − 1) from which −kn−L−1 ≥ −(L− (n − k0 − 1))+
easily follows. Therefore, from now on, we may assume that `∗ ≥ 2.

It will be convenient to shift notation slightly; set ` = `∗ − 1, T` = kj`
− kj`−1 −

(n− j`) and S = −kn−L+`−1 + `L− `(`−1)/2+
∑`

`=1 T`. Therefore 1 ≤ ` ≤ L′−1,

j` ≤ n − L + ` − 1 ≤ j`+1 − 2 ≤ n − 4 (41)

(and so L ≥ ` + 3 ), and the inequality we wish to prove becomes

S ≥ −
(
L − (n − k0 − 1)

)
+
. (42)

Case 1: kj`
≤ (`+1)(n− j`)−L−1. We split this case into ` subcases, 1 ≤ s ≤ `,

(s) s(n − j` − 1) − L + ` < kj`
≤ (s + 1)(n − j` − 1) − L + `.

These subcases do indeed divide up Case 1 because kj`
> n− j` −L+ `− 1. In fact

since L ≥ ` + 3 ,

kj`
≥ n − j` − 1

n − j`
kj`−1 + (n − j` − 1) ≥ n − j` − 1 > n − j` − L + ` − 1.

The first inequality following from (30). In exactly the same way that (37) was
established in the proof of Lemma 12.1 part 2) we have (for r, r0 ≥ 0)

j` + r0 + r ≤ n − L + ` − 1 =⇒ kj`+r0+r ≤ kj`+r0 − r s. (43)

The restriction on kj`
from below given in (s) serves the same role as the hypothesis

in Lemma 12.1.
Each subcase (s), 1 ≤ s ≤ ` splits naturally into two further subcases:

(s)1 s(n − j` − 1) − L + ` < kj`
≤ s(n − j`) − s;

(s)2 s(n − j`) − s < kj`
≤ (s + 1)(n − j` − 1) − L + `.

Each range is nonempty (except if j` = n − L + ` − 1 in (s)2):

• s(n − j`) − s −
[
s(n − j` − 1) − L + `

]
= L − ` ≥ 3;

• (s + 1)(n − j` − 1) − L + ` −
[
s(n − j`) − s

]
= n − j` − L + ` − 1 ≥ 0.

The last inequality follows from (41).
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We now address case (s)1. Using (43) with r0 = 0 and r = n − L + ` − 1 − j`,

S ≥ s(n − L + ` − 1 − j`) − kj`−1 − (n − j`) +

`−1∑

`=1

T` + `L − `(` − 1)

2

= (s − 1)(n − j`) + (` − s)L + s(` − 1) − `(` − 1)

2
− kj`−1 +

`−1∑

`=1

T`.

We claim that kj`−1 ≤ (s− 1)(n− j`). Indeed, if kj`−1 > (s− 1)(n− j`) then by
(30),

kj`
≥ n − j` − 1

n − j`
kj`−1 + (n − j` − 1) > s(n − j` − 1).

But the restrictions on kj`
given in (s)1 tell us that kj`

≤ s(n − j` − 1). Hence
kj`−1 ≤ (s − 1)(n − j`) and so

S ≥ (` − s)L − (` − 1)(`/2− s) +

`−1∑

`=1

T`.

But L ≥ ` + 3 implies (` − s)L ≥ (` − 1)(` − s) which in turn is equivalent to

(` − s)L − (` − 1)(`/2 − s) ≥ `(` − 1)/2 and so

S ≥ `(` − 1)

2
+

`−1∑

`=1

T` =

`−1∑

`=1

I`.

Finally an application of the Key Combinatorial Lemma proves (42) for the case
(s)1.

Consider now case (s)2. Again, in the same way that (37) or (43) was proved,
we have

r ≤ kj`
− s(n − j` − 1) =⇒ kj`+r ≤ kj`

− r (s + 1). (44)

Therefore to estimate S we split

−kn−L+`−1 + kj`
= −kj`+r0+r + kj`+r0 − kj`+r0 + kj`

where r0 = kj`
− s(n− j` − 1) and r = n−L + `− 1− j` − r0, and then apply (43)

to the first difference and (44) to the second difference to see that S is at least

s(n − L + ` − 1 − j` − r0) + (s + 1)r0 − kj`−1 − (n − j`) +

`−1∑

`=1

T` + `L − `(` − 1)

2

= r0 − kj`−1 + (s − 1)(n − j`) +

`−1∑

`=1

T` + `L − `(` − 1)

2
+ s(` − 1 − L)

= kj`
− kj`−1 − (n − j`) +

`−1∑

`=1

T` + (` − s)L + s` − `(` − 1)

2
.

But L ≥ ` + 3 implies

(` − s)L + s` − `(` − 1)

2
≥ `(` + 1)

2
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and so

S ≥ `(` + 1)

2
+

`∑

`=1

T` =

`∑

`=1

I`.

Another application of the Key Combinatorial Lemma now gives (42) for (s)2 and
this finishes Case 1.
Case 2: kj`

≥ (` + 1)(n − j`) − L.
For 1 ≤ s ≤ `, set

Ss = −L +
s(s + 1)

2
− 1 + s(n − js) − kjs−1 +

s−1∑

`=1

T`

and we shall prove that Ss ≥ −
(
L − (n − k0 − 1)

)
+

by induction on s.

s = 1 : S1 = −L+1−1+(n−j1)−kj1−1 = n−j1−L−kj1−1 ≥ −
(
L−(n−k0−1)

)
+
.

To see the last inequality, first note that (30) implies kj1−1 ≤ k0 − j1 + 1 and so

n − j1 − L − kj1−1 ≥ −
(
L − (n − k0 − 1)

)
≥ −

(
L − (n − k0 − 1)

)
+
.

Suppose now Ss−1 ≥ −
(
L − (n − k0 − 1)

)
+
.

Case i): kjs−1 ≤ (s − 1)(n − js).
This inequality in fact implies kjs−1 ≤ s(n − js) − L + s − 1. To see this note

that js ≤ n−L + s− 1 which follows from the definition of ` = `∗ − 1 and the fact
that s ≤ `. But this is equivalent to (s− 1)(n− js) ≤ s(n− js)−L + s− 1. Hence

Ss ≥− L +
s(s + 1)

2
− 1 + s(n − js) −

[
s(n − js) − L + s − 1

]
+

s−1∑

`=1

T`

=
s(s + 1)

2
− s +

s−1∑

`=1

T` =

s−1∑

`=1

I` ≥ −
(
L − (n − k0 − 1)

)
+

,

the last inequality following from the Key Combinatorial Lemma.
Case ii): kjs−1 ≥ (s − 1)(n − js) + 1.

By Lemma 12.1 part 2), this inequality implies −kjs−1 +kjs−1 ≥ s(js − js−1−1)
and so

Ss ≥ − L +
s(s + 1)

2
− 1 + s(n − js) + s(js − js−1 − 1) − (n − js−1)

− kjs−1−1 +

s−2∑

`=1

T`

= − L +
s(s − 1)

2
− 1 + (s − 1)(n − js−1) − kjs−1−1 +

s−2∑

`=1

T` = Ss−1;

the inductive hypothesis Ss−1 ≥ −
(
L− (n−k0−1)

)
+

gives us the desired estimate

in Case ii).
We will use the bound for Ss with s = `. First though, arguing as in (43), but

now using the lower bound kj`
≥ (` + 1)(n − j`) − L assumed in Case 2, we have

kj`+r ≤ kj`
− (` + 1)r, r ≤ n − L + ` − 1 − j`.
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Hence

S ≥ (` + 1)(n − L + ` − 1 − j`) − kj`−1 − (n − j`) +

`−1∑

`=1

T` + `L− `(` − 1)

2

= − L +
`(` + 1)

2
− 1 + `(n − j`) − kj`−1 +

`−1∑

`=1

T`

= S` ≥ −
(
L − (n − k0 − 1)

)
+
.

This proves (42) in Case 2 and thus completes the proof the Combinatorial Lemma
- 2.
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