
 
 
 
 
 
 
 
Li, W.G. and Luo, X.Y. and Hill, N.A. and Smythe, A. and Chin, S.B. 
and Johnson, A.G. and Bird, N.C. (2008) Correlation of mechanical 
factors and gallbladder pain. Computational and Mathematical Methods 
in Medicine, 9 (1). pp. 27-45. ISSN 1748-670X 

 
http://eprints.gla.ac.uk/25253/ 
 
Deposited on: 08 April 2010 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 



 

 

 

 

Correlation of Mechanical Factors and Gallbladder Pain 
 

 

 

W G Lia , X Y Luo*b,  N A Hillb, A Smythec, S B China, A G Johnsonc and N Bird c 

 

 

a Department of Mechanical Engineering, University of Sheffield, Sheffield, S1 3JD, 

UK 
b Department of Mathematics, University of Glasgow, Glasgow, G12 8QW, UK 
c Academic Surgical Unit, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK 

 

 

 

*Corresponding Author:  

 

Dr. X Y Luo 

Department of Mathematics,  

University of Glasgow,  

Glasgow, G12 8QW, UK 

Fax: +44 141 330 4111 

E-mail: X.Y.Luo@maths.gla.ac.uk 

 

  

 

Submitted on 28/06/2007   

 

 

 



Abstract  
  

Acalculous biliary pain occurs in patients with no gallstones, but is similar to that ex-

perienced by patients with gallstones. Surgical removal of the gallbladder (GB) in 

these patients is only successful in providing relief of symptoms to about half of those 

operated on, so a reliable pain-prediction model is needed. In this paper, a mechanical 

model is developed for the human biliary system during the emptying phase, based on 

a clinical test in which GB volume changes are measured in response to a standard 

stimulus and a recorded pain profile. The model can describe the bile emptying behav-

iour, the flow resistance in the biliary ducts, the peak total stress, including the passive 

and active stresses experienced by the gallbladder during emptying. This model is used 

to explore the potential link between gallbladder pain and mechanical factors. It is 

found that the peak total normal stress may be used as an effective pain indicator for 

gallbladder pain. When this model is applied to clinical data of volume changes due to 

CCK stimulation and pain from 37 patients, it shows a promising success rate of 88.2% 

in positive pain prediction. 

 

Keywords: gallbladder, total stress, gallbladder pain, gallstone, flow resistance, 

emptying  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
1 Introduction 
 

Human gallbladder pain is typically described as pain in the right upper part of the 

abdomen lasting for 30 minutes or more and provoked by a fatty meal, but not all pa-

tients experience these classical symptoms. Gallstones are the common cause, but 

only a small minority of the 10% of the population with stones experience pain. Gall-

bladder pain, also known as acalculous biliary or functional biliary pain, is defined as 

a steady pain located in the epigastrium and right upper quadrant in the absence of 

gallstones or when no other structural abnormalities exist in the biliary tract [1]. This 

pain may occur up to 7.6% in men and 20.7% in women, and has received great inter-

est in recent years [2, 3]. Patients with gallbladder pain often pose diagnostic difficul-

ties and undergo repeated ultrasound scans and oral cholecystograms. Sonography 

(oral cholecystography) combined with scintigraphy is commonly used to diagnose 

gallbladder pain.  Reproduction of pain within 5-10 minutes of an injection of chole-

cystokinin (CCK) is also used to select a group of patients who may benefit from 

cholecystectomy [4].  

 

However, surgery is often conducted without any guarantee of relieving the symp-

toms. Previous attempts to provide an accurate predictor for relief of gallbladder 

symptoms have not been successful with only about 50% of patients obtaining symp-

tomatic relief following surgery [5]. Moreover some patients without stones appear to 

have typical gallbladder pain, but only half of them gain relief of their pain if the gall-

bladder is removed.  

It is, therefore important to have a way of determining whether the pain is actually 

arising in the gallbladder, because similar symptoms can be produced by adjacent or-

gans, such as the stomach. duodenum and pancreas, even without obvious disease.  

 

Impaired motor function of gallbladder and sphincter of Oddi have long been sus-

pected as a major factor contributing to gallbladder pain. The presumed mechanism 

for the pain is obstruction leading to distension and inflammation. The obstruction 

might result from a lack of co-ordination  between the gallbladder and either the cys-

tic duct or the sphincter of Oddi due to increased flow resistance or tone [2]. In other 



words, pain may be produced by contraction against resistance or stretch of the gall-

bladder wall. When the gallbladder is inflamed, artificial distension produces gall-

bladder pain [6]. 

 

The pain provocation test has been used as a diagnostic tool to select patients with 

impaired gallbladder motor function who may benefit from the cholecystectomy. In 

the test CCK is injected intravenously to stimulate the gallbladder to contract and to 

induce the biliary pain.  It is clinically accepted that when a gallbladder ejection frac-

tion (percentage of the volume displaced during emptying) is less than 35% [7] or 

40% [8], then the gallbladder motor function is considered to be impaired; otherwise, 

it is considered normal. It has been found that the gallbladder pain of some patients 

has been alleviated after their gallbladders are removed [7, 8]. However, conflicting 

reports also exist [3, 5, 9]. These facts suggest that impaired gallbladder motor func-

tion is not the only factor responsible for the pain.  

 

As a type of visceral pain, gallbladder pain arises from the gallbladder and biliary 

tract with obstruction of the cystic or common bile ducts, which elevates pressure 

within the biliary system. Some researchers believe that the pain is directly related to 

intraluminal pressure of the biliary tract [10].  Gaensler (1951) examined the pain 

threshold of common bile duct for 40 patients before and after gallbladder removal. It 

was found that the pain threshold varied from 14.7 to 59 mmHg [11]. Csendes et al. 

(1979) illustrated that the pain threshold is in the range 15-60 mmHg [12]. The great 

variation in the pressure range in these studies suggests that the sensor of the pain in 

the biliary system may be better associated with other mechanical factors associated 

with the intraluminal pressure, but not directly to the pressure alone.  Similar observa-

tions were made for pain in the oesophagus, duodenum, gastric antrum and rectum, 

which seems to respond to mechanoreceptors in the gastrointestinal tract wall [13].  

These mechanoreceptors are found to depend on the luminal circumferential wall 

strain rather than pressure, tension and volume [13-17].    

 

In this paper, we study gallbladder pain from the mechanical point of view, i.e. the 

human biliary system is considered as a pressure-flow dynamic system with a flexible 

wall. By estimating the peak total stress experienced by the muscle of the gallbladder, 

as well as other mechanical factors from a group of patients, we were able to identify 



the mechanical factors most related to the pain felt by these patients. These estimates 

were based on the geometry changes during the emptying measured for different pa-

tients, and their correlations with the clinical observations of pain, which were pro-

vided by the Academic Surgical Unit of the Royal Hallamshire Hospital at Sheffield, 

UK. 

 

2 Model and Method 
2.1 Acquisition of clinical data during emptying 

A CCK provocation test was carried on patients who had experienced repeated attacks 

of biliary-type pain in the absence of gallstones or any obvious causative findings 

[18]. After an overnight fast they were given an intravenous infusion of saline (con-

trol) followed by an intravenous infusion of CCK (0.05μg/kg body weight). Ultra-

sonography of the gallbladder was used to monitor changes in shape, initial volume, 

emptying and wall thickness at 15 minute intervals for 60 minutes. Note that pressure 

is not recorded in the experiments, which would require invasive techniques.  The 

values of pressure for different subjects are predicted using the mechanical model (be-

low) based on the volume and shape changes measured. The patients were unaware of 

which substance was being given and the test was only considered positive when the 

patients’ usual ‘gallbladder’ pain was reproduced following CCK infusion.  

 

Figure 1 illustrates schematically the pressure and volume variation with time during 

CCK provocation test. At point 1, the sphincter of Oddi is closed (see Fig. 2), the 

gallbladder is in a fasting state, and its volume, pressure and stresses all reach their 

minimum levels. Between 1 and 2, a small but positive pressure difference between 

the liver and the gallbladder exists, which allows the hepatic bile to be secreted slowly 

into the gallbladder. During this refilling, although the gallbladder volume is increas-

ing, the pressure in gallbladder is more or less constant as the muscle relaxes. At the 

point 2, CCK is infused, which causes the gallbladder to contract. The pressure in the 

gallbladder rises rapidly up to point 3 in 3-5 minutes, and exceeds the pressure in the 

common bile duct. During this time, the sphincter of Oddi relaxes which lowers the 

pressure in the common bile duct further.  The relative pressure in the gallbladder is 

now much higher than the common bile duct, and the emptying phase takes place. For 

most of the subjects, this lasts for about half an hour. The time scale for refilling is 



usually the time lapse between two meals, and is often more than six times longer 

than emptying.  

 

2.2 Mechanical Modelling  
2.2.1 Predicting the pressure in gallbladder 

Gallbladder emptying is caused by passive and active contractions due to the relaxa-

tion of stretch and CCK stimulation.   The flow configuration in a biliary system is 

indicated in Fig. 2. During emptying, the bile flow rate out of the gallbladder, GBQ , is 

equal to the flow rate into the duct, ductQ , i.e.   

R
pp

dt
dV d−

=−  ,                                                    (1)  

where R  is the flow resistance, and dp , the pressure in duodenum, is taken to be 

about 6mmHg [19]. Assuming that the gallbladder volume change rate, /dV dt , is re-

lated to the pressure drop rate dtdp  [20],  

dt
dpC

dt
dV

=  ,                                                            (2) 

where C  is the constant compliance of the gallbladder, we have  

0=
−

+
R

pp
dt
dpC d  .                                                      (3) 

This is same as the Windkessel model for the cardio-vascular system [21]. The general 

solution of this linear ordinary differential equation is 

( )exp(( ) / )d d e ep p p p t t RC= − − − ,                                             (4) 

where ep  indicates the pressure when the gallbladder has completely emptied, which 

is chosen to be ep =11mmHg [19], and et  is the time taken for  complete emptying. 

Complete emptying here means that the gallbladder volume eV , at the end of empty-

ing is 00.3eV V= , where 0V  is the volume as the emptying begins. If a gallbladder is 

impaired, then the time taken for a complete emptying would be much longer than 

normal emptying time of about 30 minutes, i.e. its emptying will be incomplete when 

refilling starts.   

 



In general, the gallbladder compliance, C , differs from one patient to another, but, as a 

first approximation, we take the average value measured by Middelfart et al. [22] for 

human gallbladder, C =2.731 ml/mmHg. 

 

2.2.2 Gallbladder volume change and ejection fraction (EF) 

From (2), (3), and (4), we can also solve for gallbladder volume,  

( )exp(( ) / )e d eV C p p t t RC B= − −  +  ,                                               (5) 

where B  is a constant, which is determined using the clinical measurements of gall-

bladder volume at  ( )00 V,  and ( ),e et V :  

( )dee ppCVB −−=  ,                                                     (6) 

Substituting (6) into (5) we have 

0/ ln V BR t C
V B

−⎧ ⎫= ⎨ ⎬−⎩ ⎭
,                                                        (7) 

and 

( )
0 0ln / lne
e d

V B V Bt t C
C p p V B

⎡ ⎤− −⎡ ⎤= ⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎢ ⎥⎣ ⎦
 .                                                  (8) 

These measurements also allow us to calculated the gallbladder ejection fraction EF at 

30 minutes after emptying as 

0 30

0

100%V VEF
V
−

= ×  .                                                (9) 

 

2.2.3 Estimating the passive peak stresses 

In order to estimate the peak stresses in gallbladder muscle during emptying, we as-

sume that the gallbladder is an ellipsoid with a thin uniform wall thickness, GBh . The 

ellipsoid has a major axis 1D , and two minor axes, 2D  and 3D  ( 321 DDD ≥≥ ). Using 

Cartesian coordinates as shown in Fig. 3, the mid-plane surface is described by 

1

2

3

0.5 sin cos
0.5 sin sin
0.5 cos

x D
y D
z D

θ ϕ
θ ϕ
θ

=⎧
⎪ =⎨
⎪ =⎩

                                                   (10) 

where θ  and ϕ  are the two independent angular variables for a point position on the 

surface, and θ  is in the meridian plane and measured from the positive z  axis, 



[ ]πθ  ,0∈ ; whereas ϕ  is in the latitude plane, which is perpendicular to z  axis, and 

measured from the first quadrant of zx −  plane, and [ ]πϕ 2 ,0∈ . The stresses in the 

ellipsoid surface under a uniform inner fluid pressure load p  are given by [23], 
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where 311 DDk = , 322 DDk =  and F is  
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The mean wall thickness of healthy human gallbladder, GBh , is taken to be 2.5mm 

[24]. The maximum normal stress is then  

max max ,θ ϕσ σ σ⎡ ⎤= ⎣ ⎦  ,                                                 (13) 

and the peak shear stress is 

]max[max θϕττ =  .                                                    (14) 
 
To estimate the values of maxσ  and maxτ , the gallbladder domain was divided into 

200× 100 elements,  and the values of  the stresses were calculated from (11) at each 

node of the elements.   

 
2.2.4 Contribution of the active normal stress 

During emptying, the gallbladder contracts due to CCK, which induces the active 

stress. In this study, for simplicity, we will assume that all patients experience the 

same level of CCK stimulation, which induces the same peak active normal stress. 

Thus, we use a uniform response curve to CCK, estimated from experiments [25], as 

shown in Fig. 4. This curve can be interpolated using 
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where maxaσ  is  the maximum active stress taken to be 8.82 mmHg, CCKt  and dct  are 

chosen to be CCKt =1min and dct =7.5min [26]. There are no reports on active shear 

stress due to CCK.  

 

Finally, the total maximum normal stress in the gallbladder wall during the emptying 

is thus 

max max maxt aσ σ σ= +  .                                                          (16) 

 

  

  

 

3 Results 
 
The clinical data for 37 patients during emptying were provided by the Royal Hallam-

shire Hospital, Sheffield, UK. Based on these data, we have calculated various fac-

tors, summarized in Table 1.  

 

All the initial gallbladder volumes are in the range of 15-35ml, except for those of 

subjects 19 and 35, which have an initial volume of 60ml and 10ml, respectively. The 

average initial gallbladder volume is 25.3ml. The gallbladder volume change versus 

time is plotted in Fig. 5, for three typical subjects: 1, 18 and 35, which indicates, re-

spectively, poor, fair and super-emptying  behaviour.  
 

The flow resistance varies from 1.7 to 392.6 mmHg/ml/min, showing a significant 

variation across the subjects. The subjects with good emptying (large EF ) have low 

flow resistance and those with poor emptying (small EF ) usually present high resis-

tance.  In general the resistance is in the range of 20-70mmHg/ml/min.  The average 

resistance is  53.4 mmHg/ml/min, however the resistances of subjects 1, 2, 3 and 5 are 

all higher than 130 mmHg. The resistance of the cystic duct of the prairie dog is found 

to increase from 50 to 120mmHg/ml/min when its gallbladder changed from healthy 

status to that with gallstones after feeding with a cholesterol diet [29]. Thus if we can 

extend the experimental finding for prairie dogs to human, then it is likely that these 

with higher resistances indicate the unhealthy states.  



 
The maximum values of the pressure, maxp , for all subjects are given in Table 1 and 

the pressure variation with time is illustrated in Fig. 6 for subjects 1, 18 and 35. It can 

be seen that the peak pressure of most of the gallbladders, except gallbladder 19, is in 

the range of 15-20mmHg. This agrees well with physiological values [19].  The gall-

bladder  pressure of subjects 1-14, which have poor emptying, decrease more slowly 

with time.  In general, the flatness of the pressure curves seems to be associated with 

poor emptying.  In other words a gallbladder with poor-emptying is subject to a 

higher pressure for a longer period of time.  

 

The gallbladder shapes in the subject group in Table 1 can be characterized by two 

main geometric types: those (type 1) for which 2 1k > ; and those (type 2) for which 

2 1k ≈ . The peak normal stress level of first type is higher than that of second type, 

see Fig. 7  for subjects 28  ( type 1)  and 12 (type 2).   The shear stress patterns for 

these two subjects are similar, with the maximum/minimum values occurring at the 

same place: 045θ ϕ= = , but are very different from the normal stresses.  This is be-

cause the maximum value of the normal stress is much more sensitive to the geomet-

ric changes, therefore its location and value can differ significantly for different geo-

metric types.  

 

When these factors are compared with the pain information from clinical observations 

in Table 1, it shows that the direct correlations with pain of the flow resistance, shear 

stress, and EF are all rather poor.  The maximum pressure, maxp , seems to be weakly 

correlated with pain.  The most remarkable correlation, however, is found to be with 

the maximum normal stress maxtσ .  

  

In the following we consider three pain predications based on,  1) ejection fraction:  

EF < 35%, which is commonly used in clinics,  2) pressure: p >15.4mmHg  

(15.4mmHg is estimated when patients’ average EF is 35%),  and 3) maximum nor-

mal stress: *
maxtσ σ> ,   where  *σ  =200 mmHg is from an averaged value calculated 

from pressure measurement by Gaenseler [11].  The results of the predictions are 

listed in Tables 2-4.  



 

From table 3, it is clear that all predictions using maxtσ  are correct except for gall-

bladders 12, 17, 18, 20, 22 and 35, thus out of 37 cases, 30 agree with the clinical ob-

servations.  For comparison, if we use  EF < 35%  as the pain threshold, the results 

are far less positive,  with less than half agreeing with clinical data. The correlations 

of the shear stress and resistance are also poor to pain. The results from using  p>  

15.4mmHg is better than using EF, but not as good as using maxtσ . 

 

In order to see how reliable these predictions are, below we analyse these from a more 

rigorous statistical standpoint, making use of the logistic transformation (see Appen-

dix).  

 

Table 5 is the 2 × 2 contingency table for the three pain related indices, EF , maxp  and 

maxtσ , where the counts of the success and failure based on clinical observations are 

listed. The corresponding success and failure rates are also listed in the bracket. It can 

be seen that the success rates of positive (pain) and negative (no-pain) predictions us-

ing EF  is all less than 0.5.  Therefore this index has no prediction power and should 

be rejected.  

 

The success rates of the positive and negative predictions using maxp  are somewhere 

between 0.5 and 0.7.  Interestingly, the rate of its negative prediction is better than the 

positive prediction. However, for maxtσ  both (positive and negative) the success rates 

are over 0.75, with the positive (pain) prediction as high as 0.882.   

 

The 95% confidence intervals for the success rate of pain and no-pain predictions are 

shown in Table 6. The difference between the success rates of positive and negative 

predictions can be seen by using the ratio of odds from the two rows in the 2 × 2 con-

tingency table (see Table 5).  The inference for the odds ratio of positive (pain) and 

negative (no pain)  predictions is summarized in Table 7 for both maxp  and maxtσ . The 

95% confidence interval for odds ratio of success rate of positive (pain) and negative 

(no pain) prediction with maxp  is (0.60, 0.769).  i.e., using this index, the success rate 

of pain prediction is at least 23.1% less than no-pain prediction. Whilst with maxtσ  this 



is (1.373, 1.605), thus the success rate of pain prediction is 37.5% higher than no-pain 

prediction. This is important as in clinical diagnosis, the significance of a reliable 

positive prediction is much greater than the negative prediction.  Therefore we believe 

that the peak normal stress is the better pain prediction compared with the maximum 

pressure.  

 

4 Discussions 

Our study shows that the peak normal stress is a good index to use for pain prediction.   

This prediction is correct for all but seven subjects (Table 4) in all 37 cases studied.  

A reason for the seven failed cases could be that these patients have slightly lower or 

higher pain threshold levels than the standard value used.  It is also likely to be the 

simplifications introduced in the model, such as a uniform gallbladder compliance, 

and an elliptical gallbladder shape, which are used in the model for every subject, 

whereas in reality, should all be subject-dependent.  

 

It is important to realise that the peak normal stresses in gallbladder wall not only de-

pend on the pressure p , but also on its geometry, 1D , 2D  and 3D , and their relative 

ratios, see Table 1. In fact, we believe that it is through the normal stress mechanism 

that the effects from both the pressure and the geometry change come into play in 

producing pain. Additionally, it is interesting to note that a poor emptying rate (a 

lower ejection fraction) is not necessarily associated with the pain, subjects 1, 2, 3, 4, 

7, 10, 11 and 12 have all showed poor emptying, but do not experience any pain, both 

from the model prediction, or from the clinical observation. The gallbladders with su-

per emptying (a larger ejection fraction value) can also demonstrate pain, for instance, 

subjects 34 and 35. Therefore, the ejection fraction is not considered to be a good in-

dicator for pain prediction. This is important since impaired gallbladder emptying is 

still used as the clinical criterion for cholecystectomy [1]. Our study clearly suggests 

that this criterion needs to be reviewed. 

 

This is important, however, to point out that there are limitations in our current ap-

proach.  We have assumed here that the gallbladder is an ellipsoid, which is a com-

monly adopted assumption in clinical practice (e.g. in real-time Ultrasonography). 

However, this approximation can cause an error up to 10% in estimates of gallbladder 



size [32]. Our model can be improved if the gallbladder volume can be obtained more 

accurately, which may be possible with improved clinical instrumentation.  In addi-

tion, although this model has included both active and passive stresses, the active 

stress is not obtained from the smooth muscle mechanics, rather it is taken to be a 

same typical form for all subjects applied uniformly over the gallbladder wall. In 

practice, this also varies with individual subject.  There should be a range of values 

for the threshold stress at which patients can feel pain, i.e. the pain sensitivity is indi-

vidual. Using a standard value of 200 mmHg here is only an approximation. If this 

value is allowed to change between 150-200mmHg, then the success rate of our pre-

diction may be even higher (e.g. prediction for subject U may also be correct).  Fi-

nally, the number of clinical samples that we have able to use over the last few years 

is still relatively small, being 37 only.   For a more reliable pain prediction, more 

samples should be included.  Further and more extensive studies from our and other 

groups are clearly required.  Much greater knowledge about the smooth muscle func-

tion in the gallbladder, remodelling and growth during abnormal emptying, and the 

mechanical sensor related to the pain, as well as the individual pain threshold, are all 

required in order to understand the precise mechanism of the gallbladder pain. 

 

Having mentioned all these limitations, it is encouraging that a simple model based on 

non-invasive clinical measurement (volume changes) may be used to predict the pain 

with 88.2% positive success rate for the samples studied.   

 

5 Conclusions 
In this paper, a simple gallbladder model is developed to evaluate the correlations of 

the mechanical factors with gallbladder pain, based on clinical data for 37 patients. 

These factors include the gallbladder pressure, ejection fraction, flow resistance, shear 

stress, and peak shear and normal stresses. It is found that the peak normal stress is 

the best mechanical factor that may be used to predict the gallbladder pain. Using this 

as a pain criterion, the agreement with 37 clinical observations (for positive predic-

tion) is about 88.2%. On the other hand, it is found that, a poor emptying, the maxi-

mum pressure in gallbladder, the peak shear stress, and the flow resistance, do not 

correlate directly with pain.  This is because the normal stress in gallbladder wall de-

pends not only on the gallbladder pressure (i.e. flow resistance), but also on the gall-



bladder geometry. Although this is simple model and has only been tested for 37 pa-

tients, its simplicity, and the fact that it requires the minimum clinical data, makes it a 

promising potential as one of the routine clinical diagnostic methods. 
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Appendix:  Logistic transformation [36][37] 
  

From elementary statistics, we know that if we have a sample from a normal distribu-

tion with known variance σ2, a 95% confidence interval for the mean μ is [37] 

n
x σ96.1±  .                                                      (A1)  

The quantity σ/√n is called the standard error; it measures the variability of the sample 

mean x  about the true mean μ. The number 1.96 comes from a table of the standard 

normal distribution; the area under the standard normal density curve between −1.96 

and 1.96 is 95%.  

 

The confidence interval (A1) is valid because over repeated samples the estimate x  is 

normally distributed about the true value μ with a standard deviation of nσ . 

 

When the sample size is small, we may be able to improve the quality of the approxi-

mation by applying a suitable reparameterization, a transformation of the parameter to 

a new scale.  The “logistic” or “logit” transformation is such a transformation, defined 

as 
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Here 10 ≤≤ p  and −∞<<−∞ φ . Solving (A2) for p  produces the back-transformation, 
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Table A shows a 2 × 2 contingency table for the two variables A and B, with sample 

sizes n1 (success) and n2 (failure), and B with sample sizes n3 (success) and n4 (fail-

ure), respectively.  We want to determine the endpoints of 95% confidence interval 

for success rates 1p  and 2p  as well as to compare them. The success rates are calcu-

lated from 
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The endpoints of the 95% confidence intervals for success rate 1p are 
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The endpoints of 95% confidence interval for success rate 2p  (variable B) are 
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Table A  2 × 2 contingency table for the variables A and B 

Variable Success Failure Sample size 

A 1n ( 1p ) 2n ( 11 p− ) 21 nn +  

B 3n ( 2p ) 4n (1- 2p ) 43 nn +  



The difference between success rate of A and B can be distinguished by using the ra-

tio of odds from the two rows in Table 1. The asymptotic standard error of two sam-

ples is [36] 
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and the ratio of odds from two samples is [36] 
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The endpoints of 95% confidence interval for the ratio of odds are [36] 

σθθ 96.1−= elow  ,                                            (A12) 

and 

σθθ 96.1+= ehigh  .                                           (A13) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Diagrammatic representation of gallbladder refilling and 
emptying. Refilling starts at point 1 and stops at point 2. Empty-
ing begins at point 2 and lasts until point 4, when the next refill-
ing starts. Note ft  is the refilling time, and et  is the emptying 
time, ef tt 6≈ . 
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Fig. 2  Bile flows into the duo-
denum from the gallbladder 
through the cystic and common 
bile ducts due to the pressure 
difference dpp − .  
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Fig. 3  Gallbladder shape is assumed to be ellipsoidal during empty-
ing, the major axis length is 1D , the minor axes length are 2D , and 

3D  ( 1D > 2D ≥ 3D ), the gallbladder is subjected to a uniform internal 
pressure. The stress due to this pressure at a point P has three com-
ponents: θσ (meridian), ϕσ (latitude), and θϕτ (in surface). 
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Fig. 4  Gallbladder response curve to CCK [26]. CCKt  is the CCK 
response time, and dct  is the CCK decaying time, and maxaσ  the 
peak active stress. 
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Fig. 5  Gallbladder volume variation with time during emptying 
for 3 typical subjects. The symbols are the experimental data 
and the solid curves are from (5). 
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Fig. 6  The pressure variation with time emptying for subjects 1, 18, and 37, 
respectively.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

X Y

Z

160
150
140
130
120
110
100
90
80
70
60

σθ(mmHg)

GB 12

X Y

Z

120
110
100
90
80
70
60
50
40

σθ(mmHg)

GB 28

 
 

X Y

Z

200
180
160
140
120
100
80
60
40
20
0

-20
-40

σϕ(mmHg)

GB 12

 

X Y

Z
120
110
100
90
80
70
60
50
40
30
20
10

σϕ(mmHg)

GB 28

 
 

X Y

Z 80
70
60
50
40
30
20
10
0

-10
-20
-30
-40
-50
-60
-70
-80

τθϕ(mmHg)

GB 12

 

X Y

Z 80
70
60
50
40
30
20
10
0

-10
-20
-30
-40
-50
-60
-70
-80

τθϕ(mmHg)

GB 28
 

12 >k  12 ≈k  
 
 
Fig. 7  The stresses contours on the gallbladder wall at the strat of emptying for sub-
jects 12 (left)  and 28 (right). The top frame is the principal stress θσ , the middle 
frame is the principal stress, ϕσ , and the bottom one is the shear stress θϕτ . 

Table 1  Major parameters of gallbladder during the emptying 

GB 0V  
(ml) 

t  
(min) 

EF  
 (%) R  1D (mm), 1k , 2k  maxp  

(mmHg)
maxtσ  

(mmHg) 
maxτ  

(mmHg) 
Clinical 

observation
1 16.6 15 4.2 392.6 54.1,2.31,1.07 15.2 92.9 52.9 No pain 
2 33.0 20 5.5 217.6 59.7,2.01,1.19 19.4 142.7 54.7 No pain 
3 25.5 22 9.7 134.1 72.2,2.81,1.02 17.5 130.7 94.4 No pain 
4 36.8 27 12.2 90.7 64.9,2.01,1.04 20.4 141.6 81.8 No pain



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Table 2   Gallbladder pain prediction by using bile ejection fraction (EF) 

GB EF (%) Pain prediction Clinical observation Agreement 
1 4.2 Positive Negative No 
2 5.5 Positive Negative No 
3 9.7 Positive Negative No 
4 12 2 Positive Negative No



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Gallbladder pain prediction by using the peak pressure 

GB maxp (mmHg) Pain pre-
dicted Clinical observation Agreement 

35 13.6 Negative Positive No 
16 14.2 Negative Negative Yes 
5 14.4 Negative Positive No 
21 15.0 Negative Negative Yes 
1 15.2 Negative Negative Yes 
10 15.3 Negative Negative Yes 
18 15.4 Positive Positive Yes 
32 15.7 Positive Negative No 
34 15.9 Positive Positive Yes 
13 16.2 Positive Positive Yes 
6 16.4 Positive Positive Yes 
14 16.5 Positive Positive Yes 
31 16.5 Positive Positive Yes 
12 16.6 Positive Negative No 
17 16.6 Positive Positive Yes 
27 16.9 Positive Positive Yes 
9 17.1 Positive Positive Yes 
36 17.1 Positive Negative No 
20 17.2 Positive Positive Yes 
29 17.2 Positive Negative No 
3 17.5 Positive Negative No 
33 17.6 Positive Negative No 
28 17.7 Positive Negative No 
37 17.7 Positive Negative No 
30 17.8 Positive Positive Yes 
24 18.3 Positive Negative No 
15 18.4 Positive Positive Yes 
26 18.7 Positive Positive Yes 
7 18.9 Positive Negative No 
2 19.4 Positive Negative No 
22 19.5 Positive Positive Yes 
8 19.6 Positive Positive Yes 
23 19.7 Positive Positive Yes 
11 20.3 Positive Negative No 
4 20.4 Positive Negative No 
25 22.0 Positive Positive Yes 
19 26.3 Positive Positive Yes 

  

Table 4  Pain predictions by using the peak normal stress  

GB maxtσ  (mmHg) Pain predicted Clinical observation  Agreement 
21 82.9 Negative Negative Yes 
16 85.7 Negative Negative Yes 
1 92.9 Negative Negative Yes 
18 95 1 N i P i i N



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6  95% confidence intervals of the success rate of positive (pain) and 
negative (no-pain) prediction 

Variable Success rate of positive(pain)  
and negative(no-pain) prediction Confidence interval 

0.438 (0.225, 0.677) 
EF  

0.381 (0.203, 0.598) 
0.581 (0.405, 0.739) 

maxp  
0.667 (0.268, 0.916) 
0.882 (0.631, 0.970) 

maxtσ  
0.75 (0.522, 0.892) 

 

Table 5  Counts, success rate of positive (pain) and negative (no-pain) prediction by 
using the five indices 

Variable Prediction Success Failure Sample size 
Positive (pain) 7(0.438) 9(0.562) 16 

EF  
Negative (no pain) 8(0.381) 13(0.619 21 

Positive (pain) 18(0.581) 13(0.219) 31 
maxp  

Negative (no pain) 4(0.667) 2(0.333) 6 
Positive (pain) 15(0.882) 2(0.118) 17 

maxtσ  
Negative (no pain) 15(0.75) 5(0.25) 20 

 

Table 7  Inference for the odds ratio of positive (pain) and negative(no pain) 
prediction 

Variable Odds ratio 
of sample 

Asymptotic standard 
error of sample 

95% confidence interval 
for odds ratio with nor-

mal distribution 
maxp  -0.386 -0.063 (0.60, 0.769) 
maxtσ  0.396 -0.0395 (1.375, 1.605) 
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