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A general reformulation of the Reynolds stresses created by two-dimensional waves
breaking a translational or a rotational invariance is described. This reformulation em-
phasizes the importance of a geometrical factor: the slope of the separatrices of the
wave flow. Its physical relevance is illustrated by two model systems: waves destabiliz-
ing open shear flows; and thermal Rossby waves in spherical shell convection with
rotation. In the case of shear-flow waves, a new expression of the Reynolds–Orr ampli-
fication mechanism is obtained, and a good understanding of the form of the mean
pressure and velocity fields created by weakly nonlinear waves is gained. In the case
of thermal Rossby waves, results of a three-dimensional code using no-slip boundary
conditions are presented in the nonlinear regime, and compared with those of a
two-dimensional quasi-geostrophic model. A semi-quantitative agreement is obtained
on the flow amplitudes, but discrepancies are observed concerning the nonlinear
frequency shifts. With the quasi-geostrophic model we also revisit a geometrical
formula proposed by Zhang to interpret the form of the zonal flow created by the
waves, and explore the very low Ekman-number regime. A change in the nature of
the wave bifurcation, from supercritical to subcritical, is found.

1. Introduction
In hydrodynamic stability theory and turbulence modelling, it is natural and

customary to separate the velocity field into a mean flow V and a fluctuating part
v. In the Navier–Stokes equation for V , the nonlinear term expressing the feedback
of the fluctuating flow onto the mean flow is usually written as the divergence of the
Reynolds stress tensor

τ = −〈v ⊗ v〉, (1.1)

where the angle brackets indicate a suitable averaging. A good understanding or
modelling of τ is therefore required to explain the form of the mean flow, and other
mean properties of the flow, such as the flow rate and head losses, in the case of
an open system for instance. The tensor τ is also quite important for energy since
in purely hydrodynamical systems its contraction with the mean strain rate tensor is
the only possible source of growth of the fluctuating kinetic energy, as shown in a
landmark paper by Reynolds (1895) (more recent references are, e.g. Huerre & Rossi
1998; Schmid & Henningson 2001). It is therefore of interest to develop a physical
understanding of the link between the form of the fluctuating velocity field v and the
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form of the Reynolds stress tensor τ , and to go beyond the tautological interpretation
of τij = −〈vivj 〉 as a correlation between vi and vj .

One attempt to develop such understanding was made by Busse (1983) in the case of
a fluctuating field corresponding to a columnar quasi-two-dimensional wave. He noted
in his § 3 (see also his figure 3), a link between the variations of the ‘phase function’
of the wave and the relevant cross-diagonal Reynolds stress, which was revisited by
Zhang (1992). The reformulation proposed by Zhang for the Reynolds stress, however,
is limited to a special form of the streamfunction. In the somewhat more general case
of a two-dimensional, x, y, fluctuating field, Pedlosky (1987) established (§ 7.3, p. 502)
a link between the product vxvy that controls the most important Reynolds stress, i.e.
the cross-diagonal stress τxy , and the slope of the streamlines of v. Pedlosky offered
no simple formula for the average 〈vxvy〉, however.

The primary aim of this paper is to complement these pioneering works by
proposing, in the framework of hydrodynamic stability theory, a general reformulation
of the Reynolds stresses created by pure two-dimensional waves.

A first version of our Reynolds-stress reformulation was given implicitly in Plaut &
Busse (2002) (§ 4.2; figure 5) and more explicitly in Plaut & Busse (2005) (§§ 7 and
8; figures 10 and 11). In both cases ‘Cartesian’ quasi-geostrophic (QG) models of
rotating convection in a closed container were studied: a small-gap approximation
was used to unfold the natural annular geometry of the systems. Here, we wish to
demonstrate applications of the Reynolds-stress reformulation to a quite different
family of Cartesian systems, i.e. open shear flows. In § 2, we will obtain a geometric
reformulation of the power injected by a basic shear flow into a wavy perturbation,
which will allow an accurate analysis of the Reynolds–Orr amplification mechanism.
We shall also revisit the results of Reynolds & Potter (1967) concerning the
transition to Tollmien–Schlichting waves in plane channel flow, and show that a
better understanding of various properties of this shear-flow instability is gained.
Incidentally, the method used here to obtain the Reynolds-stress reformulation offers
an interpretation of the argument of the complex wave-streamfunction, or ‘phase
function’; this will be illustrated by a brief study of Kelvin–Helmholtz waves.

The extension of the Reynolds-stress reformulation to the case of a ‘cylindrical’
axisymmetric system, i.e. in the presence of curvature effects, is also of interest. It
will be given in § 3, where we will focus on the thermal Rossby waves that appear as
convection instabilities in a rotating spherical shell, used as a model for the liquid cores
of terrestrial planets. Our approach relies on the use of a simplified two-dimensional
QG convection model which has to be solved in the equatorial annulus (figure 5a).
This model is similar to those developed by Aubert, Gillet & Cardin (2003), Morin
& Dormy (2004, 2006), Cole (2004), Gillet & Jones (2006) and Gillet et al. (2007).
Whereas systematic comparisons with corresponding experiments have been given in
this latter paper, systematic comparisons of these QG models with realistic three-
dimensional numerical models, such as Simitev & Busse (2003), have been confined to
the linear regime (Aubert et al. 2003; Cole 2004; Gillet et al. 2007). In order to fill this
gap, we will present new ‘benchmarking’ results from the three-dimensional code of
Tilgner & Busse (1997) and Simitev & Busse (2003). These results represent the first
complete set of data concerning weakly nonlinear waves in a spherical shell convection
model with no-slip boundary conditions. (To our knowledge the only published data
concerning mean flows for instance, which appear to be an important feature of
nonlinear thermal Rossby waves, in a spherical shell convection model with no-slip
boundary conditions are those of Aurnou & Olson (2001). The Rayleigh number
used by these authors was roughly six times critical.) Thus, a systematic comparison
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between the three- and two-dimensional models will be performed. This comparison,
which ‘validates’ the two-dimensional QG model as far as the flow amplitudes are
concerned, is of interest by itself in the field of geophysical fluid dynamics. It will
also demonstrate the relevance of our geometrical analysis for a three-dimensional
problem. Finally, a study of the QG model at very low Ekman number, where the
three-dimensional codes cannot operate because of numerical difficulties, will show a
transition to a subcritical regime. This result confirms a conjecture by Proctor (1994)
inspired by Soward (1977), and complements Cole (2004).

2. Case of waves breaking a translational invariance
2.1. ‘Cartesian’ framework and model systems

We consider a pure two-dimensional wave breaking the translational invariance, in the
x-direction, of a basic flow V0(y) = U0(y)ex of an incompressible fluid. Because of this
assumption, the velocity field of the wave can be written in term of a streamfunction,

v = Av1 + c.c. (2.1a)

with

v1 = (∂yψ1)ex − (∂xψ1)ey, ψ1 = Ψ1(y) exp[i(qx − ωt)]. (2.1b)

In this equation, A is a (small) complex amplitude, Ψ1(y) the complex wave stream-
function, q the wavenumber, ω the wave angular-frequency. Whenever the wave
appears through a bifurcation, i.e. when a reduced control parameter ε goes through
0, a weakly nonlinear analysis can be performed. It yields a sharper model of the
velocity field

u = V0 + (Av1 + c.c.) + |A|2V2 + (A2v2 + c.c.). (2.2)

There, the corrections of order A2,

V2 = U2(y)ex, (2.3)

v2 = (∂yψ2)ex − (∂xψ2)ey with ψ2 = Ψ̃2(y) exp[2i(qx − ωt)], (2.4)

are calculated by a quasi-static elimination. The Reynolds stresses generated by the
linear wave (2.1) feed the mean-flow correction V2(y) and the associated pressure field
P2(x, y), as will be discussed in §§ 2.2 and 2.3. The amplitude A can be calculated
by pushing further the weakly nonlinear analysis, to obtain at order A3 the Landau
equation

τ0dA/dt = ε(1 + ic0)A − g(1 + ic1)|A|2A, (2.5)

with the characteristic time τ0, the saturation coefficient g, and the linear (resp.
nonlinear) frequency-shift coefficient c0 (resp. c1).

The basic flow could be the Poiseuille flow U0(y) = 1−y2 or any other parallel shear
flow; in such cases Ψ1 appears as an eigenmode of the linearized vorticity equation.
An example of streamlines of a total flow V0 +v, neglecting the terms of order greater
than A2 , is shown in figure 1. We may also consider thermohydrodynamical systems,
e.g. Rayleigh–Bénard convection. In this case V0 = 0, and the corresponding rolls are
‘waves’ in a loose sense, since the angular frequency ω = 0. It is convenient to use a
dimensionless formulation. For instance for Poiseuille flow, the unit of length (resp.
velocity) is the half-channel width h (resp. the centreline velocity U ) and the Reynolds
number is Re = Uh/ν with ν the kinematic viscosity; consequently ε = Re/Rec − 1
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Figure 1. Example of a ‘Cartesian’ system to which our analysis applies: the critical Tollmien–
Schlichting wave destabilizing plane Poiseuille flow. The streamlines of the total flow V0 + v
(see (2.1) and (2.2)) are shown with the following conventions, used throughout this paper:
the continuous (resp. dashed) thin lines show levels where the streamfunction is positive (resp.
negative), whereas the thick lines show the levels where the streamfunction vanishes.

with Rec = 5772 (Reynolds & Potter 1967). In all cases, a spectral code has been used
to compute the flows.

2.2. Reformulation of the diagonal Reynolds stresses and consequences

The diagonal Reynolds stresses generated by the wave flow (2.1) can be written as

τxx = −2Ecx, τyy = −2Ecy, (2.6a)

with the longitudinal kinetic energy of the wave flow

Ecx = 1
2

〈
v2

x

〉
x

= |A|2|Ψ ′
1(y)|2, (2.6b)

and the transverse kinetic energy of the wave flow

Ecy = 1
2

〈
v2

y

〉
x

= |A|2q2|Ψ1(y)|2. (2.6c)

Hereinafter, we denote the average in directions of coordinates with angle brackets
and these coordinates as indices; ‘longitudinal’ refers to the direction of invariance of
the basic configuration, ‘transverse’ to the perpendicular direction. Thus, the modulus
of the complex streamfunction |Ψ1| defines the transverse kinetic energy, which, for
systems where no-slip boundary conditions apply and where a mid-plane mirror
symmetry under y �→ −y exists, assumes a simple form visible in figures 2(b) and
2(d ).

The Reynolds stress τyy appears in the transverse component of the mean Navier–
Stokes equation at order |A|2,

0 = −|A|2P ′
2(y) + τ ′

yy(y), (2.7a)

written here for plane channel flow, with P2(y) the y-dependent part of the correction
to the mean pressure field created by the waves (for the x-dependent part of the
pressure field at order |A|2, see § 2.3). Integration of (2.7a) yields

P2(y) = τyy(y)/|A|2 + P20 = −2Ecy/|A|2 + P20, (2.7b)

which means that τyy drives a pressure drop in the middle of the channel, as compared
with the pressure levels at the sidewalls.

2.3. Reformulation of the cross-diagonal Reynolds stress and first consequences

Contrary to the case of the diagonal Reynolds stresses τxx and τyy , it is not
straightforward to interpret the cross-diagonal Reynolds stress τxy . By definition,

τxy = − 〈vxvy〉
x

= 2q|A|2Im[Ψ ′
1(y)Ψ ∗

1 (y)], (2.8)

an equation which is usually plugged in a computer code to evaluate τxy , as was done
for instance by Reynolds & Potter (1967) in the case of plane channel flow. However,
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Figure 2. (a) Streamlines of the critical Tollmien–Schlichting wave flow v (see (2.1)). (b) Cor-
responding transverse kinetic energy Ecy . (c,d ) Same plots for the Rayleigh–Bénard convection
rolls. The grey line in (c) shows the mirror advocated in (2.11).

a physical reformulation of the Reynolds stress τxy is possible if we concentrate, first,
on the separatrices of the wave flow (2.1). These curves are the loci of the points
where the wave streamfunction vanishes,

ψ = Aψ1 + c.c. = 2|AΨ1(y)| cos{qx − ωt + arg[Ψ1(y)] + arg(A)} = 0.

They are therefore given by

x = xs(y) = −q−1 arg[Ψ1(y)] + λ/4 + nλ/2 + ct − q−1 arg(A) (2.9)

for n ∈ �, with λ= 2π/q the wavelength, c =ω/q the wave speed. The dependence on
t , which may also arise from the term arg(A), is simple, and may be neglected. Thus,
the curves xs(y) (examples of which are given by the thick lines in figures 2a and 2c)
give direct access to the argument of the complex streamfunction Ψ1(y). Combining
(2.6), (2.8) and (2.9) gives the desired formula,

τxy = −2Ecyx
′
s = τyyx

′
s, (2.10)

denoting with a prime the derivative with respect to the transverse coordinate y;
note that the slope of the separatrices x ′

s = tan α with α a ‘tilt angle’ as shown in
figure 3(a).

The presence of the factor x ′
s = −q−1d arg(Ψ1)/dy proves, in a general case, the

statement by Busse (1983) that if the phase of the wave is independent of the
transverse coordinate, no Reynolds stress arises. From a more geometrical point of
view, this means that, despite the existence of a kinetic energy, wave flows with straight
transverse separatrices, like standard convection rolls (figure 2c), have τxy = 0. It is
equivalent to having straight separatrices that the complex streamfunction Ψ1(y) has
a constant phase, i.e. that it can be chosen real, or that the wave flow (2.1) presents
the ‘transverse mirror’ symmetry property (given in detail hereinafter for the case
where A and Ψ1 are real)

x �→ 2ct − x =⇒ ψ �→ ψ, vx �→ vx, vy �→ −vy. (2.11)

On the contrary, less symmetric wave flows such as the Tollmien–Schlichting wave
flow possess sloping separatrices, at least in the boundary layers near the sidewalls
(figure 2a): they therefore generate cross-diagonal Reynolds stresses. This is because
these purely hydrodynamical waves extract their energy from the basic shear flow, as
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Figure 3. (a) Zoom on a separatrice between two cells of a Tollmien–Schlichting wave. (b)
Plots illustrating (2.10) and (2.14b): the dotted line is 10Ecy , the continuous line is the slope of
the separatrice x ′

s = tanα, the dashed line is the product 40Ecyx
′
s , indicating the profile of the

opposite of the Reynolds stress τxy . (c) Mean-flow correction U2 calculated for fixed pressure

drop with (2.14b). (d ) Mean-flow correction Ũ2 calculated for fixed flow rate with (2.16c).

shown by the Reynolds–Orr energy equation truncated at order |A|2,
d 〈Ecx + Ecy〉

y
/dt = −Re−1 〈∇(v) : ∇(v)〉xy + 〈τxy(y)U ′

0(y)〉
y
. (2.12)

The first term in the right-hand side, due to dissipation, is always negative. The second
term can be positive if regions where

τxy(y)U ′
0(y) = −2Ecy(y)x ′

s(y)U ′
0(y) > 0, i.e. x ′

s(y)U ′
0(y) < 0, (2.13)

exist and are predominant. This means, loosely speaking, that, for the wave flow to
extract energy from the basic mean flow, the separatrices must slope ‘against’ this
mean flow. In the case of plane Poiseuille flow, since U ′

0(y) > 0 (resp.< 0) for y < 0
(resp. > 0), we understand why the separatrices slope ‘backward’ (resp. ‘forward’) near
the inferior (resp. superior) sidewall, as shown in figures 2(a) and 3(a). Note that
this analysis makes more precise the interpretation given by Pedlosky (1987) of the
Reynolds–Orr amplification mechanism; for a detailed discussion see the Appendix.

Non-vanishing values of τxy do not only play a role in the mechanism of instability
of hydrodynamical waves, they also modify the mean flow at nonlinear order |A|2. This
can be seen by considering the longitudinal component of the mean Navier–Stokes
equation at this order,

0 = Re−1|A|2U ′′
2 (y) + τ ′

xy(y), (2.14a)

focusing first on the case of plane channel flow with a fixed pressure drop. This
equation can be integrated once, and because of the symmetry of U2 and τxy under
y �→ −y, we obtain

U ′
2(y) = −Reτxy(y)/|A|2 = 2ReEcy(y)x ′

s(y)/|A|2, (2.14b)

which is illustrated in figure 3(b). Because of (2.13), we have predominantly

U ′
2(y)U ′

0(y) < 0, (2.15)

i.e. the modification of the mean flow due to the waves acts against this mean
flow. This is confirmed by a further integration of (2.14b), which yields the mean-
flow profile shown in figure 3(c). This means physically that, when the transition to
Tollmien–Schlichting waves develops, the flow rate is reduced in channel flow with
a fixed pressure drop. Alternatively, fixed flow rate conditions can be imposed, i.e.
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Model g Re(G12) Re(G21) Re(g12) Re(g21)

Fixed pressure drop −3059 −5475 +1410 +5312 −4306
Fixed flow rate −3189 −5320 +1125 +5312 −4306

Table 1. Values of the Landau constant g at the bifurcation to Tollmien–Schlichting waves
in plane Poiseuille flow, and of the different terms that contribute to g (see (2.17))

a correction P̃ ′
2x to the pressure field can be introduced at order |A|2 such that the

modified mean-flow correction Ũ2 satisfies

〈Ũ2(y)〉 = 0. (2.16a)

Thus, the longitudinal component of the mean Navier–Stokes equation at order |A|2
now reads

0 = −|A|2P̃ ′
2 + Re−1|A|2Ũ ′′

2 (y) + τ ′
xy(y), (2.16b)

which, by comparison with (2.14a), gives

Ũ2(y) = U2(y) + 1
2
ReP̃ ′

2(y
2 − 1) where P̃ ′

2 = 3
2
Re−1 〈U2(y)〉y < 0. (2.16c)

The mean-flow correction Ũ2 is shown in figure 3(d ), which corresponds to figure 3(c)

of Reynolds & Potter (1967). The fact that the mean pressure gradient P̃ ′
2 given by

(2.16c) is negative indicates another generic feature of transitions (here to Tollmien–
Schlichting waves, but we may generalize) in shear flows: in a system with a fixed
flow rate, such transitions imply an increase of the head loss.

2.4. Further consequence: subcritical nature of the Tollmien–Schlichting bifurcation

It is a known numerical fact that, for the Tollmien–Schlichting critical wave
destabilizing plane Poiseuille flow, the Landau constant g in (2.5) is negative. This
happens both for fixed pressure drop (Herbert 1980) and fixed flow-rate conditions
(Reynolds & Potter 1967; Fujimura 1987). In order to show that the feedback of the
mean-flow correction V2 onto the wave plays an important role in this phenomenon,
we present a detailed study of the terms that control the value of g. Introducing
the adjoint critical streamfunction ψa = Ψa(y) exp[i(qx − ωt)] solution of equation
(3.6a) of Reynolds & Potter (1967), the notations ζ (u) = ∂x(uy) − ∂y(ux) to designate
the vorticity of a field u, the asterisk to designate the complex conjugates, and the
normalization conditions Ψ1(0) = 1, 〈ζ (v1)ψ

∗
a 〉xy = τ0 = 103.0, we have

g(1 + ic1) = G12 + G21 + g12 + g21 (2.17a)

with
G12 = 〈v1 · ∇ζ (V2) ψ∗

a 〉xy , g12 = 〈v∗
1 · ∇ζ (v2) ψ∗

a 〉xy ,

G21 = 〈V2 · ∇ζ (v1) ψ∗
a 〉xy , g21 = 〈v2 · ∇ζ (v∗

1) ψ∗
a 〉xy .

(2.17b)

The values of table 1 agree with published precise computations, g/τ0 = −a1

(Herbert) = −29.69 for fixed pressure drop, g/τ0 = −λ1r (Fujimura) = −30.96 for fixed
flow rate. Table 1 shows that the most negative term contributing to g is Re(G12).

2.5. Another canonical example: inviscid Kelvin–Helmholtz instability

The inviscid instability of the hyperbolic-tangent velocity profile

V0 = U0(y)ex = 1
2
tanh yex, (2.18)
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Figure 4. Most-amplified Kelvin–Helmholtz wave destabilizing the shear-layer profile (2.18).
(a) Streamlines of the total flow V0 + v, with a wave-amplitude A =0.1. (b) The same, but
with a larger wave amplitude A =1. (c) Streamlines of the wave flow v1 alone, i.e. ‘A = ∞’.
(d ) Kinetic energy Ecy (dotted line), slope x ′

s (continuous line) and Reynolds stress τxy (dashed
line).

has been studied in a seminal paper by Michalke (1964), who showed that, in agree-
ment with the Fjørtoft’s criterion, this shear flow is unstable vs. Kelvin–Helmholtz
waves. Michalke (1964) shows in his figures 4 and 5 the real and imaginary parts of
the complex wave-streamfunction Ψ1(y); from these graphs we can deduce that, for
the most-amplified mode (of wavenumber q = 0.4446),

arg[Ψ1(y)] = arctan{Im[Ψ1(y)]/Re[Ψ1(y)]}

is an increasing phase function of y for small |y|. This means, according to our (2.9),
that the separatrices xs(y) of the corresponding wave slope backward in the shear
layer, a result that we could also deduce from the criterion (2.13). By use of the
result of the Appendix, we expect that, on average, the streamlines of the total flow
V0 +v slope backward. Yet, in the corresponding figure 7 (top) of Michalke (1964), on
average the streamlines slope forward. By reproducing the computations of Michalke
(1964), we have found that the correct plot of the total-flow streamlines is as shown in
our figure 4(a). (Otherwise we agree completely with Michalke. A figure similar to our
figure 4(a) has been published by Corcos & Sherman (1984), who, however, studied
a slightly different basic flow.) We have complemented it with figures 4(b) and (c) to
illustrate our reasoning, and show explicitly the form of the separatrices xs(y) in this
case. In addition, figure 4(d ) displays a Reynolds-stress profile that can be understood
from (2.10), and that is quite close to that obtained in mixing-layer experiments, as
shown, for instance, in the first plot of figure 20 of Ho & Huerre (1984).

3. Case of waves breaking a rotational invariance
In contrast to § 2, we start here by exhibiting a three-dimensional physical problem

where a wave breaks the rotational invariance around the axis Oz of a basic flow state



Reynolds stresses and mean fields generated by pure waves 311

O

(a) (b) (c) (d) (e)

z

z

r

Ω

Ω

α α
Ωϕ

Figure 5. (a) Example of a ‘cylindrical’ system to which our analysis applies: the convection of
a fluid contained between an inner sphere of radius ri and an outer sphere of radius ro. The
solid rotation of these spheres around the axis Oz imposes, because of the Proudman–
Taylor constraint, the cylindrical character of the flow. Thus, the QG model considers
z-averaged fields defined in the (grey) equatorial annulus. (b) In this annulus, for E =2 × 10−5,
ε = Ra/Rac − 1 = 0.01, radial velocity vr of the saturated critical wave computed with the
three-dimensional code. (c) In a meridional cut, maximal values of vr with respect to ϕ, i.e.
2|U1| with U1 the radial component of V1 in (3.1a). (d ) In a meridional cut, azimuthal mean
flow V generated by this wave. (e) In the equatorial annulus, radial velocity vr of the saturated
critical wave computed with the two-dimensional QG model for the same parameters. Contour
steps are 1 for vr in (b), (c) and (e), 0.025 for V in (d ). The sectors in (b) and (e) show tilt
angles α (3.18) at the critical radii.

V0(r, z), and return only afterwards to the general two-dimensional framework for the
study of Reynolds stresses. The triplet (r, ϕ, z) designates cylindrical coordinates.

3.1. Original model system: convection in a rotating spherical shell

Convection in a rotating spherical shell (figure 5a) is used as a model for convection
in planets or stars (Busse 2002). Here, we consider standard Boussinesq models as
defined for instance in Simitev & Busse (2003): the fluid has a constant coefficient
of thermal expansion a, kinematic (thermal) diffusivity ν (κ). For simplicity, we
focus on a single heating mode, for which asymptotic linear theories are available
both for the three-dimensional model introduced here and for the reduced model
introduced in the next subsection. We assume that internal heat sources exist in the
fluid, which create a basic temperature gradient ∇Tb = −bx with x the position vector
with respect to the centre of the sphere. In the representative case of a Prandtl number
P = ν/κ = 1 and of a fixed radius ratio η = ri/ro = 0.35, the model depends on two
control parameters: the Ekman number E = ν/(Ωd2) with Ω the angular velocity of
the spheres, d = ro − ri the shell size, and the Rayleigh number Ra = abcd6/(νκ), with
c the coefficient defining the gravity field −cx (Ra is denoted by Ri in Simitev &
Busse 2003). Note that the values of the Ekman number are expected to be small in
planets. When Ra exceeds a critical value that increases with decreasing E, the basic
conductive state, which corresponds to a velocity field V0 = 0 in the rotating frame,
loses its stability against a progradely travelling thermal Rossby wave of velocity
field

u = v = V1(r, z) exp[i(mϕ − ωt)] + c.c. (3.1a)

and temperature perturbation field

θ = T − Tb = Θ1(r, z) exp[i(mϕ − ωt)] + c.c. (3.1b)
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where m ∈ �∗ is the wavenumber, ω ∈ �+∗ the wave angular frequency. Such a wave
(figure 5b) does break the rotational symmetry of the basic flow. For a theoretical
study of this linear instability, and a global asymptotic analysis of its form as E → 0,
where one observes that V1(r, z), Θ1(r, z) localize around a critical radius rc (figure 5c),
see Jones, Soward & Mussa (2000) and Dormy et al. (2004). Through nonlinear
effects, a wave of the form (3.1) generates naturally harmonic waves of wavenumbers
±2m, ±3m, . . ., but also a mean or ‘zonal’ flow of zero wavenumber (figure 5d ). These
waves have attracted attention because, in the presence of magnetohydrodynamical
effects, they may be subject to a secondary dynamo instability leading to a self-
sustained magnetic field showing similarities with certain planetary fields (see e.g.
Busse 2002; Simitev & Busse 2005); in particular, their zonal flow plays an
important role in the dynamo mechanisms (Kageyama & Sato 1997). Note also
that the bifurcation to the thermal Rossby waves is generally supercritical (Tilgner &
Busse 1997), but that the possibility that it becomes subcritical for E � 1 has been
suspected from the results of Soward (1977), see Proctor (1994). Indeed, Soward (1977)
constructed nonlinear convection solutions at a Rayleigh number asymptotically close
to the critical value predicted by the local asymptotic theory (of Busse 1970), which he
also showed to be significantly smaller than the correct critical value (given precisely
later, in the limit of focus E → 0, by the global theory of Jones et al. 2000). Whereas
many numerical studies of nonlinear convection have been realized with models
assuming stress-free boundary conditions at the inner and outer spheres (e.g. Tilgner
& Busse 1997; Christensen 2002; Simitev & Busse 2003), we prefer to focus here on
models with no-slip boundary conditions, which are probably more realistic as far
as cores of terrestrial planets are concerned. Another advantage of these models is
that the mean flow is fully determined by the Navier–Stokes equation, whereas in
the stress-free models, for pure waves the Navier–Stokes equation defines the mean
flow up to a solid-body rotation component only: another model equation is required
(e.g. angular momentum conservation) to determine this component, i.e. the frame
of reference. A drawback of the no-slip models, however, is that their resolution
is computationally more demanding because very thin Ekman layers have to be
computed. Therefore they have scarcely been studied in the nonlinear regime. We
should mention Aurnou & Olson (2001) and Christensen et al. (2001) case 0, but
these authors considered another heating mode without heat sources in the fluid. The
lack of data concerning thermal Rossby waves near onset in internal heating models
with no-slip boundary conditions has motivated us to use the code of Simitev &
Busse (2003) to obtain new quantitative results.

3.2. Reduced quasi-geostrophic model – general ‘cylindrical’ framework

The zonal flows obtained numerically, such as the one in figure 5(d ), are difficult to
explain mechanistically, because of the intrinsic complexity of the three-dimensional
model. Fortunately, simpler two-dimensional models can be developed because, for
E � 1, the Proudman–Taylor constraint imposes a ‘columnar form’ on the wave flows.
These QG models rely on an axial averaging, along z, of the fields and equations, see
e.g. Busse (1970), Busse & Hood (1982), Busse & Or (1986) and the papers cited § 1.
We present here a QG model different from those studied in Plaut & Busse (2002);
Plaut & Busse (2005) because we relax the small-gap approximation and include
Ekman pumping effects in a more systematic way.

For a detailed presentation of the three-dimensional model, see Simitev & Busse
(2003), and for details on the calculation of the Ekman pumping terms, see Aubert
et al. (2003), Schaeffer & Cardin (2005), Gillet & Jones (2006). Below, we use d as



Reynolds stresses and mean fields generated by pure waves 313

unit of length, d2/ν as unit of time and ν2/(acd4) as unit of temperature. Assuming
that essentially the flow takes place outside of the tangent cylinder, i.e. for r ∈ [ri, ro],
we consider in the QG model that ur, uϕ, ∂zuz and θ do not depend on z in the bulk
of the fluid, outside of the thin boundary layers (Gillet & Jones 2006). The expres-
sion for the Ekman pumping flow through the layer at z = H =

√
r2
o − r2 gives the

boundary condition for the bulk flow

rur + Huz(z = H ) = 1
2
E1/2r1/2

o H 1/2FE(u) (3.2a)

with

FE(u) = −ζ (u) + rH −2(∂ϕur ) − 1
2
rH −2uϕ − 5

2
rorH

−3ur, (3.2b)

ζ (u) = r−1[∂r (ruϕ) − ∂ϕur ] the axial vorticity. (3.2c)

Therefore, in the bulk of the fluid,

uz = −rzH −2ur + 1
2
zr1/2

o H −3/2E1/2FE(u). (3.3)

Taking the axial average of the axial component of the curl of the Navier–Stokes
equation (1a) of Simitev & Busse (2003), using (3.3) to express the Coriolis term,
and assuming the simplest approximation for the nonlinear terms, we obtain the QG
vorticity equation

∂tζ (u) + u · ∇ζ (u) + 2E−1H −2rur = �ζ (u) − ∂ϕθ + fEFE(u), (3.4a)

with fE = E−1/2r1/2
o H −3/2 the first Ekman pumping coefficient. Similarly, the axial

average of the heat equation (1c) of Simitev & Busse (2003) (with the Prandtl number
P = 1),

∂tθ + u · ∇θ = �θ + Ra(rur + zuz),

yields, because of (3.3),

∂tθ + u · ∇θ = �θ + 2
3
Rarur + 1

6
RagEFE(u), (3.4b)

with gE = E1/2r1/2
o H 1/2 the second Ekman pumping coefficient. In order to avoid the

creation of an unphysical mean pressure gradient in the annulus (see e.g. Plaut &
Busse 2002; Plaut 2003), (3.4a) has to be supplemented by the mean component of
the azimuthal Navier–Stokes equation,

∂tV = �V − r−2V − fEV + ∂rτrϕ + 2r−1τrϕ, (3.5)

where V = 〈uϕ〉
ϕ
. In (3.5), we also take into account Ekman pumping effects, and the

Reynolds stress is τrϕ = − 〈uruϕ〉
ϕ
. In accordance with the assumptions made for the

three-dimensional model, we consider no-slip isothermal boundaries,

ur = uϕ = θ = 0 at r = ri, ro. (3.6)

Cole (2004) studied a similar model, but with stress-free boundary conditions, and
hence no Ekman pumping terms (fE = gE =0). Morin & Dormy (2004) used no-slip
boundary conditions, but neglected all Ekman pumping terms (fE = gE = 0), whereas
Morin & Dormy (2006) studied the influence of the Ekman pumping effects on the
mean flow (i.e. they considered that fE = 0 in (3.5) only; note that their Ekman
pumping coefficient is too small by a factor

√
2). Furthermore, the heat equations

of the QG models of both Cole and Morin & Dormy take into account only a
convection term of the form Rarur but omit effects of convection in the z-direction,
which generate, because of (3.3), the terms −(1/3)Rarur + (1/6)RagEFE(u) in (3.4b).



314 E. Plaut, Y. Lebranchu, R. Simitev and F. H. Busse

A linear stability analysis of the conductive solution u = 0 and θ =0 of (3.4) and
(3.5) can be performed with normal modes that assume the form of pure waves,

u = v = Av1 + c.c. (3.7a)

where

v1 = r−1(∂ϕψ1)er − (∂rψ1)eϕ, ψ1 = Ψ1(r) exp[i(mϕ − ωt)], (3.7b)

and

θ = Aθ1 + c.c. where θ1 = Θ1(r) exp[i(mϕ − ωt)]. (3.8)

Before discussing the results of this analysis, we present the general form of the
weakly nonlinear waves. Their velocity field is given by

u = (Av1 + c.c.) + |A|2V2 + (A2v2 + c.c.) (3.9)

where

V2(r) = V2(r)eϕ (3.10)

is the mean or ‘zonal’ flow, calculated by solving a quasi-static version of (3.5) at
order |A|2, and where

v2 = r−1(∂ϕψ2)er − (∂rψ2)eϕ with ψ2 = Ψ̃2(r) exp[2i(mϕ − ωt)] (3.11)

is the harmonic flow, calculated by solving a quasi-static version of (3.4) at order
A2, identifying the terms proportional to A2 exp[2i(mϕ − ωt)]. Accordingly, the
temperature deviation of weakly nonlinear waves is

θ = (Aθ1 + c.c.) + |A|2Θ2 + (A2θ2 + c.c.) (3.12a)

where

Θ2 = Θ2(r), θ2 = Θ̃2(r) exp[2i(mϕ − ωt)]. (3.12b)

At order A3, a computation of the nonlinear terms of wavenumber m in (3.4) yields,
after projection onto the adjoint critical mode, the nonlinear part of the Landau
equation for the wave-amplitude (2.5), where now ε = Ra/Rac − 1.

3.3. Linear spiralling waves in rotating convection – geometry and ‘tilt angle’

The resolution of the linearized version of (3.4), accomplished numerically with a spec-
tral method, yields the critical parameters Rac, mc, ωc and the critical mode at the
bifurcation from the basic conduction state to thermal Rossby waves. A comparison
with the three-dimensional results is shown in table 2, which also recalls the predictions
of the global asymptotic theories available for the three-dimensional (Jones et al.
2000) and two-dimensional QG (Cole 2004) models in the limit of vanishing Ekman
numbers; the values of the Rayleigh number given by the later theory have been
divided by 2/3 (compare our equation (3.4b) with the equation (2.35) of Cole 2004).
A semi-quantitative agreement is obtained between the three-dimensional and QG
models if E = 2 × 10−5, with critical quantities that differ by less than 22%. Because of
a lack of computing power, no three-dimensional data are available for E < 2 × 10−5,
but the asymptotic regime is approached at E = 2 × 10−5 with critical parameters
(Rac, mc, ωc) that differ by less than (6, 4, 31)% from the values predicted by Jones
et al. (2000). On the contrary, QG results are available down to E = 2 × 10−7, and
it can be noted that an asymptotic regime is attained if E � 2 × 10−5, with critical
parameters (Rac, mc, ωc) that differ by less than (7, 4, 17)% from the values predicted
by Cole (2004).
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E/2 E4/3Ra3D
c E4/3Ra2D

c Ra2D
c /Ra3D

c E1/3m3D
c E1/3m2D

c m2D
c /m3D

c

10−3 3.981 3.386 0.85 0.5040 0.5040 1.00
10−4 2.860 2.328 0.81 0.5263 0.4678 0.89
10−5 2.621 2.060 0.79 0.4886 0.4343 0.89
10−6 1.987 0.4158
10−7 1.955 0.4269
10−∞ 2.468 1.920 0.78 0.5086 0.4328 0.85

E/2 E2/3ω3D
c E2/3ω2D

c ω2D
c /ω3D

c

10−3 0.2317 0.3814 1.65
10−4 0.3688 0.4854 1.32
10−5 0.4305 0.5233 1.22
10−6 0.5468
10−7 0.5778
10−∞ 0.5616 0.6301 1.12

Table 2. Rescaled linear critical properties of the three-dimensional (3D) and QG two-
dimensional (2D) models. The scaling laws and the results for E = 10−∞ correspond to the
asymptotic predictions of Jones et al. (2000) and Cole (2004) valid in the limit E → 0.

The form of the two-dimensional waves itself is close to the form of the three-
dimensional waves, as is shown by the comparison between figures 5(b) and (e).
On the basis of similar three-dimensional results (but with stress-free boundary
conditions), and following a suggestion by Busse & Carrigan (1983), Zhang (1992)
named quite appropriately such waves ‘spiralling’ waves. More precisely, he proposed
in his introduction a simple model for the velocity field of such waves, in the spirit of
the QG approximation. Applying an axial average to the three-dimensional velocity
field of a pure thermal Rossby wave, one can in fact prove, by use of the solenoidal
character of the field, that there exists a streamfunction ψ such that

〈v〉z = r−1(∂ϕψ)er − (∂rψ)eϕ. (3.13)

Thus, assuming that v � 〈v〉z, we recover the first equation of Zhang (1992), which
appears to be quite relevant. On the contrary, the form of streamfunction that he
proposes in his second equation is rather restrictive, whereas it is surely general to
use (3.7),

ψ = 2|AΨ1(r)| cos{m[ϕ − Φ(r)] − ωt + arg(A)} (3.14)

where

Φ(r) = −m−1 arg[Ψ1(r)] (3.15)

is the function generalizing Zhang’s ‘phase function’. This function controls both the
form of the separatrices ψ = 0, given by

ϕ = ϕs(r) = Φ(r) + Λ/4 + nΛ/2 + Ct − m−1 arg(A), (3.16)

with n ∈ �, Λ = 2π/m the angular wavelength, C = ω/m the angular wave-speed, and
the form of the isolines vr = 0, given by

ϕ = Φ(r) + nΛ/2 + Ct − m−1 arg(A) = ϕs(r) − Λ/4, (3.17)

at least within the framework of the model (3.13), i.e. assuming vr � 〈vr〉z = r−1(∂ϕψ)
in the three-dimensional case. Clearly, spiralling waves are such that the phase function
(3.15) varies significantly when r increases from ri to ro, i.e. such that the ‘inclination’
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E/2 r3D
c /ro r2D

c /ro r2D
c /r3D

c α3D (deg.) α2D (deg.) α2D/α3D

10−3 0.577 0.609 1.06 17.2 11.7 0.68
10−4 0.601 0.563 0.94 19.5 15.5 0.79
10−5 0.578 0.531 0.92 23.0 20.8 0.91
10−6 0.521 26.8
10−7 0.532 30.9
10−∞ 0.592 0.554 0.94 34.2 38.3 1.12

Table 3. Comparison between the critical radii and the corresponding tilt angles (3.18) at
onset predicted by the three-dimensional and QG two-dimensional models. The results for
E =10−∞ correspond to the asymptotic predictions of Jones et al. (2000) and Cole (2004).

or ‘tilt’ angle,

α = arctan rϕ′
s(r) = arctan rΦ ′(r), (3.18)

is of order unity. Tilt angles at the ‘critical radius’ rc where vr is maximum (in the
three-dimensional case these quantities have been measured in the equatorial plane)
are shown in figures 5(b) and (d ). Table 3 confirms the impression produced by these
figures, i.e. that the tilt angles of both models are close. Note that Jones et al. (2000)
and Cole (2004) gave asymptotic predictions for the critical radius, the phase function
and the tilt angle (see e.g. Jones et al. 2000, pp. 171 and 178). A conclusion that
can be drawn from tables 2 and 3 is that the QG model yields a semi-quantitatively
valid description, with discrepancies smaller than 21%, for all properties of the linear
waves, except for their frequency, as soon as E � 2 × 10−4.

There exists no general weakly nonlinear theory either for the three-dimensional
or for the two-dimensional QG models, even at finite values of the Ekman number.
Because nonlinear effects are typically quite sensitive to slight differences in models,
we could fear that, in the nonlinear regime, the semi-quantitative agreement noted in
the linear regime could be totally lost. We will now see that this is not the case.

3.4. A first nonlinear effect due to Reynolds-stress: mean-flow generation

The fact that the mean flow at order A2 is generated by the Reynolds-stress term in
(3.5) motivates the reformulation of the Reynolds-stress tensor in a general ‘cylindrical’
system. This reformulation will be presented in § 3.4.1, and its consequence for rotating
convection in § 3.4.2.

3.4.1. Reformulation of the Reynolds-stress tensor

The diagonal Reynolds stresses generated by a pure wave of the form (3.7) are

τrr = −2Ecr, τϕϕ = −2Ecϕ, (3.19a)

where the transverse kinetic energy of the wave flow

Ecr = 1
2

〈
v2

r

〉
ϕ

= |A|2m2r−2|Ψ (r)|2 (3.19b)

and the longitudinal kinetic energy of the wave flow

Ecϕ = 1
2

〈
v2

ϕ

〉
ϕ

= |A|2|Ψ ′(r)|2. (3.19c)

As in § 2.2, we use ‘transverse’ and ‘longitudinal’ to refer the orientation with respect
to the direction eϕ of invariance of the basic state.

Thus the modulus of the streamfunction is related to the transverse kinetic energy,
whereas, according to (3.16), its phase is related to the separatrices. This allows us to
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Figure 6. For E = 2 × 10−5, ε =0.01, with the QG model, i.e. for the wave already displayed in
figure 5(e). (a) Zoom on the contours of vr showing the tilt angle at the critical radius rc . (b)
The dotted line shows the factor Ecr/2, the thin line the slope tan α, the dashed line illustrates
(3.20) by showing the product −Ecr tanα, i.e. half the Reynolds stress τrϕ .

obtain the reformulation of the cross-diagonal Reynolds-stress,

τrϕ = − 〈vrvϕ〉
ϕ

= −2Ecr tan α = τrr tan α (3.20)

where α =α(r) = arctan rΦ ′(r) is the tilt angle (3.18). There is a close similarity
between (3.20) and the formula (2.10) obtained in the Cartesian case. Note also that
equation (1) of Zhang (1992) contains, on its right-hand side, a similar reformulation.

An illustration of (3.20) is given in figure 6, which shows that, for the spiralling
Rossby wave studied, the slope tanα assumes values of order 1 when r > rc. On the
other hand, the transverse energy Ecr is large only around r � rc. Hence a negative
Reynolds stress τrϕ of the shape shown in figure 6(b) is generated near r = rc.

3.4.2. Consequence in rotating convection: mean-flow generation

At order A2, the mean equation (3.5),

|A|2[fEV2 − r−1∂r (r∂rV2) + r−2V2] = ∂rτrϕ + 2r−1τrϕ, (3.21)

shows that the Reynolds-stress τrϕ (3.20) generates a zonal flow V2(r) in the azimuthal
direction. The source terms on the right-hand side of (3.21) are dominated by the
contribution of ∂rτrϕ , as shown by the comparison of figures 6(b) and 7(a). Once
these terms are calculated, (3.21) can be solved numerically, which yields the thin
curve in figure 7(b). A crude approximation to this curve is obtained by neglecting
the viscous terms in (3.21), i.e. by equilibrating the Ekman pumping term with the
nonlinear term, which gives

|A|2V2 � f −1
E (∂rτrϕ + 2r−1τrϕ) � f −1

E ∂rτrϕ. (3.22)

Thus, because the Reynolds stress τrϕ decreases towards the inner part of the annulus
and increases towards the outer part, we expects a retrograde (resp. prograde) zonal
flow in the interior (resp. exterior). Figure 7(b) shows that this is qualitatively correct;
a mean flow of a similar form has been obtained with a simpler, Cartesian QG
model by Busse & Hood (1982), and with cylindrical QG models by Aubert et al.
(2003), Gillet & Jones (2006), Morin & Dormy (2006). The fact that the formula
(3.22) fails to describe the zonal flow amplitude quantitatively, since here for instance
it would yield min(|A|2V2) = −0.265 instead of min(|A|2V2) = −0.150, underlines the
importance of both dissipation mechanisms, bulk viscosity and Ekman pumping, as
noticed by Gillet & Jones and Morin & Dormy.
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Figure 7. For the conditions of figure 6, with the two-dimensional (thin lines) or three-
dimensional (thick line) models. (a) Azimuthal component of the divergence of the Reynolds-
stress tensor, the right-hand side of (3.21). (b) Zonal flow profiles in the equatorial annulus.
The vertical lines show r2D

c /ro and r3D
c /ro.

As compared to the three-dimensional mean flow (the thick curve in figure 7b), the
QG mean flow attains its minimum at a smaller value of r . This is in line with the
inequality r2D

c < r3D
c (table 3). The fact that the maximum of the QG mean flow is

larger than the maximum of the three-dimensional mean flow in the equatorial plane
can be understood by recalling that the QG model is constructed to best describe the
axially averaged flows, and by noting that figure 5(c) shows that the three-dimensional
mean flow is larger out of the equatorial plane around r =0.65ro. A remarkable result
of figure 7(b) is the quantitative agreement between the minimum values of the
two- and three-dimensional mean flows, which shows that the QG model correctly
describes the saturation of the waves. This will now be discussed in more details.

3.5. Further nonlinear effects in rotating convection: saturation and frequency shift

The levels of vr in figures 5(e) and 6(a), the values of Ecr, τrϕ and V in figures 6(b)
and 7 have been obtained after a systematic computation of the Landau equation
(2.5) for the amplitude of the critical wave solution of the QG model. Starting with
a critical mode normalized according to

max
r

[|Ψ1(r)|/r] = 1, (3.23)

we have obtained by elimination, solving problems of the form (3.21) with A= 1, the

quadratic corrections V2, Ψ2 and Θ2, Θ̃2. With the use of the scalar product

((ψ, θ), (ψa, θa)) �−→ 〈r(ψψ∗
a + θθ∗

a )〉rϕ , (3.24)

we have obtained the adjoint problem corresponding to the linearized version of
(3.4),

iωc(−�ψa) − 2E−1H −2∂ϕψa = �(−�ψa) − 2
3
Rac∂ϕθa

+ fEFA(ψa) + 1
6
RacgEGA(θa), (3.25a)

iωcθa = �θa + ∂ϕψa, (3.25b)

with ψa , of the form Ψa(r) exp[i(mϕ − ωct)], the adjoint streamfunction, θa , of the
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E/2 E−2/3τ0 c0 g gc1 c1

10−3 2.137 −0.553 +0.178 −0.140 −0.790
10−4 2.182 −0.711 +0.231 −0.155 −0.670
10−5 2.209 −0.672 +0.371 −0.257 −0.694
10−6 2.266 −0.680 +0.558 −1.066 −1.909
10−7 2.189 −0.645 −4.507 −2.739 +0.608

Table 4. Coefficients of the Landau equation (2.5) for the QG model. The scaling for τ0 is
inspired from the one for ωc given by the linear theory of Cole (2004).

form Θa(r) exp[i(mϕ − ωct)], the adjoint temperature modulation,

FA(ψa) = ∂2
r ψa + 1

2
r−1H −2

(
3r2 + 2r2

o

)
∂rψa

+ 1
2
r−2H −4

{
3r4 + 2r4

o ∂
2
ϕ + ror

2
[
2ro

(
2 − ∂2

ϕ

)
+ 5H∂ϕ

]}
ψa, (3.26a)

GA(θa) = ∂2
r θa + 1

2
r−1H −2

(
2r2

o − 5r2
)
∂rθa

+ 1
2
r−2H −4

{
r4 + 2r4

o ∂
2
ϕ + ror

2
[

− 2ro

(
2 + ∂2

ϕ

)
+ 5H∂ϕ

]}
θa. (3.26b)

Note that in this section we fix m = mc. Provided that the normalization condition

〈r[ζ (v1)ψ
∗
a + θ1θ

∗
a ]〉rϕ = τ0 (3.27)

is fulfilled, the nonlinear term in (2.5) can be obtained by a projection of the resonant
nonlinear terms in (3.4) onto the adjoint mode,

g(1 + ic1) = Gv
12 + Gv

21 + gv
12 + gv

21 + Gt
12 + Gt

21 + gt
12 + gt

21, (3.28a)

with
Gv

12 = 〈rv1 · ∇ζ (V2) ψ∗
a 〉rϕ , Gt

12 = 〈rv1 · ∇(Θ2) θ∗
a 〉rϕ ,

Gv
21 = 〈rV2 · ∇ζ (v1) ψ∗

a 〉rϕ , Gt
21 = 〈rV2 · ∇(θ1) θ∗

a 〉rϕ ,

gv
12 = 〈rv∗

1 · ∇ζ (v2) ψ∗
a 〉rϕ , gt

12 = 〈rv∗
1 · ∇(θ2) θ∗

a 〉rϕ ,

gv
21 = 〈rv2 · ∇ζ (v∗

1) ψ∗
a 〉rϕ , gt

21 = 〈rv2 · ∇(θ∗
1 ) θ∗

a 〉rϕ .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.28b)

The values of the linear Landau coefficients τ0 and c0 obtained by an expansion of the
temporal eigenvalue of the linear problem, and of the nonlinear Landau coefficients
g and c1 obtained from (3.28) are given in table 4. Once g is known, the physical
value of the amplitude A of a saturated wave is calculated as

|A| =
√

ε/g, (3.29)

with ε = Ra/Rac − 1 = 0.01 in the case of figures 5, 6 and 7. Thus it is possible to
compare the convection amplitude predicted by the two-dimensional model,

max v2D
r = 2m|A| = 2m

√
ε/g (3.30)

according to (3.7), (3.23), to the same amplitude predicted numerically by the three-di-
mensional code. The first part of table 5 confirms the impression given by figures 5(b)
and 5(e), i.e. that the QG model overestimates the strength of the radial flow in
the equatorial plane. This effect resembles that noted at the end of § 3.4: the QG
model ‘feels’ the fact, visible in figure 5(c), that the radial velocity is larger out of
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E/2 max v3D
r maxEA v3D

r max v2D
r max v2D

r / max v3D
r

10−3 2.04 1.41 1.90 0.93
10−4 3.64 2.54 3.33 0.92
10−5 5.52 4.02 5.26 0.95

E/2 min V 3D minEA V 3D minV 2D minV 2D/ minV 3D

10−3 −0.0591 −0.0591 −0.0417 0.70
10−4 −0.105 −0.105 −0.0904 0.86
10−5 −0.151 −0.151 −0.150 1.00

E/2 γ 3D γ 2D γ 2D/γ 3D

10−3 +1.16 +0.290 +0.25
10−4 +0.469 −0.0387 −0.08
10−5 +0.305 +0.0195 +0.06

Table 5. The first two parts show the amplitudes of the saturated critical wave and its mean
flow at a distance ε = 0.01 from onset, measured either in the whole shell or in the equatorial
annulus (EA) in the three-dimensional case. The last part shows the total frequency-shift
coefficients defined by (3.31).

the equatorial plane around r = rc. A reassuring result of table 5 is that max v2D
r

approaches max v3D
r when E decreases. Contrary to the wave flow, the mean flow

around r = rc is weaker out of the equatorial plane (figure 5d ), and this partly explains
why the QG model underestimates the strength of the mean flow (second part of
table 5). Note that the QG model without Ekman pumping, i.e. using fE = gE =0,
largely overestimates | minr V |, since for the test values E/2 = (10−3, 10−4, 10−5) the
corresponding ratios (0.70, 0.86, 1.00) in table 5 change to (2.21, 2.07, 2.60). For
completeness, another important nonlinear effect should be mentioned: the fact that
the waves slow down significantly in the nonlinear regime. In the three-dimensional
model, the nonlinear waves thus exhibit an angular frequency of the form

ω = ωc[1 − γ ε + O(ε2)], (3.31)

where γ > 0 is a total frequency-shift coefficient of order 1 (last part of table 5). The
weakly nonlinear waves calculated with the QG model also admit a total frequency-
shift coefficient

γ 2D = (c0 − c1)/(τ0ωc), (3.32)

which describes a competition between linear effects accelerating the waves since
c0 < 0 (table 4) and nonlinear effects decelerating the waves since c1 < 0 (for a not too
small E). Since c0 and c1 are close, their difference is small and changes sign with the
Ekman number in the domain 2 × 10−3 � E � 2 × 10−5 where the coefficient γ 3D > 0.
This discrepancy contrasts with the nearly quantitative agreement observed for the
flow amplitudes, and illustrates the high sensitivity of these nonlinear calculations.

An interesting prediction of the two-dimensional QG model displayed in table 4,
in the regime of very small Ekman numbers out of reach of the three-dimensional
code, is that the bifurcation to the thermal Rossby waves becomes subcritical for

E � E2 = 1.6 × 10−6 ± 2 × 10−7. (3.33)

This transition, which has been suspected to exist since the pioneering work of Soward
(1977), has also been evidenced by Cole (2004) with a different QG model using
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E/2 Re(Gv
12) Re(Gv

21) Re(Gt
12) Re(Gt

21) Re(gv
12) Re(gv

21) Re(gt
12) Re(gt

21)

10−3 +0.0081 −0.013 +0.16 +0.014 +0.0076 −0.0058 +0.0021 +0.0026
10−4 +0.010 −0.027 +0.19 +0.049 +0.0091 −0.0045 −0.0011 +0.0050
10−5 +0.017 −0.050 +0.26 +0.14 +0.0070 −0.0030 −0.0014 +0.0041
10−6 +0.067 −0.22 +0.29 +0.41 +0.011 −0.0042 +0.0020 +0.0054
10−7 +0.0039 −0.86 −2.2 −1.5 +0.0053 −0.0002 +0.013 +0.0018

E/2 Im(Gv
12) Im(Gv

21) Im(Gt
12) Im(Gt

21) Im(gv
12) Im(gv

21) Im(gt
12) Im(gt

21)

10−3 +0.0075 −0.0092 −0.10 −0.041 +0.00035 −0.0016 +0.0085 −0.00047
10−4 +0.011 −0.021 −0.10 −0.053 +0.0042 −0.0026 +0.0085 +0.0015
10−5 +0.019 −0.060 −0.16 −0.070 +0.0054 −0.0020 +0.0064 +0.0024
10−6 +0.012 −0.14 −0.60 −0.35 +0.0026 −0.00026 +0.0075 +0.00079
10−7 −0.33 +1.1 −1.1 −2.3 −0.019 +0.0074 −0.0040 −0.0090

Table 6. Detail of the contributions to the real and imaginary parts of the nonlinear Landau
coefficient g(1 + ic1) (3.28).

E/2 10−3 10−4 10−5 10−6 10−7

Re(Gv
12 + Gv

21 + Gt
21) +0.0099 +0.032 +0.11 +0.25 −2.3

Table 7. Sum of the contributions to g in table 6 that correspond to couplings between the
mean flow V2 and the primary wave.

stress-free boundary conditions, hence without Ekman pumping effects. The radius
ratio was also smaller, η = 0.2. The value of the Ekman number at the codimension-2
point was � 6 × 10−7 of similar magnitude. This subcritical transition appears to be
a robust feature of the internal heating models, since it is also observed within a QG
model with η = 0.35, fE = gE = 0, i.e. neglecting all Ekman pumping effects, for

Ẽ2 = 1.3 × 10−6 ± 2 × 10−7.

This model corresponds to that of Morin & Dormy (2004), who explored the
interval 4.7 × 10−7 � E � 4.7 × 10−5 in our scaling. They found no direct evidence
of a subcritical bifurcation. This might be due to the subcritical range being quite
narrow, to numerical problems, or to the action of instabilities that could ‘destroy’
the subcritical branches (see § 4).

In order to analyse the nonlinear effects that control the values of g and c1, we have
created table 6. It shows first that the second harmonic modes v2 and θ2 play a minor
role in these effects, since the corresponding contributions gv

12, g
v
21, g

t
12 and gt

21 are
of small magnitude in comparison with the contributions associated with the mean
modes V2 and Θ2. A second important point is that, although the form of the mean
flow V2 remains similar whatever the Ekman number, except for a localization around
r � rc, the contributions of V2 to g, saturating at not too small an Ekman number,
become anti-saturating at very small Ekman number; this is proved more precisely
by table 7. A last important point revealed by table 6 is that thermohydrodynamical
effects are crucial, since for all the values of E studied, the largest contributions to g

or gc1 are always given either by Gt
12 or Gt

21, which corresponds to advection terms
in the heat equation (3.4b). This points to the importance of another mean mode, i.e.
the mean temperature mode Θ2, which intervenes in the coefficient Gt

12.
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4. Concluding discussion
It should be clear that the formulae (2.6) and (2.10),

τxx = −2Ecx, τyy = −2Ecy, τxy = τyy tan α, (4.1)

in the Cartesian case, (3.19) and (3.20),

τrr = −2Ecr, τϕϕ = −2Ecϕ, τrϕ = τrr tan α, (4.2)

in the cylindrical case, with tan α the slope of the separatrices (see e.g. figures 4c
and 6a), are general and valid for all fluctuating velocity fields assuming the form
of a pure wave (2.1) or (3.7). In fact, instances where the dependence on time of the
complex wave-streamfunction is no more exponential, e.g.

v1 = (∂yψ1)ex − (∂xψ1)ey with ψ1 = Ψ1(y, t) exp(iqx) (4.3)

instead of (2.1b) in the Cartesian case, can also be analysed with our reformulation;
now the kinetic energies and the slope depend on time. This applies for instance to a
transiently growing wavy perturbation of plane Couette flow, which is linearly stable.
Using (4.1) and U0(y) = y, we can write the source term for energy growth in the
energy equation (2.12) as

〈τxy(y, t)U ′
0(y)〉

y
= −2 〈Ecy(y, t) tan α(y, t)〉

y
. (4.4)

Thus we understand why, in figure 9 of Farrell (1988) showing the development of
an optimal perturbation, we start with very negative values of α, whereas the growth
stops when α, on average, vanishes. Alternately, our analysis also applies to the case
of a very strong instability, as illustrated by § 2.5 concerning mixing layers. In fact, in
some cases, the nonlinear (spatial) saturation of the mixing-layer instability could be
understood in terms of a reorientation of the Kelvin–Helmholtz vortices which would
slope ‘forward’ at a certain distance from the trailing edge. Such effects, described as
‘vortex nutations’ by some authors, are for instance advocated in the § 4.4 of Ho &
Huerre (1984). In their figure 21, these authors present a geometrical analysis of this
phenomenon which corresponds to our analysis.

A generalization of the reformulation (4.1), (4.2) to fully three-dimensional waves,
though possible in principle, may be too intricate to be useful. The velocity field
of a pure incompressible three-dimensional wave depends generally on two complex
potentials in a complicated manner; another problem is that it will be generally
impossible to define a continuous argument (or phase) of these two potentials in the
region of the plane where they are defined (e.g. the cross-section of the pipe for pipe
flow), because the potentials typically present some zeros.

We believe that the results displayed in § 3 for rotating shell convection will be useful
to the geophysics community. The idea of using reduced two-dimensional models
for flow computations coupled to a full three-dimensional solver of the induction
equation is now emerging in the field of the geodynamo (see e.g. the kinematic
dynamo studies by Schaeffer & Cardin 2006), and therefore it appears important to
develop reliable, validated, QG models. From this point of view, the comparisons
concerning the wave- and mean-flow amplitudes shown in table 5 constitute the
first semi-quantitative ‘validation’ of a QG model in the nonlinear regime. A weak
point, however, is revealed by the discrepancies concerning the total frequency-shift
coefficient γ , which are also observed within variants of the QG model (for instance
the model which includes Ekman pumping effects on the mean flow only yields
γ 2D < 0 for E/2 = 10−3 and 10−4).
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As mentioned in § 3.3, and visible in table 2, the critical parameters of the QG model
fit the scaling laws of the asymptotic theory with discrepancies smaller than 17% as
soon as E � 2 × 10−5. On the contrary, to reach an asymptotic regime concerning the
weakly nonlinear properties of the waves seems to require extremely low value of E,
at least E < 2 × 10−7: this is proved by the fact that the coefficients Re(Gt

12), Re(Gt
21)

and Im(Gv
21), for instance, change sign between the two last lines of table 6. This is

probably linked to the fact that the phase function of the critical wave converges only
very slowly towards its asymptotic form, as revealed by the table 3: for the smallest
value of the Ekman number, E = 2 × 10−7, the tilt angle at the critical radius is still
19% smaller than its asymptotic value. It would be interesting to develop a weakly
nonlinear theory of the thermal Rossby waves valid asymptotically in the limit E → 0,
but obviously much effort will be required to validate this theory numerically.

One should be aware that, at finite values of E, the thermal Rossby waves are
typically subject to a secondary vacillation instability at rather small values of ε, as
shown, for instance, by the numerical simulations of Tilgner & Busse (1997) with a
three-dimensional model, and by Cole (2004), Morin & Dormy (2004) with cylindrical
QG models. Morin & Dormy noted that the critical value of ε required to set the
vacillation instability becomes quite small when E diminishes, and that the vacillation
instability then transforms into a pulsed instability leading to relaxation oscillations
(like the ones shown in the figure 8 of Morin & Dormy 2004). It would be interesting
to run new simulations of this kind in a clearly subcritical case. We can conjecture that
the subcritical waves will always be unstable, but the exact behaviour of the system
has still to be established. It might be that instabilities always drive the system back
to the conduction state, i.e. that, effectively, subcritical convection will be difficult to
observe.

It is difficult to propose a physical interpretation of the nonlinear properties of
these rotating convection models, even in the framework of the QG weakly nonlinear
analysis. For instance the simplest nonlinear coefficient appearing in this analysis is

Gt
21 = 〈rV2 · ∇(θ1)θ

∗
a 〉rϕ = im 〈V2Θ1Θ

∗
a 〉r , (4.5)

which involves the phase functions of Θ1 and Θa . These functions vary significantly in
the annulus because of the spiralling character of the waves. As a result, the integrand
in (4.5) is oscillating and it is difficult to explain the sign of the real and imaginary parts
of this integral. It will be interesting to study in the same way the case of differential
heating models, when there are no heat sources in the fluid, and consequently the
convection attaches to the inner radius. A conjecture made by Gillet & Jones (2006)
(see their § 3.1) is that, since the distinction between the local and global asymptotic
theories is then lost, the first bifurcation should stay supercritical. That should be
verified.

We are indebted to E. Dormy for many useful comments concerning our work
and the literature. We also thank N. Gillet and anonymous Referees for interesting
suggestions.

Appendix. The slope of the separatrices is the average slope of the streamlines
For x, y waves, Pedlosky (1987) offered a local formula where the ‘inverse’ slope of

the streamline passing through the point under consideration intervenes,

−vxvy = (∂yψ)(∂xψ) = −(∂yψ)2y ′
ψ (x) = −v2

xy
′
ψ (x), (A 1)
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yψ (x) designating locally the parameterization of this streamline. Yet we know now
that, when the average over x is applied, it is the slope x ′

s(y) of the separatrices, which
are special cases of streamlines, that comes in. A connection can, however, be made
between our formula (2.10) and the approach of Pedlosky (1987). For this we write
locally

−vxvy = (∂yψ)(∂xψ) = −(∂xψ)2x ′
ψ (y) = −v2

yx
′
ψ (y), (A 2)

xψ (y) being another parameterization of the streamline. It happens that, when the
average over x is applied, for pure wave-flows v of the form (2.1),

τxy = − 〈vxvy〉
x

= −
〈
v2

y

〉
x

〈
x ′

ψ (y)
〉

x
, (A 3)

i.e. the average slope of the streamlines is the slope of the separatrices,〈
x ′

ψ (y)
〉

x
= x ′

s(y) (A 4)

with the notation of § 2.3. This formula can be established as follows: denoting ρ(y) =
|Ψ1(y)| and φ(y) = arg[Ψ1(y)] + arg(A) − ωt , we can check that locally

x ′
ψ (y) = −∂yψ

∂xψ
=

ρ ′(y)

qρ(y)
cotan[qx + φ(y)] − φ′(y)

q
.

The first term, which is oscillating, presents a vanishing average; the second term is
x ′

s(y).
When a mean flow V0 = U0(y)ex is added to the pure wave, i.e. the flow V0 + v

corresponding to the total streamfunction

ψ =

∫ y

y0

U0(Y ) dY + 2|A|ρ(y) cos[qx + φ(y)]

is examined, we finds locally for the slope of a streamline

x ′
ψ (y) =

U0(y)

2|A|qρ(y) sin[qx + φ(y)]
+

ρ ′(y)

qρ(y)
cotan[qx + φ(y)] − φ′(y)

q
.

Consequently, we still has (A 4); this property is used in § 2.5.
The same properties hold for waves in cylindrical geometry, given by (3.7), i.e. if

ϕψ (r) designates locally the parameterization of the streamlines of a pure wave to
which a mean flow can be added,〈

rϕ′
ψ (r)

〉
ϕ

= rϕ′
s(r) (A 5)

with the notation of § 3.4.1.
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