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Quaternions are ordered quadruples of four numbers subject to
specified rules of addition and multiplication, which can represent
points in four-dimensional (4D) space and which form finite groups
under multiplication isomorphic to polyhedral groups. Projection of
the 8 quaternions of the dihedral group D2h, with only two-fold
symmetry, into 3D space provides a basis for crystal lattices up to
orthorhombic symmetry (a "* b "* c). Addition of three-fold symmetry
to D2h gives the tetrahedral group Td with 24 quaternions, whose
projection into 3D space provides a basis for more symmetrical
crystal lattices including the cubic lattice (a = b = c). Addition of
five fold symmetry to Td gives the icosahedral group Ih with 120
quaternions, whose projection into 3D space introduces the --J5 ir-
rationality and thus cannot provide the basis for a 3D crystal lat-
tice. However, this projection of Ih can provide a basis for a 6D lat-
tice which can be divided into two orthogonal 3D subspaces, one
representing rational coordinates and the other representing COOI'-

dinates containing the --J5 irrationality similar to some standard
models for icosahedral quasicrystals.

INTRODUCTION

Shortly after the discovery of icosahedral quasicrystals in rapidly cooled
Al/Mn alloys,! the description of quasicrystal structure with a long-range
quasiperiodic translational order and lone-range orientation order began to
receive considerable attention. In this connection, quasicrystals represent a
new type of incommensurate crystal structure whose Fourier transform con-
sists of a 8 function as for periodic crystals but the point symmetries are
incompatible with traditional crystal1ography. An important theoretical ap-
proach for the study of quasicrystal structure involves projection from a
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high-dimensional lattice into three dimensions to obtain the quasicrystal
lattice.2-6 The five-fold symmetry of icosahedral quasicrystals can be related
to the five-fold symmetry of Penrose tiling." In fact the theoretical Fourier
transform of a Penrose tiling is found to resemble the experimentally ob-
served diffractions of icosahedral quasicrystals. s

The use of Penrose tiling to describe quasicrystal structures as well as
some of the other theoretical approaches starts with a six-dimensional (6D)
space, which is divided into two orthogonal three-dimensional (3D) sub-
spaces, namely the physical or parallel space Eliand the pseudo or perpen-
dicular space EJ..The projection of a 6D cubic lattice onto the physical space,
which is a 3D hyperplane in the 6D space, gives the typical 3D Penrose tiling
consisting of prolate and oblate rhombohedra. The ratio between volumes of
the two kinds of rhombohedra equals the golden ratio 1: = V2(1 + -J5).

Amore recent approach to the study of icosahedral quasicrystals has
been developed by Moody and Patera.? Their work makes use of the root lat-
tice Es, arising from Lie group theory, 10 and the icosian ring, found in the
quaternions with coefficients in ~(-J5), to interpret the description of 3D
quasicrystals in double dimension (6D). This paper uses the ideas of Moody
and Patera? to show how quaternions can be used to represent both ordinary
crystal lattices and the icosahedral quasicrystal lattice. In this connection
classical quaternion theory-! is examined in light of the symmetries of both
crystallography and quasicrystallography.

FINITE GROUPS OF QUATERNIONS

A real quaternion is defined to be an ordered quadruple of four real num-
bers (w, x, y, z) subject to the following rules of addition and multiplication
where q = (w, x, y, z) and q' = (w', x', y', z'):

q + q' = (w+w', x+x', y+y', z-sz') (la)

qq' = (ww' - xx' - yy' - zz', wx' + xw' + yz' - zy',

wy' - xz' + yw' + zx', wz' + xy' - yx' + zw')

(lb)

The quaternions thus form a ring which meets the mathematical require-
ments for a non-commutative field. The subring of the type (w, 0, 0, O) is
isomorphic with the field of real numbers and the subring of the type (w, x,
0, O) (or, (w, 0, y, O) or (w, 0, 0, z) is isomorphic with the complex numbers
a + bi.

The la st three elements of a quaternion (w, x, y, z) can be regarded as
the Cartesian coordinates of a 3D vector v so that equation (lb) becomes
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qq' = (w, V)(W', V') = (WW' - V . V', WV' + W'V + V X V') (2)

where V . v' and v x v' are the standard dot and cross products, respectively.
Furthermore, for quaternions of the type (0, x, y, Z), which are called the
imaginary prime and correspond to 3D vectors, the multiplication process
(Eq. (2)) with W and w' set to zero reduces to the standard vector cross prod-
uct v x v' and is anticommutative, i.e. v x v' = -v x v. Anticommutative mul-
tiplication is also a property of Lie groups-? and provides a link between
quaternions, Lie groups, and vectors in 3D space.

The conjugate of a quaternion q = (w, x, y, z) is defined as q = (w, -X,

-y, -z). The product of a quaternion with its conjugate is a scalar positive
number called its norm [q[, i.e.

[q[ = qq = qq = (w, x, y, z)(w, -X, -y, -z) = (w2 + x2 + y2 + z2, 0, 0, O) (3)

Furthermore, since [q[ '* ° if q '* 0, the inverse of any quaternion «: can be
defined by «' = q I[q[ so that q-lq = qq-l = 1 for all q '* O.Thus every non-
zero quaternion has a multiplicative inverse, namely its conjugate multi-
plied by the scalar inverse of its norm.

Quaternions with a norm of unity can be called unit quaternions. The
unit quaternions form a multiplicative group, conveniently designated as Q.
Consider a unit quaternion p of the type p = (cosa, sina, 0, O)and a general
quaternion q = (w, x, y, z) representing a vector from the origin (0, 0, 0, O)
to a point (w, x, y, z) in 4D space. The product pq is a double rotation of q
by an angle o. in the (w, x) plane and o. in the (y, z) plane and the product
qp-l is a double rotation of q by an angle -o. in the (w, x) plane and o. in
the (y, z) plane.ll,12 The so-called inner automorphism pqp-l is the n asingle
rotation of angle 20. in the (y, z) plane or about the (w, x) plane correspond-
ing to a rotation in the imaginary prime of angle 20. about the x-axis. Simi-
lar1y if the unit quaternion p has the form (cosa, v sina) where v is any
unit vector in the imaginary prime, the inner automorphism pqp-l is also
a rotation in the imaginary prime of angle 20. about the axis of the unit vec-
tor v corresponding to the most general rotation in the imaginary prime.
This leads to a homomorphic mapping of the group Q on the 3D rotation
group 3'3 with the element (COSo., v sina) of Q corresponding to the rotation
of angle 20. about the axis of the vector v in 3D space. This mapping is 2 : 1
with the structure Q = C2 x .91~with the kernel C2 being the subgroup of Q
consisting of the scalar elements ±1. Every rotation in 3D space thus corre-
sponds to two opposite elements xp of Q.

Certain finite subgroups G of the unit quaternion group Q correspond
to the symmetry point groups of polyhedra including the regular polyhe-
dra.!' However, because of the 2 : 1nature of the mapping Q = C2 x .9f3 every
finite subgroup G of .9f3 has an image in Q twice its order since every ele-
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ment p of .91'3has two images ±p in Q. Every finite subgroup G of Q is thus
either 2 : 1 homomorphic or isomorphic to a finite subgroup G of ,913 and in
the latter case consists of only one of the two images in Q of every element
of G so that the total image of G in Q has the form C2 x G where C2 = {±1}.
However, if G contains a 1800 rotation, it cannot have an isomorphic image
in Q for the two image s in Q of the 1800 rotation about a unit vector v are
(0, ±v) and as the cube of each of these is the other, every subgroup of Q
that contains either ofthem contains the other. Since the only finite sub-
group s of ,9l3 containing no 1800 rotations are C; for odd values of n, all the
finite groups G have a unique image in Q, namely its total image G with
the mapping G ~ G being 2 : 1 with kernel C2•

The following finite point groups can be considered in this manner.
(1) The pure rotation groups Cn: The quaternions (cos 2rnln, vsin 2rnln)

form a cyclic group of order n, which is the image of the multiplicative group
of the nth roots of unity in the isomorphism between the quaternions (a, by)
and the complex numbers a + ib which is the pure rotation group Cn- For
odd values of n this group consists of one of the two images of each element
of the subgroup Cn of ~3 with the same axis v. However,for even values of n, it
consists of both images of each element of Cnl2 of .9?3' The corresponding set of
points are the vertices of a regular n-gon with one vertex at the point 1.

(2) The dihedral groups Dnh: The image Dnh in Q of the dihedral sub-
group Dnh of ,92'3 is of order 4n and has a subgroup C2n which is the image
of the subgroup C2n in Dnh. If the principal axis of C2n is the z-axis, then
the elements of C2n have the form (cos min, 0, 0, sin rtdn) where r = 0, ...,
2n - 1. If the twofold axes ofD nh are Y = x tan min, z = 0, the n the remaining
elements of Dnh have the form (0, cos rtdn, sin rttln, O) so that the set of
points of Dnh are the set of vertices of a prism where the two parallel faces
are two regular 2n-gons. Of particular importance is the image D2h of the
dihedral group D2h consisting of the eight principal unit quaternions (±1, 0,
0, O), (O, ±1, 0, O), (0, 0, ±1, O), and (0, 0, 0, ±1); this group is sometimes
known as the quaternion group.13

(3) The tetrahedral group Td: The image Td in Q of the tetrahedral sub-
group Td of ,91'3is of order 24 and corresponds to the normal subgroup D2h to-
gether with 16 other elements corresponding to the rotations of order 3 about
the diagonals ofthe cube; the latter are thus of the form ±(J!2, ±J!2~V) where
±v are the unit vectors -{j]3(±1, ±1, ±1) along the diagonals of the cube. The
elements of Td other than those of its normal subgroup D2h are the 16
quaternions J!2(±1, ±1, ±1, ±1) corresponding to the 16 vertices of the 4D ana-
logue of a cube, namely the hypercube or tesseract. This set of quaternions
';Wbreaks up into two cosets of its normal subgroup D2h of the form tv and
t2v where t = (J!2, J!2, J!2, J!2).

(4) The icosahedral group Ih: The image Ih in Q of the icosahedral sub-
group Ih of .913has five-fold, three-fold, and two-fold axes in directions which
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Dihedral Tetrahedral Icosahedral
Group Group Group
D2h x3 Td x5 Ih8 elements
(±1,0,0,0) 24 elements: D2h 120 elements: Td
Orthorhombic +' '2(±1 ,±1 ,±1 ,±1) +\((0,±1,±cr,±t))
Crystal Cubic Crystal Icosahedral
Lattice

Lattice Quasicrystal
Lattice

Figure L Crystal and quasicrystal lattices generated from the dihedral D2h, the te-
trahedral Td, and the icosahedral Ih finite quaternion groups.

are derived by Du Val.u It contains the 24 elements of its tetrahedral subgroup
Td plus an additional 96 unit quaternions of the type l/2((0, ±1, ±cr, ±1»
where the double parentheses (o) denote all even permutations of the com-
ponents, 1 = l/2(1 + -v5), and o = l/2(1 - -v5) so that o + 1 = 1 and er = -1.
The 120 quaternions in h are sometimes called icosians because of their re-
lationship to icosahedral symmetry.

The relationship between the dihedral group D2h, the tetrahedral group
Td, and the icosahedral group Ih is considered in Figure 1. Note that ascent
in symmetry from D2h to Td introduces three-fold symmetry and that ascent
in symmetry from Td to Ih introduces five-foId symmetry.

CRYSTALLOGRAPHICAND QUASICRYSTALLOGRAPHIC
LATTICES FROM FINITE QUATERNIONS GROUPS

A quaternion q = (w, x, y, z) can be considered as a point in 4D space
as noted above. In addition such a quaternion can define the length and di-
rection of a 4D vector from the origin (0, 0, 0, O). Afinite group G of
quaternions with IGI elements of the type q = (w, x, y, z) where w, X, y, and
z are all rational numbers can be used to generate a 4D lattice consisting
of all points of the type

(4)

where each of the coefficients aj can be any integer (positive or negative),
and qi is element i of the finite quaternion group G. The standard 3D crys-
tallographic lattices then correspond to projections of these 4D quaternionic
lattices into the 3D imaginary prime where w = O. The basis of such 3D crys-
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tallographic lattices consists of the projections of the 4D points represented
by the IGI elements of the finite quaternion group G into the 3D imaginary
prime.

Let us first consider the generation of a 3D crystallographic lattice from
the dihedral group D2h which contains the 8 elements (±1, 0, 0, O). (0, ±1,
0, O), (O, 0, ±1, O) and (0, 0, 0, ±1) as noted above. Projection of these 8
quaternions into the 3D imaginary prime where w = ° gives a basis of 7 lat-
tice points, namely the origin at (0, 0, O)from the quaternionic lattice points
(±1, 0, 0, O)and the 6 points (±1, 0, O),(0, ±1, O),and (0, 0, ±1) at the centers
of the faces of a cube (i.e. the vertices of a regular octahedron). Note that
in this projection the two 4D quaternionic lattice points (±1, 0, 0, O)become
the single point (0, 0, O)in its 3D image. The remainder of the infinite or-
thorhombic lattice can be generated from the 8 4D basis points of the D2h
dihedral quaternionic lattice or the 6 non-zero point s of its projection into
the 3D-imaginary prime by taking all other possible combinations of positive
and negative integers for the ai coefficients (Eq. (4)). The dihedral group D2h

contains no symmetry elements which force the lattice distances a, b, and
c in the x, y, and z directions, respectively, to be equivalent so that the or-
thorhombic crystal system is the highest symmetry crystal system that can
be generated from the D2h dihedral quaternion group. The less symmetrical
monoclinic and triclinic systems can also be generated from the D2h dihedral
group if the x, y and z axes are no longer perpendicular.

A similar procedure can be used to generated the body-centered cubic
lattice from the tetrahedral quaternionic group Td: Again the basis of the
3D cubic lattice is obtained by projection of the 24 quaternions of Td into
the 3D imaginary prime where w = ° as indicated in Table 1.The remainder
of the infinite cubic lattice can be generated from the 24 4D basis points of
the Td quaternionic lattice or the 14 non-zero points (i.e., the 8 cube vertex
points and the 6 cube face midpoints) of its projection in the the 3D imagi-
nary prime taking all other possible combinations of positive and negative

TABLE I

The basis of the 3D cubic lattice as obtained by projection of the 4D quaternionic
lattice from the tetrahedral quaternionic group Td into the 3D imaginmary prime

Quaternionic 3D Lattice Number of Geometry of 3D
Lattice Point Basis Point 3D Lattice Lattice Basis
Type Projection Type Basis Point s Points

(±l, 0, 0, O) (0,0,0) I Cube body center
(0, ±l, 0, O) (±1, 0, O)
(0, 0, ±1, O) (O, ±1, O) 6 Cube face centres
(O, 0, 0, ±1) (O, 0, ±l)

V2(±I, ±1, ±1, ±1) V2(±1, ±l, ±1) 8 Cube vertices



CRYSTALLOGRAl'HIC AND QUASICRYSTALLOGRAPHIC LAITICES . 811

integers for the ai coefficients (Eq. (4)). The three-fold symmetry of the Td
tetrahedral group forces the lattice distance a, b and c in the x, y, and z di-
rections, respectively, to be equal so that the tetrahedral quaternionic group
Td generates the cubic crystal system.

An analogous procedure for the generation of a 3D crystallographic lattice
from the icosahedral quatemionic group Ih (the icosians) is not possible since
among the 120 quaternions in Ih the 96 quaternions of the type V2((0, ±1,
±a, ±1) contain the --J5 irrationality. Projection of these 96 irrational
quaternions into the 3D imaginary prime would give lattice point images of two
types containing this --J5 irrationality, namely (±a, ±1, ±1) and (0, ±a, ±1) and
all of their even permutations corresponding to a total of 24 + 12 = 36 lattice
points. The persistent occurrence of this "5 irrationality is the reason why
regular icosahedra cannot be packed into three-dimensional space so that
icosahedral symmetry is not one of the crystallographic symmetries.

Figure 1 indicates clearly the effect of ascent in symmetry in the finite
4D quaternion groups on the type of lattice generated by their corresponding
projections into the 3D imaginary prime. The 3D lattice obtained from the
dihedral quaternion group D2h does not have symmetry-imposed equality in
the three crystallographic directions and thus requires no symmetry higher
than orthorhombic. Introduction of 3-fold symmetry in going from D2h to Td
imposes equality in the three crystallographic directions and can lead to the
maximum cubic crystallographic symmetry. Subsequent addition of 5-fold
symmetry in going from Td to Ih introduces the --J5 irrationality thereby
making a true crystallographic lattice no longer possible. This results in
icosahedral quasicrystals described by a 6D lattice, which can represent ra-
tional and irrational components of the type a + a'--J5 in the three directions.

Quasicrystals may thus be regarded as a special type of incommensurate
system, which may be described by space groups of dimension larger than
three in a similar way to modulated crystal phases and incommensurate
composite structures.!" In the case of icosahedral quasi-crystals the above
model based on the icosahedral quaternion group Ih fits well into the idea
of 6D space groups. Each of the three standard coordinates, namely x, y, and
z, corresponds to two coordinates in 6D space, namelly a rational and an ir-
rational coordinate corresponding to the rational and irrational portions of
variables of the form a + a'--J5 where a and a' are integers. Projection of the
lattice points of this 6D space of icosahedral symmetry into conventional 3D
space leads to the isocahedral quasicrystal lattice.
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SAŽETAK

Kristalografske i kvazikristalografske rešetke dobijene uz pomoć
konačnih grupa kvaterniona .

R. Bruce King

Kvaternioni su uređene četvorke brojeva za koje vrijede posebna pravila zbra-
janja i množenja i koje se mogu predstaviti točkama u 4-dimenzijskom (4D) prostoru.
Kvaternioni grade konačne multiplikativne grupe izomorfne poliedarskim grupama.
Projekcija osam kvaterniona diedarske grupe D2h za 3D prostor osigurava bazu za
kristalne rešetke sve do ortorombske simetrije (a #- b #- cl. Dodavanjem osi simetrije
trećeg reda grupi D2h dobiva se tetraedarska grupa Td sa 24 kvaterniona, čijim se
projiciranjem u 3D prostor dobiva baza za kristalne rešetke više simetrije, uključivo
i kubične rešetke (a = b = cl. Dodavanjem grupi Td osi petog reda dobiva se ikosae-
darska grupa Ih sa 120 kvaterniona, čija projekcija na 3D prostor uvodi iracionalni
faktor ~ pa se ne dobiva baza za 3D rešetke. Ipak, projekcija Ih osigurava bazu za
6D rešetku koja se dade podijeliti na dva međusobno okomita 3D potprostora, od ko-
jih jedan sadržava racionalne koordinate, a drugi koordinate s faktorom ~, kao u
nekim standardnim modelima za ikosaedarske kvazikristale.




