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We consider the diffusion of a polymer chain in random layered
flows. We use scaling ideas and take the randomness of the flow
into account through an Imry-Ma-type argument. For the chain's
dynamics both the Zimm approach for screened hydrodynamic in-
teractions and also the Rouse approach are considered. We corn-
pute both the internal dynamics of the chain (motion of a segment)
and also the center of mass motion; for the Rouse model we recover
the exact results obtained by Oshanin and Blumen. The polymer's
dynamics at long times turns out to be diffusive or enhanced, de-
pending on the flow's disorder (thread-Iike or layer-like), and on
the hydrodynamic interactions. Furthermore we also evaluate the
chain's conformations under the se conditions.

1. INTRODUCTION

The study of macromolecules in external flows has attracted recently
much attention; in particular the case of random flows is still open.! Ran-
dom flows are especially interesting, since they serve as simple models for
turbulent motion. Polymers play here a major role, because when added to
turbulent flows they reduce the drag, a fact much discussed in the past. 2-5

However, the dynamics of polymers immersed in turbulent or random
flows is complex, so that only a very few special cases can be solved rigor-
ously. Recently Oshanin and Blumen 1 found an exact solution for a Rouse
chain in arandom convectional flow. Random flows were introduced by
Matheron and de Marsily in their study of underground water layers." In
Figure 1. two flow models are sketched. The flows are oriented along the
z-axis. The magnitude and direction of the flows are random, but they de-
pend either on the ex, y)-coordinates or on the x-coordinate only. Thus we



794 J.-U. SOMMER AND A BLUMEN

xy-model x - model

Figure 1. The two random flow models. While in the xy-model the direction of the
flow depends both on the x- and on the y-coordinate, in the x-model the direction
depends only on x.

call the situations in Figure la and Figure lb the xy-model and the x-model
respectively. Notice that in the former case one has flow-threads, in the lat-
ter case flow-layers. These models are simplified but, nevertheless, they con-
tain basic features of realistic situations, such as the layered patterns ob-
served in incipient turbulence. The physical consequences of such flow
environments are quite impressive: one observes enhanced diffusion, a de-
crease of the role of hydrodynamic interactions, as well as chain stretching
and rupture.

We now analyze the motion of model polymers in such random flows. As
for many other problems in polymer physics, scaling arguments can be sue-
cessfully used to describe complex behaviors from a simple point of view,7,8
and we apply such scaling arguments to the problem at hand. The essential
point here is that for times much longer that the characteristic internal re-
laxation times, which are either the Zimm-time tz or the Rouse-time tR, the
polymers behave like simple Brownian particles subject to an effective {law.
In the Zimm-model (the polymer coil acts like an impenetrable object) we
apply an Imry-Ma type argument to estimate firstly the effective flow, from
which, using dynamic scaling, the motion of individual monomers is in-
ferred. For a Rouse chain the individual monomer motion can be calculated
directly. Then, using scaling arguments, we obtain the diffusion of the center
of mass (CM) and, hence, the effective flow.
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The starting point for all these considerations is the motion of asingle
Brownian particle perpendicular to the flow,a problem whose exact solution
is well-known. Since there is no flow component in the xy-plane the motion
in this plane is unconstrained and hence diffusive. Of main interest is thus
the dynamics in the z-direction. As in Ref. 1 we introduce Fo, the mean
squared fluctuation of the flow's dragging force. Each flow layer has a cer-
tain thickness (correlation length). In order to ease the notation we define
all lengths in units of the layer thickness and the time unit as the average
time to cross one layer in the (xy)-plane. As a consequence the diffusion con-
stant is unity.

Due to the free random motion in the xy-plane the Brownian particle
changes layers (or threads) during the course of its motion. In this way the
particle feels at different times different dragging forces in the z-direction.
Were these forces completely uncorrelated in time, this also would result in
an usual Brownian motion in the z-direction, the only difference being that
now the corresponding diffusivity in the z-direction is given by Fo rather
than by unity. However, when the particle returns at a certain time t to an
already visited layer (or thread), this enhances the motion in the direction of
the flow of this layer (or thread). By averaging over the flow disorder one gets
for <22(t», the mean squared displacement in the z-direction due to the flow:

(1)
where srt) denotes the mean number of distinct visited layers (or threads)
during t. In the following we will in generalomit the (additive) diffusion ef-
fect on <22(t» due to the thermal fluctuations. Furthermore, from the theory
of random walks S(t) ~ -yi in ld (i.e. for the x-model) and srt) ~ t/ln t in 2d
(i.e. for the xy-model). It follows that:6,1

for the xy-model (2)
and

for the x-model . (3)
In the last expression of Eq. (2) we have suppressed logarithmic corrections.
This leads to an almost normal diffusion for the xy-modeL For the x-model, .
on the other hand, the diffusion is enhanced, Eq. (3), a fact already noted
by Matheron and de Marsily." The diffusion enhancement in Eq. (3) is due
to the fact that arandom walker returns frequently to already visited lay-
ers, in which it experiences the same flow direction. These flow layers carry
then the particle much farther away than simple diffusion. Note that Eq.
(1) is also valid in the general case of anomalous diffusion'' in the transverse
plane, say when S(t) ~ ta, with a < 1. Then one has <2(t» ~ Fot2 - ", One ap-
plication of this relation is provided by the motion of asingle segment of a
Rouse chain.!' see section 3.
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Generalizing the results for asingle Brownian particle to polymer chains
creates two problems. Firstly, different monomers will generally be located
in different layers (or threads). This leads to an average over the flow com-
ponents, resulting in an effective flow. For the Zimm-model we will perform
the average within a scaling approach, using an Imry-Ma-type argument. 10

The core of this argument is the law of large numbers, i.e. the fact that the
fluctuations of n independent random events scale as -In. We will outline
this procedure in the next section. Secondly, a polymer chain screens the hy-
drodynamic interaction mediated by the surrounding solvent quite effi-
ciently, see for instance Ref. 11. In fact for low field flows the diffusion co-
efficients of a polymer in the Zimm-model and of an impenetrable sphere
coincide;'! so that one may well approximate the polymer by such a sphere.
However, when the flow disorder is very strong the chain may experience a
large stretching, resulting in hydrodynamical »opening«. One expects then
the Rouse model to come into play. However, one has to note that for over-
stretched chains the Gaussian model underlying the Rouse dynamics is vio-
lated so that the Rouse model its elf may become invalid. In section 4 we dis-
cuss a possible Zimm-Rouse cross-over.

Given these facts, for the Zimm model we start by viewing the polymer
as an impenetrable object, so that the external flow acts only on the surface
of the coil created by the chain. The average over the flow directions is taken
than over the projection of the coil on the xy-plane. The global motion of the
polymer mimicks that of asingle Brownian particle subjected to an averaged
flow. On the other hand, in the Rouse-model the polymers are permeable
(free-draining), so that all monomers are subjected to the flow.

The paper is organized as follows: In the next section we establish the
dynamics of a Zimm-chain for long and for short times. Section 3 is devoted
to the Rouse-chain; here we study the behavior both in the idealized case
of a Gaussian chain and also by taking excluded volume interactions into
account. For Gaussian chains we recover the exact results of Ref. 1. In Sec-
tion 4 we study the conformations of chains under random flowand also discuss
possible cross-over phenomena. The paper closes with short conclusions.

2. THE ZIMM-CHAIN IN RANDOM FLOWS

As is well-known, the radius of gyration R of a polymer chain in solution
depends on the number of monomers (mass) N and on the microscopic in-
teractions. One has the standard relation:

(4)

where the exponent v is approximately 3/5 (Flory - expression) for a good
solvent and 112for a 8-solvent. In the Zimm-model the characteristic time
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tz for the inner modes of the chain to relax and also for the chain to diffuse
over the distance R scales as.!'

(5)

Measuring lengths in units ofR and the time in units of tz the diffusion con-
stant in the xy-plane is unity.

Polymers are coiled, and we view them (Zimm-model) as impenetrable
but soft objects. We denote their characteristic (hydrodynamic) radius by p,
and have p ~ R.

The random flow acts on the projection of the coil on the xy-plane, whose
area scales as R2; integrating the flow over this area gives the effective force
experienced by the coil in the z-direction. Now, for uncorrelated flow direc-
tions this effective (excess) force averaged over several layers or threads
obeys the central limit theorem. In the theory of ferromagnets in random
fields this method of averaging is familar from Ref. 10; for this reason it is
sometimes called the Imry-Ma method.

In the xy-model there are R2 independent flow threads, of strength lfo
each, which impinge on the coil. The effective force on the coil is then, ac-
cording to the central limit theorem, in average given by lfo ..JR2 = ffoR. In
the x-model there are R independent flow layers, each of which contributes
to the total force a term Rlfo. Given that the flow orientation in the layers
is random leads und er the central limit theorem to an average force of
ffoR-lR·

Summarizing the results of this procedure we have for the force:

(6)

with a = 1 in the xy-model and a = 3/2 in the x-model. For times larger than
tz the coil may be viewed as a simple Brownian particle subjected to a ran-
dom flow. Expressing times in units of tz, lengths in units of R and using
Eq.(2) we get for the xy-model:

(7)

which, together with Eqs. (4), (5) and (6) yields:

(8)

Note that the effective diffusity in the flow-direction increases with N. This
fact is in marked contrast to the motion in the xy-plane, described by the
Zimm diffusion coefficient, which goes as R-l;l1 hence <.x2> = <)'2> ~ ti NV.
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The same procedure applied to the x-model leads using Eq.(3) to:

(9)

and thus we get:

(10)

Note that here, compared to Eq.(8) the effect of the polymer mass is re-
duced but that the motion is superdiffusive, going as t3/2, as in the MdM
original model.

So far we have considered only the long time behavior of the chain, i.e.
t > tz. To obtain the motion of asingle segment of the chain at shorter times
(t < tzJ a simple scaling argument can be invoked: Since tz is the only char-
acteristic time scale in the problem, an universal dynamical behavior should
be determined by the dimensionless combination T = t / tz.

For the xy-model we write using Eq.(8):

(11)

where f(T) is a, yet unknown, scaling function. For large values of T, i.e. for
t » tz, Eq. (8) has to be recovered, since in this case the single segment
motion is constrained by the CM diffusion. From this it follows that f(T) =1
for T 1arge. On the other hand, for T « 1 the single segment does not know
much about the chain's 1ength (it has not yet explored such a large scale).
Consequently, in this case the segmental motion should be independent of N,
and hence independent of R. For a power-1aw behavior for f(T) for small T,
i.e. for f(T) ~ Tm we have to require from Eqs. (11) and (5) that RR-3m = RO;
i.e. that m = 113,independent of the exponent v. This leads both for a 8-s01-
vent and for a good solvent to the resu1t:

(12)

The x-mode1 can be treated in the same way. Using Eqs. (10) and (5) we ob-
tain for the segmenta1 motion that now m = 116,and thus

(13)

Both Eqs.(12) and (13) show that the segmental motion is enhanced.
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3. THE ROUSE-CHAIN IN RANDOM FLOWS

In the Rouse model each segment of the chain is exposed to the flow.
Usually the Rouse model is associated with Gaussian chain statistics and
hence neglects excluded volume effects. However, this is formally not nec-
essary: One can account for the excluded volume, while disregarding hydro-
dynamic effects, see Ref. 11. While this situation is hardly realized in ex-
periments (it exists in computer simulations), we cannot rule it out a priori
for randomly layered fluids.

We have first to establish tR, the Rouse-time for general v. Now tR gives
both the internal relaxation time and also the time necessary for the center
of mass of the chain to move over a distance R ~N". The CM diffusion co-
efficient is then

(14)

On the other hand, since in the Rouse model each segment feels the viscosity
of the medium it follows that D ~ 1/N and thus

(15)

This reproduces the result of §4.3 in Ref. 11.
To study the dynamics in the Rouse case we start first with the motion

of asingle segment. At long times, t » tR, the motion in the xy-plane is dif-
fusive, the segment following the behavior of the CM. Hence for the dis-
placement in the xy-plane we have, say for the x-component:

(16)

In Eq. (16) we have introduced the scaling function f(r), so that f(r) =1 for
r = t / tR » 1; furthermore, we used D ~ liN for the CM motion, as discussed
above. Taking now that f(r) ~ y<l for r « 1, and noticing, as in the Zimm-case,
that for very short times the segmental dynamics is independent ofN we obtain
N-l(Nl + 2vrq =}/l. Hence q = -1(1 + 2v) and we thus have for t « tR:

(17)

For v = 112Eq. (17) reproduces the well-known ...Ji short-time dynamics of
the Rouse-segment. Furthermore we can now determine <z;(t» in the short-
time regime, by considering the segment to be rather free and thus to be a
simple Brownian particle. Using the extension of Eq. (2) and Eq. (3) to the
fractal case, with c. = 2v / (1 + 2v), we find for t « tR
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in the xy-model (18)

and

For v = 112 the last expression reproduces the t7f4-result of Ref L For long
times such as t » tR the Rouse-chain moves as a whole, and hence <z2> is
again proportional to t and to t312 in the xy- and the x-model, respectively,
This allows us to determine the dependence of <z2> on N. For t » tR we
have to match again the short time expressions, Eqs. (18) and (19), to the
long-time, single particle dynamics as given by Eq. (2) and Eq. (3). We ex-
pect thus a scaling behavior of the form: <z;(t» = Fot2-ugx/r) for the xy-
model and <z;(t» = Fot2 - u/2gx(r) for the x-model. For r » 1 the scaling func-
tions g must exhibit power law behavior in order to lead to the proper
exponents for t in Eq. (2) and Eq. (3). In this way we obtain for t » tR (the
segmental motion coincides with the CM motion in this limiting case):

for the xy-model (20)

and
for the x-model . (21)

These results agree with Ref. L Interestingly, in this time domain the ex-
pressions are independent of v.

4. CONFORMATIONS OF CHAINS IN RANDOM FLOWS

In this section we discuss briefly the conformations of polymers in ran-
dom flow fields. In such situations the polymer gets deformed by the flow
in the z-direction. Now, the contribution of the flow to the mean squared ra-
dius of gyration can be obtained from the dynamical results. We note firstly
that in the absence of flows and thermal fluctuations the mechanical equiva-
lent of a Rouse-chain would collapse into a point since the equilibrium dis-
tance between connected monomers is zero. Thermal fluctuations lead now
to a nonzero radius of gyration R as given by Eq. (4).

Because thermal fluctuations and the randomness of the flows are un-
correlated one has for the mean squared extension Z2 of the polymer in the
direction of the flow Z2 = R2 + C;2, were C;2 is the contribution we want to
evaluate. We note that R is given by the average fluctuation of the segments
around the CM of the chain. Furthermore, the characteristic time for a seg-
ment to diffuse over a distance R is given by tz in the Zimm-model and by
tR in the Rouse-model. We calculate C;2 in the same way, by evaluating for
a segment the mean squared displacement due to the flow during the char-
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acteristic time tz or tRo This is, at the same time, the »matching condition«,
which connects the short to the long time domains. For the Zimm-model
these considerations lead to:

(22)

and
(23)

In Eq. (22) and Eq. (23) use was made of Eqs. (8) and (10) and e denotes
constant prefactors. As usual in such problems1,12,13~2 grows superlinearly
with N; this also indicates the limits of validity of the approach for strong
external fields, which may overstretch the chain. The condition ~2«b2N2
with b being the persistence length corresponds to conditions of the form
Fo «eN2 - 4v for the xy-model and Fo «eN2 - 5v for the x-model.

However, this estimate disregards several effects: First of all, the
stretched chain will contract in the direction perpendicular to the flOW,7,14
an effect which will influence the dynamics. Furthermore, as a result of
stretching, the hydrodynamic screening is expected to become less impor-
tant. It is not dear to us now whether this will happen continuously, result-
ing in a string of hydrodynamic blobs whos sizes depend on Fo, or whether
this may happen suddenly, resulting in an overstretched Rouse chain at
once. Clearly, here more work is needed.

These features do not affect the Rouse regime for ideal chains. Using the
same arguments as before we obtain for ~2 in the Rouse-model

~2= <z2(t~> = eF~ + 2v for the xy-model (24)

and
(25)

In Eqs. (24) and (25) we again denote constant by c and use was made of
Eqs. (20) and (21). Eq. (25) reproduces the result of Ref. 1 for v = 1/2. In
the Rouse-model the dependence of ~2 on N turns out to be stronger than
in the Zimm-case. A rough estimate for the limit of validity of the model in
terms of the magnitude of the external flow fields leads to Fi,« eN-2v for
the xy-model and Fo «eN-3v for the x-model.

5. CONCLUSIONS

In this work we have determined using scaling arguments the motion
of a polymer chain subjected to random flows. The polymer was modeled
both in the Zimm- and in the Rouse-framework. In several instances the
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center of mass as well as single segments of the chain obey anomalous dif-
fusion laws of the form

(26)

where C; of. 1. Let us now summarize the results for polymers in random flows
which differ from those found for simple diffusion:

• Both in the Zimm- and in the Rouse-model we find (see Eqs.(8)
and (10) or Eq, (20) and Eq. (21» that with increasing chain length
the displacement in the z-direction increases. This is due to the
fact that longer chains diffuse more slowly in the xy-plane and
hence change less often the flow patterns to which they are sub-
jected. This feature may possibly be used to separate chains: In a
distribution of polymers of different lengths, longer polymers
travel larger distances along the z-axis.

• Both in the Zimm- and in the Rouse-model the exponent c; for the
segmental motion turns out to be larger in the short-time domain,
compare Eqs. (8), (10), (12), (13) and (18-21). This is in marked
contra st to the usual situation (in the absence of external flow
fields), where c; for short times is smaller than for long times.

• In addition to dynamical effects, the polymer chain becomes
stretched in the direction of the flow.This may abolish the hydro-
dynamic screening, resulting in a Zimm-Rouse cross-over.
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SAŽETAK

Polimerni lanci u strujama sa slučajnim slojevima: Skalirajući pristup

Jens- Uwe Sommer i Alexander Blumen

Razmotrena je difuzija polimernih lanaca u strujama sa slučajnim slojevima.
Korištene su ideje skaliranja, a slučajnost struje uzeta je u obzir korištenjem argu-
menta tipa Imry-Ma. Za opis dinamike lanaca korišten je kako Zimmov pristup sa
zasjenjenim hidrodinamičkim međudjelovanjima tako i Rouseov pristup. Izračunana
je unutarnja dinamika lanca (gibanje segmenata) kao i gibanje težišta. U slučaju
Rouseova modela reproducirani su točni rezultati Oshanina i Blurnena. Dinamika
polimera nakon dugog vremena ili je difuzijskog tipa ili je pojačana, ovisno o neu-
ređenosti struje i hidrodinamičkim međudjelovanjima. Konačno, za gornje uvjete
izračunana je i konfiguracija lanaca.


