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Self-dual codes in the Rosenbloom-Tsfasman metric
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Abstract. This paper deals with the study and construction of self-dual codes equipped
with the Rosenbloom-Tsfasman metric (RT-metric, in short). An [s, k] linear code in the
RT-metric over Fq has codewords with k different non-zero weights. Using the generator
matrix in standard form of a code in the RT-metric, the standard information set for the
code is defined. Given the standard information set for a code, that for its dual is obtained.
Moreover, using the basic parameters of a linear code, the covering radius and the minimum
distance of its dual are also obtained. Eventually, necessary and sufficient conditions for a
code to be self-dual are established. In addition, some methods for constructing self dual
codes are proposed and illustrated with examples.
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1. Introduction

Among the most fascinating families of codes, the family of self-dual codes is a
very important one. These codes are of utmost interest at least for two reasons.
One reason is that self-dual codes include some of the nicest and best known error-
correcting codes, and the other is that they have strong and interesting connections
with other areas of mathematics such as combinatorics, group theory, lattices and
modular forms. Self-dual codes are also of considerable practical importance; for
instance, G24, the [24, 12] binary extended Golay code used in the Voyager space
probes, that were launched towards Jupiter and Saturn in 1977, is a self-dual code
[7].

In the past 50 years, the theory of self-dual codes has inspired many researchers
and subsequently has seen a tremendous growth. Over these years, researchers have
been busily involved in proposing various techniques for the construction of self-
dual codes, investigating the properties of the codes constructed and classifying -
eventually, enumerating them [13].

A new metric, known as the Rosenbloom-Tsfasman metric (the RT-metric, in
short), was first introduced by Rosenbloom and Tsfasman [14] in the context of
coding theory. In the context of the theory of uniform distributions, the same
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metric was also introduced by Martin and Stinson [6] and by Skriganov [19]. Being
a generalization of the classical Hamming metric, RT-metric immediately received
the attention of many coding theorists and subsequently a steady stream of work
has been done on codes equipped with this metric. Most of the research carried out
on codes in this metric is concerned with various bounds [12], weight distribution
and MacWilliam’s identities [1, 18, 11, 16], linearity [8, 9, 10], maximum distance
separability [19, 2], groups of automorphisms [5], burst error enumeration [3, 4, 17],
covering properties [20] and normality [15] over several algebraic structures.

As the inner product considered for RT-metric (see, [19]) is different from the
conventional inner product that is used to define duality in Hamming metric, most
of the codes which are self-dual in Hamming metric are not so in RT-metric. Hence,
there is a great need to thoroughly investigate even the existence of self-dual codes
in the different inner product setup for RT metric and subsequently, to explore
the properties of those codes if they exist. Here, in this paper we try to address
this problem. Our primary interest here is to establish the necessary and sufficient
condition for a code in RT-metric to be self-dual and to find their possible weight
distribution in terms of, what we shall call as, type of the code.

The organization of the paper is as follows. In Section 2, we present the basic
definitions and concepts that are useful for the results in the subsequent sections.
A linear code over Fq in RT-metric of dimension k will have k different non-zero
weights. Based on this observation, in Section 3, we define the standard information
set {d1, d2, . . . , dk} for the code (where d1 is the minimum RT-weight of the code).
Moreover, we define the generator matrix in standard form of a code through which
we obtain the standard information set for the dual code. Given the basic parameters
of a linear code, we obtain covering radius and minimum distance of its dual. In
Section 4, we establish necessary and sufficient conditions for a code in RT-metric
to be self-dual. Formally self-dual codes and projections of self-dual codes have
also been discussed in this section. In Section 5, some constructions for self-dual
codes are proposed and illustrated with examples. Finally, Section 6 provides the
conclusion.

2. Preliminaries

For x = (x1, x2, . . . , xs), y = (y1, y2, . . . , ys) ∈ F
s
q, the ρ-distance between x and y

is defined as dρ(x, y) = max{i|xi 6= yi, 1 ≤ i ≤ s}. The subsets of the space F
s
q

equipped with this metric are called q-ary RT-metric codes (or q-ary codes in the
RT metric); in addition, if they are subspaces, then they are called linear RT-metric
codes. For any k-dimensional linear code C in F

s
q, any k × s matrix G whose rows

form a basis for C is said to be its generator matrix. For any set of k linearly
independent columns of a generator matrix G, the corresponding set of coordinates
forms an information set for C. An RT-ball Bρ(x; r) (also called a ρ-ball) of radius
r centered at x ∈ F

s
q is the set {y ∈ F

s
q|dρ(x, y) ≤ r}. The maximum r for which

the ρ-balls of radius r centered at codewords do not intersect is called the packing
radius of the code and the minimum R for which the ρ-balls of radius R centered at
codewords cover the entire ambient space is called the covering radius of the code.
A code whose covering radius coincides with its packing radius is said to be perfect.
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For an RT-metric code C of length s and minimum ρ-distance dρ, the Singleton
bound is given by |C| ≤ qs−dρ+1 and, in particular, for linear codes with dimension
k, it is k ≤ s − dρ + 1. A code which attains the Singleton bound is said to be a
maximum distance separable code (MDS code, in short).

Throughout this paper, unless otherwise specified, a code means an RT-metric
code over Fq. Moreover, [s, k, dρ;R]q denotes a q-ary linear code with length s,
dimension k, minimum distance dρ and covering radius R; and (s,K, dρ;R)q denotes
a q-ary code with cardinality K. By [s], we mean the set {1, 2, . . . , s}.

2.1. Partition number and covering radius

The notion of partition number of a code, which greatly reduces the difficulty in find-
ing the covering radius of codes in RT-metric was introduced in [15]. The partition
number of a code is defined as follows.

Definition 1 (Partition number of a q-ary RT-metric code, see [15]). Let C be an
(s,K, dρ)q code in RT-metric. The largest non-negative integer l, for which each
q-ary l-tuple can be assigned to at least one codeword whose last l coordinates are
actually that l-tuple, is called the partition number of the code C.

The code with partition number l can be partitioned into ql parts, each of which
has the property that all its members have the same q-ary l-tuple as their last l
coordinates. Now, we state, without proof, the following result from [15] which
enables the notion of partition number to act as a tool in determining the covering
radius of an RT-metric code.

Theorem 1 (see [15]). Let C be an (s,K, dρ)qR code in RT-metric. Then the
partition number of C is l iff its covering radius is s− l.

3. Generator matrix in standard form of a code in RT-metric

The generator matrix in standard form of an RT-metric code was defined in a dif-
ferent context by Irfan Siap in [8]. We have adapted and modified it to suit to the
context of the present paper. We also observe that if d is the minimum ρ-distance,
then d will be the greatest minimal element among all the information sets of C.

Definition 2. Let C be an [s, k, d]q RT-metric linear code and G the generator
matrix of C. Applying certain elementary row operations one can always transform
G into the following form:

G′ =











g1,1 · · · g1,d1−1 g1,d1 0 · · · 0 0 0 · · · 0 · · · 0
g2,1 · · · g2,d1−1 0 g2,d1+1 · · · g2,d2−1 g2,d2 0 · · · 0 · · · 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

. . .
...

gk,1 · · · gk,d1−1 0 gk,d1+1 · · · gk,d2−1 0 gk,d2+1 · · · gk,dk
· · · 0











, (1)

where gi,di
= 1, gj,di

= 0 for j 6= i and {d1, d2, . . . , dk} is the set of k possible
RT-weights so that d = d1 < d2 < . . . < dk. In one way, the set of these di’s
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can be thought of an information set for the code C, which is called the “standard
information set” of C.

Any generator matrix of the linear code C is equivalent to G′. This G′ is called
the generator matrix in standard form. A linear code having G′ as its generator
matrix in standard form is said to be of type (d1, d2, . . . , dk).

Remark 1. One easily observes that, as far as the codes in RT-metric are concerned,
appending additional 0’s to the right end of the codewords will achieve nothing except
an increase in length. Also, it makes the investigation of vital parameters such as
the covering radius of the code a trivial exercise. In order to omit the superfluity,
throughout this paper, unless otherwise specified, we assume that the code C always
contains a codeword with full RT-weight s, where s is the length of the code. That
is, the type of C is (d1, d2, . . . , dk), such that dk = s.

Remark 2. From Definition 1, it is clear that, if a linear code C is of type
(d1, d2, . . . , dk), then its RT-weight distribution will be given by

A0 = 1, Ai = 0, ∀i /∈ {d1, d2, d3, . . . , dk} and Adi
= (q − 1)qi−1.

3.1. On duality of codes

In order to be able to establish MacWilliam’s type relations for codes in RT-metric,
a special inner product on Matm×s(Fq) is introduced in [6]. This inner product also
plays a significant role in the study of codes in RT-metric, for it influences many
interesting results (for example, the dual of an MDS code under this inner product
is again an MDS code). For x = (x1, x2, . . . , xs) and y = (y1, y2, . . . , ys) ∈ F

s
q, the

inner product of x and y is given by

〈x, y〉 = 〈y, x〉 =

s
∑

i=1

xiys−i+1(mod q) (2)

Then, the dual C⊥ of the code C can be defined as

C⊥ =
{

x ∈ F
s
q | 〈x, y〉 = 0 for all y ∈ C

}

. (3)

An RT-metric code C is said to be self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥.
It is obvious that the length s of any self-dual code is even.

Definition 3. Let A = (aij) be a p × r matrix. Then, the flip of the matrix A,
denoted by Flip (A), is defined by

Flip (A) = (aik), (4)

where k = r−j+1 for 1 ≤ i ≤ p and 1 ≤ j ≤ r. We denote the transpose of Flip (A)
as A⋄.

We obtain this flipping of a matrix as follows.
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Example 1. Let A be any p× r matrix given by

A =















a1,1 a1,2 · · · a1,r−1 a1,r
a2,1 a2,2 · · · a2,r−1 a2,r
...

...
. . .

...
...

ap−1,1 ap−1,2 · · · ap−1,r−1 ap−1,r

ap,1 ap,2 . . . ap,r−1 ap,r















. (5)

Then, Flip(A) and A⋄ are given by

Flip(A) =















a1,r a1,r−1 · · · a1,2 a1,1
a2,r a2,r−1 · · · a2,2 a2,1
...

...
. . .

...
...

ap−1,r ap−1,r−1 · · · ap−1,2 ap−1,1

ap,r ap,r−1 . . . ap,2 ap,1















, (6)

A⋄ =















a1,r a2,r · · · ap−1,r ap,r
a1,r−1 a2,r−1 · · · ap−1,r−1 ap,r−1

...
...

. . .
...

...
a1,2 a2,2 · · · ap−1,2 ap,2
a1,1 a2,1 . . . ap−1,1 ap,1















. (7)

Theorem 2. Let C be any [s, k, d]q linear code of type (d1, d2, . . . , dk). Then, the
dual C⊥ of C is an [s, s − k, d⊥]q linear code of type

(

d⊥1 , d
⊥
2 , . . . , d

⊥

s−k

)

such that
{

d⊥1 , d
⊥
2 , . . . , d

⊥

s−k

}

= [s] \ {s− d1 + 1, s− d2 + 1, . . . , s− dk + 1}.

Proof. The generator matrix of C in standard form is

G′ =











g1,1 g1,2 · · · g1,d1−1 g1,d1 0 · · · 0 0 0 · · · 0
g2,1 g2,2 · · · g2,d1−1 0 g2,d1+1 · · · g2,d2−1 g2,d2 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
gk,1 gk,2 · · · gk,d1−1 0 gk,d1+1 · · · gk,d2−1 0 gk,d2+1 · · · gk,dk











(8)

such that gi,di
= 1, gj,di

= 0 for j 6= i and d = d1 < d2 < . . . < dk = s. We know
that

C⊥ =
{

x ∈ F
s
q| 〈c, x〉 = 0, ∀c ∈ C

}

,

where

〈c, x〉 =

s
∑

i=1

cixs−i+1(mod q)

for c = (c1, c2, . . . , cs) and x = (x1, x2, . . . , xs).
This means that C⊥ is the solution space of the system

Flip (G′) xT = 0. (9)
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It is obvious that dim(C⊥) = s − k. Let C⊥ be of type
(

d⊥1 , d
⊥
2 , . . . , d

⊥

s−k

)

. From

(9), one sees that
{

d⊥1 , d
⊥
2 , . . . , d

⊥

s−k

}

= [s]\ {s− d1 + 1, s− d2 + 1, . . . , s− dk + 1}.

Otherwise, if d⊥i = s − dj + 1 for some i and j, then there must exist a codeword
of RT-weight s − dj + 1 in C⊥ and a codeword of RT-weight di in C whose inner
product is nonzero, contradicting the definition of C⊥. Hence, the proof holds.

Proposition 1. Let C be any [s, k, d;R]q RT-metric linear code. Then the covering
radius of C⊥ is s− d+ 1 and the minimum distance of C⊥ is s−R + 1.

Proof. From Theorem 2, C⊥ is of type
(

d⊥1 , d
⊥
2 , . . . , d

⊥

s−k

)

such that
{

d⊥1 , d
⊥
2 ,

. . . , d⊥s−k

}

= [s]\ {s− d1 + 1, s− d2 + 1, . . . , s− dk + 1}, where (d1, d2, . . . , dk) is

the type of C. If d1 = 1, then s 6∈
{

d⊥1 , d
⊥
2 , . . . , d

⊥

s−k

}

implying the partition num-

ber of C⊥ to be 0, and hence its covering radius is s. If d1 6= 1, then the set
{

d⊥1 , d
⊥
2 , . . . , d

⊥

s−k

}

contains, s, s− 1, s− 2, . . . , s− d+ 2, but not s− d+ 1. This

implies that the partition number of C⊥ is d − 1, and hence its covering radius is
s − d + 1. As the covering radius of C is R, its partition number is s − R. This
implies R + 1, R + 2, . . . , s ∈ {d1, d2, . . . , dk}, but R /∈ {d1, d2, . . . , dk} . Thus,
d⊥1 = s−R+ 1.

Corollary 1. Let C be any [s = 2k, k, d;R]q self-dual RT-metric code. Then cover-
ing radius of C is s− d+ 1.

Proof. From Proposition 1, the covering radius of C⊥ is s − d + 1. Since C is
self-dual (that is, C = C⊥), R = s− d+ 1.

4. Existence of self-dual codes

Definition 4. Let us consider the set [s] = {1, 2, . . . , s}. Then a, b ∈ [s] are said
to be RT-conjugate (or simply, conjugate) to each other if a = s − b + 1 (i.e., if
a+ b = s+ 1).

Proposition 2. Let C be an [s = 2k, k, d;R]q self-dual RT-metric code of type
(d1, d2, . . . , dk). Then no pair of di’s is RT-conjugate.

Proof. Since C is self-dual, C = C⊥. Then by Theorem 2,

(d1, d2, . . . , dk) = [s] \ {s− d1 + 1, s− d2 + 1, . . . , s− dk + 1} . (10)

Hence, the result follows.

Remark 3. The above result also holds for self-orthogonal codes, the proof of which
follows similar lines as in the proof above.

Thus, a code of type (d1, d2, . . . , dk), in which there exist di, dj such that s −
di + 1 = dj , can never be self-dual or self orthogonal.
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Theorem 3. Let C be any [s, k, d]q RT-metric code of type (d1, d2, . . . , dk) with
s = 2k and di’s are not pair-wise conjugate. Let the generator matrix of C in
standard form be

G′ =











g1,1 g1,2 · · · g1,d1−1 g1,d1 0 · · · 0 0 0 · · · 0
g2,1 g2,2 · · · g2,d1−1 0 g2,d1+1 · · · g2,d2−1 g2,d2 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
gk,1 gk,2 · · · gk,d1−1 0 gk,d1+1 · · · gk,d2−1 0 gk,d2+1 · · · gk,dk











,

such that gi,di
= 1, gj,di

= 0 for j 6= i and d = d1 < d2 < d3 < . . . < dk = s. Then
C is self-dual if and only if

g
i,s−dj+1

+ g
j,s−di+1

= 0 (mod q), ∀i & j

Proof. From the definition of a dual of an RT-metric code, the code C is self-
dual if and only if GG⋄ = 0, where G is any generator matrix of the code C and
G⋄ = [Flip(G)]⊤ . Equivalently, G′(G′)⋄ = 0. That implies











g1,1 g1,2 · · · g1,d1−1 g1,d1 0 · · · 0 0 0 · · · 0
g2,1 g2,2 · · · g2,d1−1 0 g2,d1+1 · · · g2,d2−1 g2,d2 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
gk,1 gk,2 · · · gk,d1−1 0 gk,d1+1 · · · gk,d2−1 0 gk,d2+1 · · · gk,dk











×















































0 0 · · · gk,dk

...
...

. . .
...

0 0 · · · gk,d2+1

0 g2,d2 · · · 0
0 g2,d2−1 · · · gk,d2−1

...
...

. . .
...

0 g2,d1+1 · · · gk,d1+1

g1,d1 0 · · · 0
g1,d1−1 g2,d1−1 · · · gk,d1−1

...
...

. . .
...

g1,2 g2,2 · · · gk,2
g1,1 g2,1 · · · gk,1















































= 0.

For any i and j,

g
i,s−dj+1

g
j,dj

+ g
i,s−dj+2

g
j,dj−1

+ g
i,s−dj+3

g
j,dj−2

+ . . .+ g
i,di−2

g
j,s−di+3

+g
i,di−1

g
j,s−di+2

+ g
i,di

g
j,s−di+1

= 0 (mod q).

In the above sum, we can observe that, for i and j, the summation runs through the
product of elements in rows i and j, which are in columns of the generator matrix
having conjugate indices, i.e., gi,kgj,s−k+1. Moreover, one can also observe that the
summation starts and ends with products whose one of the terms involves gj,dj

and
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gi,di
. Now, in each of the intermediate summands, either of the terms involved in

the product must correspond to the columns d1, d2, . . . , or dk, as suggested by the
hypothesis regarding the type of the code C. But, nonzero entries in the columns
say, dl are at gl,dl

; and gs,dl
= 0 for s 6= l. Hence, all the intermediate summands

must be equal to 0. Thus we have,

g
i,s−dj+1

+ g
j,s−di+1

= 0, for each i, j = 1, 2, . . . , k, (since g
i,di

= 1 = g
j,dj

).

Hence, the theorem holds.

Remark 4. Let C be any code of type (d1, d2, . . . , dk). From the definition of the
standard information set of C, it is clear that the columns d1, d2, . . . , dk of G form
the identity matrix Ik of order k. Let us denote by Gc, the square sub-matrix of G
formed by the columns, in the same order, corresponding to the set complement to
{d1, d2, . . . , dk}. Let us call this matrix Gc a standard complementary matrix of the
code. Now, the above theorem can be restated as follows.

Theorem 4. Let C be an [s, k, d]q RT-metric code of type (d1, d2, . . . , dk) with s = 2k
such that no pair of di’s is conjugate. C is self-dual if and only if the standard
complementary matrix Gc of C is such that the mirror images of elements with
respect to the anti-diagonal are additive inverses of each other in Fq.

Example 2 (For a binary self-dual code). Consider the binary [8, 4, 5] RT-metric
code C1 with generator matrix G1 given by the following matrix.

G1 =









0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1









.

Here, we observe that this generator matrix is in standard form and the code is of
type (5, 6, 7, 8). It is easy to verify that G1G

⋄
1 = 0, where G⋄

1 = [Flip(G1)]
⊤, and

also that this code satisfies all the conditions set by Theorem 3 for an RT-metric
code to be self-dual. Thus, C1 is self-dual. When considered as a code in Hamming
metric, the code C1 is actually equivalent to the [8, 4, 4] extended binary Hamming
code Ĥ3, obtained from the [7, 4, 3] binary Hamming code H3 by adding an overall
parity check coordinate to each codeword of H3. This code is also a self-dual code as
far as the Hamming metric is concerned. Thus, this is a typical example of a binary
code which is self-dual in both Hamming and RT metrics.

Example 3 (For a ternary self-dual code). Consider the ternary [6, 3, 3] RT-metric
code C2 whose generator matrix in standard form G2 is given by the following matrix.

G2 =





2 0 1 0 0 0
1 0 0 0 1 0
0 2 0 1 0 1



 .

This code is of type (3, 5, 6) and G2G
⋄
2 = 0. It is easy to observe that this code is

self-dual according to Theorem 3 and/or Theorem 4.
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4.1. Formally self-dual codes

A code whose weight distribution is the same as that of its dual is said to be a
formally self-dual code. In fact, a code is formally self-dual if its weight enumerator
is invariant under MacWilliams transformations.

From the above definition, one concludes that a code which satisfies the nec-
essary condition for being self-dual is formally self-dual. That is, a code of type
(d1, d2, . . . , dk) is formally self-dual if no pair of di’s is conjugate to each other.

Proposition 3. An [s, k, d]q RT-metric code of type (d1, d2, . . . , dk) with s = 2k
such that no pair of di’s is conjugate is always formally self-dual.

Proof. The proof is obvious from the definition of a formally self-dual code and
that of the type of a code and from Remark 2 and Theorem 2.

Corollary 2. Every MDS [s, k, d]q code with s = 2k is formally self-dual.

Proof. Let C be any [s, k, d]q MDS code with s = 2k. Then, by the Singleton
bound and by Defintion 2, we observe that C is of type (k + 1, k + 2, . . . , s). Hence,
the proof follows from Proposition 3.

4.2. Projections and self-duality

Here, by projection of a code on a subset of coordinates we mean that the projection
is on the right hand corner; that is, if a code in F

s
q is projected to F

s′

q with s ≥ s′,
then it is projected to the coordinates s− s′ + 1, s− s′ + 2, . . . , s. Let P denote the
projection of Fs

q to F
s′

q . Then, we can make the following observations regarding the
notion of self-duality of the codes in this metric.

• The standard information set of an [s, k, d]q MDS code is {s− k + 1, s− k + 2,
. . . , s}. Hence, the projection of an MDS code is not formally self-dual, as some
elements in its standard information set lose their conjugates.

• Projection of a code is formally self-dual only if the code is of type (d1, d2,
. . . , dk) such that d1, d2, . . . , d (s−s′)

2

≤ (s− s′).

• If a code C and its projection P (C) are both self-dual, then the codewords in
C with weight less than or equal to s−s′ are projected on to the zero codeword
in P (C).

5. Self-dual codes: constructions

In this section, we give two methods for constructing self-dual codes from two or
more self-dual codes of smaller dimensions and lengths.
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5.1. Construction - I:

Let Ci be any [si, ki, di]q RT-metric self-dual codes for i = 1 and 2 such that si =
2ki. Then, C = {c1|c2|c1 : c1 ∈ C1 and c2 ∈ C2} is an [s, k, d]q code with d = d1,
k = 2k1 + k2 and s = 2s1 + s2, which is also self-dual. If G1 and G2 are generator
matrices of C1 and C2, respectively, then the generator matrix of C is given by

G =





G1 O O

O G2 O

O O G1



 .

Here, the covering radius of C is s1 + s2 +R1 where R1 is the covering radius of C1.

Example 4. The example of a binary self-dual code constructed using this method is
as follows. Let us consider a [4, 2, 3] binary RT-metric code C1 and a [4, 2, 3] binary
RT-metric code C2, whose generator matrices G1 and G2, respectively, are given as
follows:

G1 =

[

1 0 1 0
1 1 0 1

]

,

G2 =

[

0 1 1 0
1 0 0 1

]

.

It is easy to verify that these two codes C1 and C2 are self-dual. Now, consider the
code C whose generator matrix is given by

G =

















1 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 1 0 1

















.

From the above generator matrix G, we observe that the code C is a [12, 6, 3] code
and it satisfies all the conditions discussed in Theorem 3 for it to be self-dual. Hence,
this code is self-dual.

5.2. Construction - II:

Let Ci be any [si, ki, di]q RT-metric self-dual codes for i = 1 and 2 such that si = 2ki.
Then, C′ =

{

a|c2|b : a, b ∈ F
k1
q with (a, b) ∈ C1 and c2 ∈ C2

}

is an [s, k, d]q code
with k = k1 + k2 and s = s1 + s2, which is also self-dual. If G1 and G2 are
generator matrices of C1 and C2, respectively, then the generator matrix of C′ is
given by

G′ =

[

G′
1 O G′′

1

O G2 O

]

,
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where

G1 =
[

G′
1 G′′

1

]

,

such that G′
1 and G′′

1 are square matrices of order k1. Then, the minimum RT-
distance of C′ is given by

d =

{

d1, if d1 ≤ k1
k1 + d2, if d1 > k1 (i.e. if d1 = k1 + 1).

And the covering radius of C′ is given by

R =

{

s2 +R1, if R1 > k1
R1 +R2, if R1 = k1

,

where Ri is the covering radius of Ci.

Example 5. The example of a binary self-dual code constructed using this method is
as follows. Let us consider the same codes C1 and C2 which are given in Example 4.
Now, consider the code C whose generator matrix is given by

G =









1 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0









.

Now, this generator matrix G can be expressed in the standard form as

G′ =









0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
1 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1









.

From the above generator matrix in standard form G′, it can be easily seen that C
is an [8, 4, 5] code of type (5, 6, 7, 8). Moreover, from G′ we observe that the code
C satisfies all the conditions discussed in Theorem 3 for it to be self-dual. Hence,
this code is self-dual.

Here, one can observe that even if we take the same combination of codes C1

and C2 in both examples, the code constructed using the second method has a
greater minimum RT-distance. Furthermore, if we take two MDS self-dual codes as
constituent codes, we can not construct an MDS self-dual code using Construction-I
whereas Construction-II gives us an MDS self-dual code, which is also evident from
Examples 4 and 5. Thus, between these two constructions, the second method is
efficient as it provides better codes.

6. Conclusion

As an [s, k] linear code in RT-metric has k different possible non-zero weights, we
have adapted and modified the definition of the generator matrix in standard form
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given in [8] to introduce the standard information set for a code. The standard
information set for the dual of a code is determined. Given the basic parameters
of a linear code, we have obtained the covering radius and minimum distance of its
dual. Further, we have established the necessary and sufficient conditions for a code
to be self-dual. Formally self-dual codes are discussed and found to be the ones that
satisfy the necessary condition for being self-dual. Finally, some constructions for
self-dual codes are proposed.
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