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Abstract. The normal distribution is the most important model in statistics for analysis
of continuous data. We propose a new distribution, called the extended mixture normal
distribution, based on a linear mixture model. We obtain explicit expressions for the
ordinary and incomplete moments, generating and quantile functions, mean deviations and
two measures of entropy. The maximum likelihood and Bayesian methods are used to
estimate the model parameters. We prove empirically that the new distribution can be a
better model than the normal and other classical distributions by means of an application
to real data.
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1. Introduction

Let φ(x) be the standard normal (SN) probability density function (pdf) given by

φ(x) =
1√
2π

e−
x2

2 , (1)

for x ∈ R. We define the standard extended normal (EN) density function (for
r = 0, 1, . . .) by

φr(x) = cr x
2r φ(x), (2)

where

cr =

√
2π

2(2r+1)/2 Γ
(
2r+1
2

)
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and Γ(·) is the gamma function. It is easy to check that φr(x) is a genuine density
function in R. Here, c0 = 1 and φ0(x) = φ(x) and c1 = 1 and φ1(x) = x2 φ(x).

The new parameter r is really a shape parameter. The plots in Figure 1 reveal
that the spread of the two modes of the EN pdf increases when r increases.
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Figure 1: Plots of the EN density function for some parameter values

The EN model is not very flexible even with the additional parameter r, and
then we construct a linear mixture distribution.

We define the (standard) extended mixture normal (EMN) density by

g(x; r, α) = (1 − α)φ(x) + αφr(x), (3)

where α ∈ (0, 1) and x ∈ R. Clearly, g(x; r, α) is a symmetric density function. For
r = 1, equation (3) reduces to the symmetric component normal density function,
namely g(x; 1, α) = [(1 − α) + αx2]φ(x). Further, g(x; r, 0) = φ(x).

Yakowitz and Spragins (1968) demonstrated that a finite mixture is identifiable
if a relation of the type g(x; r1, α1) = g(x; r2, α2) implies r1 = r2 and α1 = α2. From
the definition given by (3), it is easy to prove that model (3) is identifiable.

Hereafter, let X ∼EN(r, α) be a random variable having density function (3) and
Z ∼N(0, 1). The cumulative distribution function (cdf) of X is given by

G(x; r, α) = (1− α)Φ(x) +
α cr
21−r

[
Γ

(
r +

1

2

)
+ γ

(
r +

1

2
,
x2

2

)]
, (4)

where Φ(x) is the standard normal cdf and γ(a, z) =
∫ z

0
ta−1 e−t dt is the incomplete

gamma function. If Y = µ+ σX , then Y has density

g(y; r, α, µ, σ) =
1

σ
φ

(
y − µ

σ

)[
(1− α) + α cr

(
y − µ

σ

)2r
]
, (5)

where y ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, r = 0, 1, 2, . . .
and 0 < α < 1 are shape parameters. A random variable Y having density function
(5) is denoted by Y ∼ EMN(r, α, µ, σ). For µ = 0 and σ = 1, we obtain (3).
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Figures 2 and 3 display some plots of the EMN density for selected values of r
and α with µ and σ fixed. Figure 2a reveals that this density function is unimodal
when α increases (µ = 0 and σ = 1). For lower values of α, the maxima of the EMN
density function increases. For fixed values r = 1, µ = 0 and σ = 1, this density
function possesses bimodal characteristics (see Figure 2b).
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(a) α increasing, µ = 0 and σ = 1
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(b) r = 1, µ = 0 and σ = 1

Figure 2: Plots of EMN density functions
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(a) α increasing, r = 5, µ = 0 and σ = 1
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Figure 3: Plots of the density functions

The lower values of the EMN pdf are most influenced by the greater values of α.
For some values of the parameters r, µ and σ, we note that this density possesses
three modes (see Figures 3a and 3b). When the parameter α increases then the
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maxima that correspond to µ = 0 decrease. On the other hand, when r decrease
the maxima corresponding to x = 0 increase. At the end, we can conclude that
the parameters r and α have a strong influence on the shape of the EMN density
function.

We sometimes omit the dependence of the pdf and cdf of the EMN distribution
on the parameters. It is worth to mention that this distribution belongs to the
Gram-Charlier series type. One can verify that the density g(x) is a specific rth
order Gram-Charlier series, i.e., the series that represents g(x) stops at degree r.
The relationships between the coefficients of this series and the moments of random
variables are discussed in Chapter 12, Eq. (38), p. 16 in [8].

We introduce a distribution that extends the normal distribution meaning that
|x| possess the chi-squared distribution with ν = 2r + 1 degrees of freedom (see
Chapter 17, Eq.(62) in [8]). In the same chapter, moment recursions and cumulants
are given by Eqs. (63) and (64) for all integer values of r.

Siddiqui and Weiss (1963) and Krysicki (1963) studied some properties of mix-
tures of chi-squared distributions with one degree of freedom. Suppose that the
random variable X possesses the EMN distribution and defines the random variable
Y = X2. The density of Y is given by

f(y) =
d

dy
P (−√

y ≤ X ≤ √
y) .

After some calculation, we can write

f(y) = (1− α)πχ2(1)(y) + απχ2(2r+1)(y). (6)

Then, the pdf of Y can be expressed as a mixture of chi-square densities with
one and 2r + 1 degrees of freedom.

By using the characteristic function corresponding to (6), we can study the ran-

dom variable Z =
n∑

i=1

Xi, where the X
′
is are iid random variables with pdf (3). Some

straightforward calculations lead to the following representation for the pdf of Z

f(z) =

n∑

k=0

(
n

k

)
(1− α)k αn−k πχ2(n+2r(n−k))(z).

So, the pdf of Z can be written as a linear combination of chi-square densities with
n+ 2r(n− k) degrees of freedom (for k = 0, 1, . . . , n).

The rest of the paper is organized as follows. A range of mathematical properties
of the proposed mixture distribution is explored in Sections 2 to 9. Estimation of
model parameters by the maximum likelihood method is addressed in Section 10.
Bayesian analysis is investigated in Section 11. An application to a real data set is
given in Section 12. Finally, some conclusions are given in Section 13.

2. Shape characteristics

We examine shape characteristics of the pdf of X . The first derivative of (3) is

g′(x; r, α) = − 1√
2π

e−
x2

2 x
(
α cr x

2r − 2rα cr x
2r−2 + 1− α

)
. (7)
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There may be more than one root of equation (7). If x = x0 is its root, then it
corresponds to a local maximum, a local minimum or an inflexion point depending

on whether λ(x0) < 0, λ(x0) > 0 or λ(x0) = 0, where λ(x) =
d 2 g(x; r, α)

dx2
is given

by

λ(x) =
1√
2π

e−
x2

2

{
α cr x

2r−2
[
x4 − x2 + 2r(2r− 1)

]
− (1− α)(x2 + 1)

}
.

3. Useful expansion

A power series expansion for the EMN cdf can be easily derived from the power series
for the standard normal cdf and for the incomplete gamma function. For n ≥ 0, let

an =
(−1)n (1− α)

2n+1 (2n+ 1)n!
and bn =

(−1)n α cr

(2n+ 2r + 1) 2n
√
2π n!

.

We can rewrite G(x; r, α) as

G(x; r, α) =
1

2
+
∑

n≥0

an x
2n+1 +

∑

n≥0

bn x
2(n+r)+1.

We can combine the two power series in just one power series, whose coefficients
are conveniently defined by dn = an for n = 0, 1, . . . , r − 1 and dn = an + bn−r for
n = r, r + 1, r + 2, . . .. Then,

G(x; r, α) =
∑

n≥0

en x
n, (8)

where e0 = 1/2, e1 = d0 and, for n = 1, 2, 3, . . . : e2n = 0 and e2n+1 = dn. Hereafter,
we can denote G(x; r, α) by G(x). Equation (8) is the main result of this section.

4. Moments

The moments E(Xβ) (for β > −1) are given by

µ′
β = E(Xβ) =

1√
2π

{(1 − α) d1 + α cr d2} , (9)

where

d1 =

∫ +∞

−∞
yβ e−y2/2 dy and d2 =

∫ +∞

−∞
yβ+2r e−y2/2 dy.

If β is an odd number, d1 = d2 = 0. If β is not an odd number, we use equation
(3.462.3) by Gradshteyn and Ryzhik (2007) to obtain d1 =

√
2π i−β Dβ(0) and

d2 =
√
2π i−β−2rDβ+2r(0), where i =

√
−1, Dν(z) is the parabolic cylinder function

defined by

Dν(z) = 2ν/2 ez
2/4

[ √
π

Γ[(1− ν)/2]
1F1

(
−ν
2
;
1

2
;
z2

2

)
− z

√
2π

Γ(−ν/2)

× 1F1

(
1− ν

2
;
3

2
;
z2

2

)]
,

(10)
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1F1(·; ·; ·) is the confluent hypergeometric function of the first kind given by

1F1(a; b; z) =
∑

j≥0

(a)j
(b)j

zj

j!
,

and (a)j = Γ(a+ j)/Γ(a) denotes the Pochhammer symbol. It follows that Dν(0) =
2ν/2

√
π/[Γ

(
1−ν
2

)
]. From the last equation, d1 and d2 can be expressed as

d1 =
2

β+1
2 π

iβ Γ
(

1−β
2

) and d2 =
2

β+2r+1
2 π

iβ+2r Γ
(

1−β−2r
2

) .

Based on these expressions, equation (9) reduces to

µ′
β =

√
2βπ

iβ


 1− α

Γ
(

1−β
2

) +
α 2r cr

Γ
(

1−β−2r
2

)


 . (11)

When α = 0 in equation (11), the nth moment (n ∈ N) of the SN distribution follows
as a special case: E(Zn) = (2n − 1)!! for n even and E(Zn) = 0 for n odd, where
p!! = p(p− 2) . . . 31 (for p odd).

If n ∈ N, from (11) we obtain: µ′
n = E(Xn) = 0 for n odd, and for n even

µ′
n =

1√
2π

[(1− α)(2n− 1)!! + α cr (2n+ 4r − 1)!!] . (12)

The skewness and kurtosis measures of X can be determined from ordinary
moments using well-known relationships. Plots of these quantities for some choices
of r as functions of α, by fixing µ = 0, σ = 1, are displayed in Figure 4.
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Figure 4: Skewness and kurtosis of X as functions of α for some values of r
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These plots reveal that the skewness and kurtosis of the EMN distribution are
quite flexible.

For empirical purposes, the shapes of many distributions can be usefully de-
scribed by incomplete moments. These moments play an important role in measuring
inequality, for example, income quantiles and Lorenz and Bonferroni curves, which
depend upon the first incomplete moment of the distribution. The nth incomplete
moment of X is given by

mn(z) =
1− α√

2π

∫ z

−∞
xn e−x2/2 dx +

α cr√
2π

∫ z

−∞
xn+2r e−x2/2 dx .

Further, we can determine the integrals in this equation by setting x2/2 = u. We
can write

mn(z) =
(1− α)√

2π
2

n−1
2

[
Γ

(
n+ 1

2

)
+ γ

(
n+ 1

2
,
z2

2

)]

+
α cr√
2π

2
n+2r−1

2

[
Γ

(
n+ 1 + 2r

2

)
+ γ

(
n+ 1 + 2r

2
,
x2

2

)]
.

(13)

Next, we obtain the probability weighted moments (PWMs) of X . They cover
the summarization and description of theoretical probability distributions. These
moments can estimate the parameters of a distribution whose inverse cannot be ex-
pressed explicitly. The (s, p)th PWM of X is formally defined as τs,p = E[XsG(X)p]
=
∫∞
−∞ xsG(x)p g(x) dx. For calculating τs,p we use an equation of Gradshteyn and

Ryzhik (2007, Section 0.314) for a power series raised to a positive integer power p
(for p = 1, 2, . . .)



∑

n≥0

an x
n




p

=
∑

n≥0

cp,n x
n, (14)

where the coefficients cp,n can be determined from the recurrence relation (for k ≥ 1
with cp,0 = ap0)

cp,k = (k a0)
−1

m∑

j=1

[j(p+ 1)− k] ak cp,k−m.

Using (3), (8) and (14), we have τs,p =
∑

n≥0 fp,n (a1 + a2), where

a1 =
1− α√

2π

∫ ∞

−∞
xs+n e−x2/2 dx and a2 =

α cr√
2π

∫ ∞

−∞
xs+n+2r e−x2/2 dx,

and the coefficients fp,n are given by fp,0 = ep0 = 2−p and (for n ≥ 1) fp,n =
2n−1

∑m
j=1 [j(p+ 1)− n] ej fp,n−j .

Using parametric integration one can prove that (for n ∈ N) holds

∫ +∞

−∞
xn e−

x2

2 dx = 1 · 3 · 5 . . . · (n− 1)
√
2π.
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So, using the last equation we obtain

a1 + a2 = 3× 5× . . .× (s+ n− 1) [1− α+ α cr(s− n) . . . (s+ n+ 2r − 1)] .

Hence, τs,p can be expressed as

τs,p =
√
π
∑

n≥0

3×. . .×(s+n−1) [1− α+ α cr(s− n) . . . (s+ n+ 2r − 1)] fp,n . (15)

Other kinds of moments such as the factorial and L-moments may also be obtained
in closed form, but we consider only the previous moments for reasons of space.
Equations (11), (12), (13) and (15) are the main results of this section.

5. Generating function

The moment generation function (mgf) of the random variable X is defined as
M(t) = E(et X). Here, we provide two explicit expressions for M(t). First, using a
result in Gradshteyn and Ryzhik (2007, equation 3.462.3), we obtain

M(t) = (1− α) e−t2/2 +
α cr√
2π

M2(t) = e−t2/4
[
(1− α) e−t2/4 + α cr D2r(it)

]
,(16)

where M2(t) =
∫ +∞
−∞ x2r e−

x2

2 +tx d x and D2r(it) is obtained from (10).

Second, setting x− t = 2v and using the binomial expansion, M2(t) turns out to
be

M2(t) = et
2/2

2r∑

k=0

(
2r

k

)
2k+1 t2r−k

∫ +∞

−∞
vk e−v2

dv.

From equation (3.462.4) in Gradshteyn and Ryzhik (2007), we obtain M2(t) and
then the last equation becomes

M(t) = (1− α) e−t2/2 + α
√
π cr e

t2/2
2r∑

k=0

(
2r

k

)
t2r−k 2k+1/2

ik Γ
(
1−k
2

) . (17)

Equations (16) and (17) are the main results of this section.

6. Quantile expansion

First, we invert G(x) = G(x; r, α) in (4) to obtain a power series expansion for the
EMN quantile function (qf), say x = Q(u). We shall use the Lagrange theorem to
derive a power series for Q(u). We assume that the power series expansion holds

w = G(x) = w0 +

∞∑

n=1

gn (x− x0)
n, g1 = G′(x) 6= 0,
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where G(x) is analytic at a simple x0−point. Then, the inverse function x = Q(u) =
G−1(u) exists and it is single-valued in the neighborhood of the point u = u0. The
power series inverse x = Q(u) is given by Markushevich (1965, vol. 2, p. 88)

x = Q(u) = x0 +

∞∑

n=1

hn (u− u0)
n,

where

hn =
1

n!

dn−1

dzn−1
{[ψ(x)]n}

∣∣∣∣
x=x0

and ψ(x) =
x− x0

G(x) − x0
.

From (8) we can write

G(x) =
1

2
+ x

(
e1 + e2x+ e3x

2 + . . .
)
.

Setting mn = en+1 for n = 0, 1, 2, . . . , we obtain G(x) = 0.5+x
∑∞

n=0mn x
n, where

m0 = d0, m1 = 0, m2 = d1, m3 = 0, m4 = d2, and so on. Setting x0 = 0 and
u0 = 1/2, we define

ψ(x) =
x

G(x) − 1
2

=
1∑∞

n=0mn xn
.

The inverse of the power series
∑∞

n=0mn x
n follows from a result by Gradshteyn

and Ryzhik (2007, equation 0.313)

ψ(x) =
1∑∞

n=0mn xn
=

1

m0

∞∑

n=0

pn x
n,

where the coefficients pn can be determined from pn = −m−1
0

∑n
k=1 mk+1 pn−k, n ≥

1 with p0 = 1. Then, ψ(x)n =
(

1
m0

∑∞
i=0 pi x

i
)n

.

Using Equation (14), we can write ψ(z)n = 1
mn

0

∑∞
i=0 qn,i x

i, where the coeffi-

cients qn,i (for i = 1, 2, . . .) are given by qn,i = i−1
∑i

m=1 [m (n+ 1)− i] pm qn,i−m,
and qn,0 = pn0 = 1. The quantity qn,i can be determined from qn,0, . . . , qn,i−1 and
therefore from p0, . . . , pi by programming numerically our expansions in any alge-
braic or numerical software.

The derivative of order (n− 1) of ψ(x)n gives

hn =
1

n!

dn−1

dxn−1

{
[ψ(x)]n

}∣∣∣∣
x=0

=
qn,n−1

nmn
0

.

Hence, a power series for the ENN qf reduces to

Q(u) =

∞∑

n=1

bn

(
u− 1

2

)n

, (18)

where bn = qn,n−1/(nm
n
0 ). Equation (18) can be used to derive alternative explicit

expressions for the ordinary and incomplete moments, mgf and mean deviations of
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X . For example, setting cn = bn+1 = qn+1,n/[(n+ 1)mn+1
0 ] for n = 0, 1, . . ., we can

obtain (for p = 1, 2, ...)

E(Xp) =

∫ 1

0

(
u− 1

2

)p
[ ∞∑

n=0

cn

(
u− 1

2

)n
]p

du.

By using (14) and interchanging the integral with the sum

E(Xp) =

∞∑

n=0

dp,n

∫ 1

0

(
u− 1

2

)n+p

du =

∞∑

n=0

[1− (−1)n+p+1] dp,n
(n + p + 1) 2n+p+1

, (19)

where the quantities dp,n can be obtained from the recurrence relation (for n ≥ 1
with dp,0 = cp0) dp,n = (n c0)

−1
∑n

j=1 [j (p + 1) − n] cj dp,n−j . Equations (18) and
(19) are the main results of this section.

7. Mean deviations

The mean deviations about the mean (δ1 = E(|X − µ′
1|)) and the median (δ2 =

E(|X −M |)) of X can be expressed as

δ1 = 2µ′
1G(µ

′
1)− 2m1(µ

′
1) and δ2 = µ′

1 − 2m1(M), (20)

respectively, where

µ′
1 = E(X) =

1√
2π

[(1 − α) + α cr (4r + 1)!!] ,

G(·) is obtained from (4), M is the median determined by the nonlinear equation

(1− α)Φ(M) +
α cr
21−r

[
Γ

(
r +

1

2

)
+ γ

(
r +

1

2
,
M2

2

)]
= 1/2

and using (13) with n = 1, we obtain

m1(z) =
(1− α)√

2π

[
1 + γ

(
1,
z2

2

)]
+
α 2r cr√

2π

[
r! + γ

(
r + 1,

z2

2

)]
.

A useful application of mean deviations refers to the Lorenz and Bonferroni curves.
They are important in fields like economics, reliability, demography, insurance and
medicine. For a given probability π, they are defined by L(π) = m1(q)/µ

′
1 and

B(π) = m1(q)/(π µ
′
1), respectively, where q = Q(π) = F−1(π) can be determined

from (18).

8. Entropies

An entropy is a measure of variation or uncertainty of a random variable X . Two
popular entropy measures are the Rényi and Shannon entropies (Shannon, 1951;
Rényi, 1961). The Rényi entropy of a random variable with pdf g(x) is defined by

IR(γ) =
1

1− γ
log

(∫ ∞

−∞
gγ(x)dx

)
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for γ > 0 and γ 6= 1.
Assuming γ = n = 2, 3, . . . and using the binomial expansion, the last equation

can be expressed as

IR(n) =
1

1− n
log

{(
1√
2π

)n n∑

k=0

(
n

k

)
(α cr)

k (1 − α)n−k

∫ +∞

−∞
x2kr e−

n x2

2 dx

}

=
1

1− n

{
Jn + log

[
n∑

k=0

(
n

k

)
(αcr)

k (1− α)n−k

∫ +∞

0

x2kr e−
n x2

2 dx

]}
,

where Jn = −n
2 log(2π) + log(2) and

IR(n) =
1

1− n

{
Jn + log

[
n∑

k=0

(
n

k

)
(αcr)

k (1− α)n−k

(
2

n

)kr+ 1
2

× Γ

(
kr +

1

2

)]}
.

(21)

We can write IR(γ) = (1 − γ)−1E{g(X)γ−1}. Let δ = E(X). For γ real positive,
we have

E{g(X)γ−1} = δγ−1E
(
{1 + θ [g(X)− δ]}γ−1

)
,

where θ = δ−1. From the generalized binomial expansion, we can write

{1 + θ [g(X)− δ]}γ−1 = 1 +

∞∑

n=1

θn Pn

n!
[g(X)− δ]n,

where Pn =
∏n−1

j=0 (γ − 1− j). Further, we have

E{g(X)γ−1} = δγ−1

(
1 +

∞∑

n=2

θn Pn

n!
E{[g(X)− δ]n}

)
. (22)

We now have to determine E{[g(X)]n} for n ≥ 2. From (3) and using the
binomial expansion, we obtain

ρn = E{[g(X)]n} =

n∑

m=0

(
n

m

)
(α cr)

m (1 − α)n−m ψm,n,

where ψm,n = E{X2mr φ(X)n}. Then,

ψm,n = 2

∫ ∞

0

x2mr φ(x)n+1 dx.

Setting (n+ 1)x2/2 = z, we can easily write ρn as

ρn =

n∑

m=0

2mr−n/2 (1− α)n−m (α cr)
m

√
πn+1 (n+ 1)2mr+1

(
n

m

)
Γ

(
mr +

1

2

)
.
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By expanding the binomial term in (22), an explicit expression for IR(γ) follows as

IR(γ) = (1 − γ)−1 δγ−1


1 +

∞∑

n=2

θn Pn

n!

n∑

j=0

(
n

j

)
(−δ)n−j ρj


 , (23)

which holds for any γ real positive and γ 6= 1, where ρj is given before.
Next, the Shannon entropy of a random variableX is defined by E{− log[g(X)]}.

It is a special case of the Rényi entropy when γ ↑ 1. Equation (21) is very complicated
for limiting, and then we derive an explicit expression for the Shannon entropy from
its definition. We can write

E
{
− log[g(X)]

}
= −

∫ +∞

−∞

[
(1− α)φ(x) + αcrx

2rφ(x)
]
log{(1− α)φ(x)

+αcrx
2rφ(x)} dx

= −2

∫ +∞

0

[
(1− α)φ(x) + αcrx

2rφ(x)
]
log{(1− α)φ(x)

+αcrx
2rφ(x)} dx

and then

E{− log[g(X)]} =− 2

{
1− α√

2π

∫ ∞

0

e−
x2

2

[
log

(
1√
2π

)
− x2

2

]
dx

+
αcr√
2π

∫ +∞

0

x2re−
x2

2

[
log

(
1√
2π

)
− x2

2

]
dx

+
1− α√

2π

∫ +∞

0

e−
x2

2 log
[
(1− α) + αcr x

2r
]
dx

+
αcr√
2π

∫ +∞

0

x2r e−
x2

2 log
[
(1 − α) + αcr x

2r
]
dx

}
.

(24)

The calculations of the four integrals in (24) are given in Appendix A. Equations
(21), (23) and (24) are the main results of this section.

9. Order statistics

Order statistics make their appearance in many areas of statistical theory and prac-
tice. Suppose X1, . . . , Xn is a random sample from the EMN distribution. Let Xi:n

denote the ith order statistic. The pdf of Xi:n can be expressed as

gi:n(x) = K

n−i∑

j=0

(−1)j
(
n− i

j

)
g(x)G(x)j+i−1 , (25)

where K = n!/[(i− 1)! (n− i)!]. From equations (8) and (14), we can write

G(x; r, α)j+i−1 =
∑

p≥0

fj+i−1,p x
p, (26)
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where fj+i−1,p is defined in Section 4. Substituting (26) into (25), we have

gi:n(x) = K
n−i∑

j=0

∑

p≥0

(−1)j fj+i−1,p

(
n− i

j

)
xp
[
(1 − α)φ(x) + α cr x

2r φ(x)
]
.

Next, we can easily obtain the moments of the order statistics from (11) as

E(Xβ
i:n) = K

n−i∑

j=0

∑

p≥0

(−1)j fj+i−1,p

(
n− i

j

)
J(β, p, α, r), (27)

where

J(β, p, α, r) =

√
2β+p π

iβ+p


 1− α

Γ
(

1−β−p
2

) +
α 2r cr

i2r Γ
(

1−β−p−2r
2

)


 .

Equation (27) is the main result of this section. Consider that β = n is a positive
integer. If n+ p is odd, J(β, p, α, r) vanishes, whereas if n+ p is even, it reduces to

J(β, p, α, r) =
1√
2π

[(1 − α)(2n+ 2p− 1)!! + α cr (2n+ 2p+ 4r − 1)!!] .

10. Maximum likelihood estimation

The parameters of the EMN distribution are estimated by maximum likelihood
from complete samples only. Let y1, . . . , yn be a random sample of size n from
the EMN(r, α, µ, σ) distribution. The log-likelihood function for the vector of pa-
rameters θ = (α, µ, σ)T follows from (5) as

l(θ) = −n log(σ) +
n∑

i=1

log

[
φ

(
yi − µ

σ

)]
+

n∑

i=1

log

[
(1− α) + α cr

(
yi − µ

σ

)2r
]
.

The components of the score vector U(θ) are given by

Uα(θ) = cr

n∑

i=1

(yi−µ
σ )2r − 1

(1− α) + α cr(
yi−µ
σ )2r

,

Uµ(θ) =

n∑

i=1

(
yi − µ

σ

)
+
α cr 2r

σ

n∑

i=1

(yi−µ
σ )2r−1

(1− α) + α cr(
yi−µ
σ )2r

,

Uσ(θ) = −n
σ
+

1

σ

n∑

i=1

(
yi − µ

σ

)2

+
α cr 2r

σ

n∑

i=1

(yi−µ
σ )2r

(1− α) + α cr(
yi−µ
σ )2r

,

where

cr =

√
2π

2(2r+1)/2 Γ
(
2r+1
2

) ,

and ψ(·) is the digamma function.
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The maximum likelihood method is used since it is conceptually easy although
the profile log-likelihood for r could be difficult to compute in some cases (see, for
example, Lange et al., 1989; Berkane et al., 1994; Cordeiro and Andrade, 2009; Or-
tega et al., 2009). The maximization of l(θ) follows the same two steps for obtaining
the maximum likelihood estimate (MLE) of θ. In the first step of the iterative pro-
cess we fix a range of values for r. Then, we obtain the MLEs α̃(r), µ̃(r) and σ̃(r)
conditioned on r fixed, and then the maximized log-likelihood function lmax(r) is
determined. In this step, we use the NLMixed procedure in SAS. In the second step,
the log-likelihood lmax(r) is maximized, and then r̂ is obtained. The MLEs of α, µ
and σ are given by α̂ = α̃(r̂), µ̂ = µ̃(r̂) and σ̂ = σ̃(r̂), respectively. This procedure is
performed by assuming r fixed. Initial values for µ and σ can be taken from the fit of
the standard normal model with µ = 0 and σ = 1. The parameter α is in (0, 1) and
then we take 0.5 as initial guess. For interval estimation and hypothesis tests on the
model parameters, we require a 3 × 3 observed information matrix J(θ) = −{Jrs},
where r, s = α, µ and σ. The elements Jrs are given in Appendix B. Under condi-
tions that are fulfilled for parameters in the interior of the parameter space but not
on the boundary, the asymptotic distribution of (θ̂ − θ) is N3(0, I(θ)

−1), where

I(θ) = E[J(θ)]. Based on the multivariate normal N3(0, J(θ̂)
−1) distribution, we

can construct approximate confidence intervals for the parameters. We can evalu-
ate the maximum values of the unrestricted and restricted log-likelihoods to obtain
likelihood ratio (LR) statistics for testing some sub-models of the EMN distribution
in the classical way.

11. Bayesian analysis

In the Bayesian approach, the information referring to the model parameters is ob-
tained through a posterior marginal distribution. We use the simulation method of
Markov Chain Monte Carlo (MCMC) such as the Metropolis-Hastings algorithm.
Since we have no prior information from historical data or from the previous ex-
periment, we assign conjugate but weakly informative prior distributions to the
parameters. Since we assume an informative (but weakly) prior distribution, the
posterior distribution is a well-defined proper distribution. Further, we assume that
the elements of the parameter vector are independent and consider that the joint
prior distribution of the unknown parameters has a density function given by

π(α, µ, σ) ∝ π(α) × π(µ)× π(σ). (28)

Here, α ∼ Be(a, b), µ ∼ N(µ1, σ
2
1) and σ ∼ Γ(a1, b1), where Be(a, b) denotes a

beta distribution with a density function given by

f(υ; a, b) =
1

B(a, b)
υa−1(1− υ)b−1,

where υ ∈ (0, 1), a > 0 and b > 0, N(µ1, σ
2
1) denotes a normal distribution with

mean µ1 and variance σ2
1 and Γ(a1, b1) denotes the gamma model with a density

function given by

f(ν; a1, b1) =
ba1
1 ν

a1−1e−νb1

Γ(a1)
,
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where ν > 0, a1 > 0 and b1 > 0. All hyper-parameters are specified. Combi-
ning the likelihood function l(θ) and the prior distribution (28), the joint posterior
distribution for µ, σ and α reduces to

π(α, µ, σ|y) ∝
(
1

σ

)n n∏

i=1

φ

(
yi − µ

σ

) n∏

i=1

[
(1− α) + α cr

(
yi − µ

σ

)2r
]
× π(α, µ, σ).

The joint posterior density above is analytically intractable because the integra-
tion of the joint posterior density is not easy to perform. In this direction, we first
obtain the full conditional distributions of the unknown parameters given by

π(α|y, µ, σ) ∝
n∏

i=1

[
(1− α) + α cr

(
yi − µ

σ

)2r
]
× π(α),

π(µ|y, α, σ) ∝
n∏

i=1

φ

(
yi − µ

σ

) n∏

i=1

[
(1− α) + α cr

(
yi − µ

σ

)2r
]
× π(µ)

and

π(σ|y, α, µ) ∝
(
1

σ

)n n∏

i=1

φ

(
yi − µ

σ

) n∏

i=1

[
(1− α) + α cr

(
yi − µ

σ

)2r
]
× π(σ).

Since the full conditional distributions for µ, σ and α do not have explicit ex-
pressions, we use the Metropolis-Hastings algorithm.

12. Application: minimum flow data

We model the lower discharge of at least seven consecutive days and a return period
(time) of 10 years (Q7,10) of the Cuiabá River, Cuiabá, Mato Grosso, Brazil. We
consider the data given by Andrade et al. (2007). The calculation of the lower
discharge for seven consecutive days and a return period (time) of 10 years (Q7,10)
is an important hydrological parameter with applications in the study planning and
management of the use of water resources. This study aims to model the lower
flood (discharge) of at least seven consecutive days and a return period (time) of 10
years (Q7,10) in the Cuiabá River, part of the Brazilian Pantanal (Swamp), since the
ecosystem is strongly influenced by the hydrological system. For determining Q7,10,
we use a data series from 38 years (January 1962 to October 1999) relating to lower
flows of no 66260001 hydrological station, installed in the Cuiabá River in the city
of Cuiabá, Mato Grosso, Brazil.

As mentioned in Section 10, the parameter r is assumed to be fixed in order to
obtain the MLEs. We verify that the profile log-likelihood l(α̂(r), µ̂(r), σ̂(r)) reaches
its maximum value at r = 1. Hence, this value is taken for the MLE of r. All
computations are performed using the NLMixed procedure in SAS.

An alternative approach to modeling these data can be provided by the normal
distribution. It belongs to the class of symmetric best known distributions due to
various interesting properties and theoretical development achieved over the years.
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Further, the t-Student distribution is used to model the behavior of data that come
from a distribution with tails heavier than normal, reducing the influence of aberrant
observations. There are various extensions of this distribution; see, for example, the
skew-normal distribution (Azzalini, 1985). We also compare the proposed model
with a mixture of two normal distributions.

• t-Student distribution

f(y) =
νν/2

B(1/2, ν/2)
√
φ

{
ν +

(
y − µ√
φ

)}
, y ∈ R,

where B(a, b) = [Γ(a)Γ(b)]/Γ(a + b) is the beta function and ν > 0 is the
number of degrees of freedom.

• skew-normal distribution

f(y) =
2

σ
φ

(
y − µ

σ

)
Φ

[
λ

(
y − µ

σ

)]
, y ∈ R, (29)

where λ ∈ R is the parameter of asymmetry, φ(·) and Φ(·) are the standard
normal pdf and cdf, respectively. Density (29) holds for y ∈ R and it is
symmetric if λ = 0 (Azzalini, 1985).

• mixtures of normal distributions

f(y) =
α

σ1
√
2π

exp

{−(y − µ1)
2

2σ2
1

}
+

(1− α)

σ2
√
2π

exp

{−(y − µ2)
2

2σ2
2

}
, (30)

where α ∈ (0, 1), µ1 ∈ R, µ2 ∈ R, σ1 > 0 and σ2 > 0. Density (30) holds for
y ∈ R.

Model r α µ σ AIC GD BIC

EMN 1 0.7077 105.71 24.541 383.4 375.4 388.4
(0.159) (4.214) (2.278)

µ σ

Normal 110.21 37.8730 388.0 384.0 391.3
(6.1438) (4.3443)

ν µ φ

t-Student 3 113.07 1098.18 395.2 389.2 398.4
(7.0329) (323.26)

λ µ σ

Skew-normal -3.3933 157.52 60.5994 388.9 382.9 393.8
(2.0010) (9.3845) (10.0991)

α µ1 σ1 µ2 σ2

Mixture-normal 0.3962 70.1840 18.3674 136.4751 20.3236 386.3 376.3 394.6
(0.1111) (7.5343) (5.2844) (6.4182) (4.8234)

Table 1: MLEs of model parameters for the minimum flow data, the corresponding SEs (given in
parentheses) and the AIC, GD and BIC statistics

Table 1 lists the MLEs (and the corresponding standard errors in parentheses)
of the model parameters and the values of the Akaike Information Criterion (AIC),
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global deviance (GD) and the Bayesian Information Criterion (BIC) for some fitted
models. These results indicate that the EMN model has the lowest AIC, GD and
BIC values, and therefore it could be chosen as the best model.

Plots of the fitted EMN, normal, t-Student and skew-normal distributions over
the histogram of the data are displayed in Figures 5a and 5b. They indicate that
the EMN distribution provides the best fit to these data.
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Figure 5: Estimated densities

Bayesian analysis:

The following independent priors are considered to perform the Metropolis-Hastings
algorithm: α ∼ Be(0.5, 0.5), µ ∼ N(0, 10) and σ ∼ Γ(0.01, 0.01), so that we have a
vague prior distribution. We fix r = 1. Considering these prior density functions, we
generate two parallel independent runs of the Metropolis-Hastings with size 150,000
for each parameter, disregarding the first 15,000 iterations to eliminate the effects of
the initial values and to avoid correlation problems, we consider a spacing of size 10,
obtaining a sample of size 13,500 from each chain. To monitor the convergence of
the Metropolis-Hastings, we perform the methods suggested by Cowles and Carlin
(1996). Further, we use the between and within sequence information following the
approach developed by Gelman and Rubin (1992) to obtain the potential scale re-

duction, R̂. For all cases, these values are close to one, indicating the convergence of
the chain. The approximate posterior marginal density functions for the parameters
are presented in Figure 6.

In Table 2, we report posterior summaries for the parameters of the EMN model.
We note that the values for the means a posteriori (Table 2) are quite close (as
expected) to the MLEs given in Table 1. SD represents the standard deviation from
the posterior distributions of the parameters and HPD represents the 95% highest
posterior density (HPD) intervals.
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Parameter Median SD HPD (95%) R̂

α 0.7005 0.2170 (0.2229; 0.9883) 0.9997
µ 105.80 0.8059 (104.22; 107.38) 0.9999
σ 24.45 0.5040 (23.41; 25.39) 1.0024

Table 2: Posterior summaries for the parameters from the EMN model for the minimum flow data
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Figure 6: Approximate posterior marginal densities for the parameters from the EMN model for
the minimum flow data

13. Conclusions

We define a new generalized normal model, the so-called extended mixture normal
distribution, for analysis of symmetric real data. It includes special cases such as the
normal and symmetric component models. We obtain some structural properties of
the new distribution, including explicit expressions for the ordinary and incomplete
moments, generating and quantile functions, mean deviations, two types of entropy
and order statistics. The estimation of model parameters is performed using max-
imum likelihood and the Bayesian method. The observed information matrix is
determined. We prove empirically that the new model can provide a better fit than
the normal, t-Student and skew-normal distributions by means of a real data set.

Appendix A: Shannon entropy

Here, we provide the calculations of the four integrals in (24). Setting x2/2 = u, we
obtain the first two integrals as

∫ +∞

0

e−
x2

2

[
log

(
1√
2π

)
− x2

2

]
dx =

√
π
2 log

(
1√
2π

)
−

√
2π
4 (31)
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and

∫ +∞

0

x2r e−
x2

2

[
log

(
1√
2π

)
− x2

2

]
dx =2r−

1
2

[
log

(
1√
2π

)
Γ

(
r +

1

2

)

− Γ

(
r +

3

2

)]
.

(32)

For calculating the third integral in (24), we use a power series for the exponential
function. Then,

∫ +∞

0

e−
x2

2 log
[
(1− α) + αcrx

2r
]
dx =

√
π

2
log(1− α) +

∑

k≥0

(−1)k

2k k!

∫ +∞

0

x2k

× log

(
1 +

αcr
1− α

)
dx.

Setting α cr
1−α x

2r = u in the last equation, we have

∫ +∞

0

e−
x2

2 log
[
(1− α) + αcrx

2r
]
dx =

√
π

2
log(1− α) +

∑

k≥0

(−1)k

2k+1rk!

(
1− α

αcr

) 2k+1
2r

×
∫ +∞

0

u
2k+1
2r −1 log(1 + u)du.

Changing variable 1 + u = v−1 and using the binomial expansion, we obtain

∫ +∞

0

e−
x2

2 log
[
(1− α) + αcr x

2r
]
dx =

√
π

2
log(1− α)

+
∑

k, i≥0

( 2k−2r+1
2r

i

)
(−1)k+i

2k+1 r k!

(
1− α

αcr

) 2k+1
2r

×
∫ 1

0

vi−
2k+1
2r −1 log

(
1

v

)
dv.

For i > 2k+1
2r , the last equation becomes

∫ +∞

0

e−
x2

2 log
[
(1− α) + αcr x

2r
]
dx

=

√
π

2
log(1− α)+

∑

k, i≥0

(2k−2r+1
2r

i

)
(−1)k+i

2k+1 r k!

(
1− α

αcr

)2k+1
2r
(
i− 2k + 1

2r

)−2

.

(33)
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Following the same algebra of the previous case, the fourth integral reduces to
∫ +∞

0

x2r e−
x2

2 log
[
(1 − α) + αcr x

2r
]
dx

= 2r−
1
2 Γ

(
r +

1

2

)
log(1 − α) (34)

+
∑

k, i≥0

(2k+1
2r

i

)
(−1)k+i

2k+1 r k!

(
1− α

αcr

) 2k+1
2r

(
i− 2k + 2r + 1

2r

)−2

.

Substituting (31)–(34) into (24) gives an explicit expression for the Shannon entropy.

Appendix B: observed information matrix

The elements of the observed information matrix J(θ) for the parameters (α, µ, σ)T

are given by:

Jαα(θ) = cr

n∑

i=1

[
(yi−µ

σ )2r − 1
][
1− cr(

yi−µ
σ )2r

]
[
(1− α) + αcr(

yi−µ
σ )2r

]2 ,

Jαµ(θ) = −2rcr
σ

n∑

i=1

(yi−µ
σ )2r−1

(1 − α) + αcr(
yi−µ
σ )2r

+
2αrcr
σ

n∑

i=1

(yi−µ
σ )2r−1

[
(yi−µ

σ )2r − 1
]

[
(1− α) + αcr(

yi−µ
σ )2r

]2 ,

Jασ(θ) = −2rcr
σ

n∑

i=1

(yi−µ
σ )2r

(1 − α) + αcr(
yi−µ
σ )2r

+
2αrc2r
σ

n∑

i=1

(yi−µ
σ )2r

[
(yi−µ

σ )2r − 1
]

[
(1− α) + αcr(

yi−µ
σ )2r

]2 ,

Jµµ(θ) = −n
σ
− 2αrcr(2r − 1)

σ

n∑

i=1

(yi−µ
σ )2(r−1)

(1 − α) + αcr(
yi−µ
σ )2r

+
(2αrcr

σ

)2 n∑

i=1

(yi−µ
σ )2(2r−1)

[
(1− α) + αcr(

yi−µ
σ )2r

]2 ,

Jµσ(θ) = − 1

σ

n∑

i=1

(yi − µ

σ

)
− 2αrcr(2r − 1)

σ2

n∑

i=1

(yi−µ
σ )2(r−1)

(1− α) + αcr(
yi−µ
σ )2r

+
(2αrcr

σ

)2 n∑

i=1

(yi−µ
σ )2r

[
(yi−µ

σ )2r − 1
]

[
(1− α) + αcr(

yi−µ
σ )2r

]2 ,

Jσσ(θ) =
n

σ2
− 3

σ2

n∑

i=1

(yi − µ

σ

)2
− 4αr2cr

σ2

n∑

i=1

(yi−µ
σ )2r

(1 − α) + αcr(
yi−µ
σ )2r

−2αrcr
σ2

n∑

i=1

(yi−µ
σ )2r

[
(1− α) + αcr(

yi−µ
σ )2r − 2αrcr(

yi−µ
σ )2r

]
[
(1− α) + αcr(

yi−µ
σ )2r

]2 ,

where cr =
√
2π

2(2r+1)/2 Γ( 2r+1
2 )

.
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