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Abstract. This paper is concerned with the construction of two iterative methods by
frames of subspaces for solving an operator equation on Hilbert spaces. We present two
algorithms based on Richardson and Chebyshev methods, and investigate their convergence
and optimality.
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1. Introduction and preliminaries

An iterative method for solving an operator equation starts from an initial approxi-
mation that is succesively improved until a sufficiently accurate solution is obtained.
These methods are particularly useful for solving discretized elliptic self-adjoint par-
tial differential equations. Hereof, the potential of frames in numerical analysis is
an almost unexplored field. On the one hand, the redundancy of a frame can give
freedom to implement further properties, which would be mutually exclusive in the
Riesz bases case, such as high smoothness and local support. On the other hand,
since we are working with a weaker concept, the concrete construction of a frame
is usually much simpler than that of stable multiscale bases. Consequently, there is
some hope that the frame approach may simplify the geometrical construction on
bounded domains. To handle this emerging application of frames, new methods have
to be developed. One starting point is first to build frames ”locally” and then piece
them together to obtain frames for the whole space. One advantage of this idea is
that it would facilitate the construction of frames for special applications since we
can first construct frames or choose already known frames for smaller spaces. In the
second step, one could construct a frame for the whole space from them. This gives
the concept of the frame of subspaces.

In this paper, we will use the frames of subspaces to get some approximated
solutions for the operator equation

Lu = f, (1)

∗Corresponding author. Email addresses: jamali@mail.vru.ac.ir (H. Jamali),
m91162023@post.vru.ac.ir (S. Ghaedi)

http://www.mathos.hr/mc c©2017 Department of Mathematics, University of Osijek



14 H. Jamali and S.Ghaedi

where L : H → H is a bounded, invertible and self-adjoint linear operator on
a separable Hilbert space H . A natural approach to construct an approximate
solution is to solve problem (1) on a finite dimensional subspace of H . Development
of numerical methods for solving problem (1) by frames can be seen in [1, 8, 10].

First, we briefly recall the definitions and basic properties of frames and frames of
subspaces. For more information we refer to the survey articles by Cassaza and Gitta
Kutyniok [5] and the book by Christensen [7]. Throughout this paper, H denotes
an arbitrary separable Hilbert space. Furthermore, all subspaces are assumed to be
closed. Moreover, Λ and I denote a countable indexing set and the identity operator,
respectively. Also, πW denotes the orthogonal projection of H onto W , where W is
a subspace of H .

Let Ψ = (ψλ)λ∈Λ ⊂ H be a frame for H . It means that there exist constants
0 < AΨ ≤ BΨ <∞ such that

AΨ‖f‖2H ≤
∑

λ∈Λ

|〈f, ψλ〉|2 ≤ BΨ‖f‖2H, ∀f ∈ H. (2)

For a frame Ψ, the operator S : H → H defined by

S(f) =
∑

λ∈Λ

〈f, ψλ〉ψλ,

is called the frame operator. It was shown in [7], for the frame (ψλ)λ∈Λ, that S is
a positive invertible operator satisfying AΨIH ≤ S ≤ BΨIH and B−1

Ψ IH ≤ S−1 ≤
A−1

Ψ IH . Also, the sequence

Ψ̃ = (ψ̃λ)λ∈Λ = (S−1ψλ)λ∈Λ,

is a frame (called the canonical dual frame) for H with the bounds B−1
Ψ and A−1

Ψ .
Every f ∈ H has the expansion

f =
∑

λ∈Λ

〈f, ψλ〉ψ̃λ =
∑

λ∈Λ

〈f, ψ̃λ〉ψλ.

For an index set Λ̃ ⊂ Λ, (ψλ)λ∈Λ̃ is called a frame sequence if it is a frame for its
closed span.

Now, let H be a separable Hilbert space and Λ a countable indexing set. For a
family of weights {vλ}λ∈Λ, i.e. vλ > 0 for all λ ∈ Λ, a family of subspaces {Hλ}λ∈Λ

of a Hilbert space H are called a frame of subspaces with respect to {vλ}λ∈Λ for H ,
if there exist constants 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∑

λ∈Λ

v2λ‖πHλ
(f)‖2 ≤ B‖f‖2 ∀f ∈ H, (3)

where πHλ
denotes the orthogonal projection onto the subspace Hλ.

The constants A and B are called the frame bounds of the frame of subspaces.
If A = B, then the frame of subspaces {Hλ}λ∈Λ with respect to{vλ}λ∈Λ, is called
an A-tight frame of subspaces. It is proved that the family {Hλ}λ∈Λ of the frame of
subspaces is complete in the sense that spanλ∈Λ{Hλ} = H , (see [5]).

The following theorem, shows how we able to string together frames for each of
the subspaces Hλ to get a frame for H . (see [5]).
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Theorem 1. Let Λ be an index set, vλ > 0 for each λ ∈ Λ, and let {ψλi
}i∈IΛ be

a frame sequence in H with frame bounds Aλ and Bλ. Define Hλ = spani∈IΛ
{ψλi}

for all λ ∈ Λ, and suppose that 0 < A = infλ∈ΛAλ ≤ B = supλ∈ΛBλ < ∞. Then
{vλψiλ}λ∈Λ,i∈IΛ is a frame for H if and only if {Hλ}λ∈Λ is a frame of subspaces
with respect to {vλ}λ∈Λ for H.

Example 1. Let H be a Sobolev space of order t on a domain Ω ⊆ R
n. According

to [10], for some ΓD ⊂ ∂Ω, possibly ΓD = φ, we can construct a frame for the space

Ht =

{
Ht

0,ΓD (Ω), t ≥ 0,

(H−t
0,ΓD (Ω))

′

, t < 0,

where t ≥ 0,

Ht
0,ΓD(Ω) = logHt(Ω){u ∈ Ht(Ω) ∩ C∞(Ω) : supu ∪ ΓD = φ}.

If we consider an open covering Ω = ∪m
i=1Ωi and if {fij}j∈Ii is a frame for Ht

i ,
where

Ht
i =

{
Ht

0,ΓD

i

(Ωi), t ≥ 0,

(H−t

0,ΓD

i

(Ωi))
′

, t < 0,

with

ΓD
i =

{
∂Ωi ∩ (Ω ∪ ΓD), t ≥ 0,

∂Ωi ∩ ΓD, t < 0,

then {fij}i,j is a frame for Ht. If A, B are the bounds of this frame, then {Ht
i : i =

1, . . . ,m} is a frame of subspaces with bounds A
B
, 1.

As in the well-known frame situation, the frame operator SH,v for {Hλ}λ∈Λ and
{vλ}λ∈Λ is defined by

SH,v(f) =
∑

λ∈Λ

v2πHλ
(f).

The frame operator SH,v for {Hλ}λ∈Λ and {vλ}λ∈Λ is bounded, self-adjoint and
invertible on H with AI ≤ SH,v ≤ BI, where A and B are the bounds of the frame
of subspaces. Further, the following reconstruction formula holds:

f =
∑

λ∈Λ

v2λS
−1
H,vπHλ

(f) ∀f ∈ H.

In [5], it is proved that {S−1
H,vHλ}λ∈Λ is a frame with respect to {vλ}λ∈Λ.

Proposition 1. Let {Hλ}λ∈Λ be a frame of subspaces with respect to {vλ}λ∈Λ, and
let L : H → H be a bounded invertible operator on H. Then {L(Hλ)}λ∈Λ is a frame
of subspaces with respect to {vλ}λ∈Λ.

In this case, if u is the solution of equation (1) and S
′

is the frame operator of
the frame of subspaces {LHλ}, then

u =
∑

λ∈Λ

v2λS
′−1
H,vπLHλ

u.
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Now since L is invertible, then πLHλ
= LπHλ

L−1. Therefore

u =
∑

λ∈Λ

v2λS
′−1
H,vLπHλ

L−1u =
∑

λ∈Λ

v2λS
′−1
H,vLπHλ

(L−1)2f.

It is difficult to compute L−1 and S′−1. Our goal is to find a sequence ui of an
approximated solution it related to a frame of subspaces, such that it converges to
the solution u of equation (1).

2. Richardson iterative method by using frames of subspaces

The most straightforward approach to an iterative solution of a linear system is to
rewrite equation (1) as a linear fixed-point iteration. One way to do this is the
Richardson iteration. The abstract method reads as follows:

write Lu = f as
u = (I − L)u+ f.

For given u0 ∈ H , for k ≥ 0 define

uk+1 = (I − L)uk + f. (4)

Since Lu− f = 0,

uk+1 − u = (I − L)uk + f − u− (f − Lu)

= (I − L)uk − u+ Lu

= (I − L)(uk − u).

Hence,
‖uk+1 − u‖H ≤ ‖I − L‖H→H‖uk − u‖H ,

so that (4) converges if
‖I − L‖H→H < 1.

It is occasionally possible to precondition (1) by multiplying both sides by a matrix
B,

BLu = Bf,

so that the convergence rate of iterative methods is improved. This is a very effective
technique for solving differential equations, integral equations, and related problems
[2, 3]. We want to do the same by using frames of subspaces.

Let {Hλ}λ∈Λ be a frame of subspaces with respect to {vλ}λ∈Λ for a sepa-
rable Hilbert space H along with the frame operator SH,v. By Proposition 1,
{L(Hλ)}λ∈Λ also is a frame with respect to {vλ}λ∈Λ. We denote the frame operator
for {L(Hλ)}λ∈Λ and {vλ}λ∈Λ, by S

′
H,v. In addition, since L is bounded invertible,

there exist two positive constants c1 and c2 such that

c1‖u‖H ≤ ‖Lu‖H ≤ c2‖u‖H, ∀u ∈ H. (5)

The following theorem represents an iterative method to approximate the solution
u of equation (1). The solution and the convergence rate depend on the knowledge
of the bounds of the frame of subspaces.
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Theorem 2. Let {Hλ}λ∈Λ be a frame of subspaces with respect to {vλ}λ∈Λ for H
with frame operator SH,v and let L be as given in (1). Taking u0 = 0, for k ≥ 1,

uk = uk−1 +
2

c21A+ c22B
LS′

H,v(f − Luk−1),

where S′
H,v is the frame operator for the frame of subspaces {L(Hλ)}λ∈Λ with respect

to {vλ}λ∈Λ with bounds A, B, and c1, c2 as given in (5). Then

‖u− uk‖H ≤ (
c22B − c21A

c21A+ c22B
)k‖u‖H.

In particular, the vectors uk converge to u as k → ∞.

Proof. By the definition of uk we obtain

u− uk = u− uk−1 −
2

c21A+ c22B
LS′

H,v(f − Luk−1)

= (I − 2

c21A+ c22B
LS′

H,vL)(u− uk−1)

= (I − 2

c21A+ c22B
LS′

H,vL)
2(u− uk−2)

= · · · = (I − 2

c21A+ c22B
LS′

H,vL)
k(u− u0).

Therefore

‖u− uk‖H ≤ ‖I − 2

c21A+ c22B
LS′

H,vL‖k‖u‖H . (6)

On the other hand, for every v ∈ H we have

〈(I − 2

c21A+ c22B
LS′

H,vL)v, v〉 = ‖v‖2H − 2

c21A+ c22B
〈S′

H,vLv, Lv〉

= ‖v‖2H − 2

c21A+ c22B
〈
∑

λ∈Λ

v2λπLHλ
(Lv), Lv〉

= ‖v‖2H − 2

c21A+ c22B

∑

λ∈Λ

v2λ‖πLHλ
(Lv)‖2H

≤ ‖v‖2H − 2A

c21A+ c22B
‖Lv‖2H

≤ ‖v‖2H − 2A

c21A+ c22B
c21‖v‖2H

= (
c22B − c21A

c21A+ c22B
)‖v‖2H ,

where in the first inequality we used the property of the lower bound of the frame of
subspaces and in the second inequality we used the property of c1 in (5). Similarly,
we have

−(
c22B − c21A

c21A+ c22B
)‖v‖2H ≤ 〈(I − 2

c21A+ c22B
LS′

H,vL)v, v〉,
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so we conclude that

‖I − 2

c21A+ c22B
LS′

H,vL‖ ≤ c22B − c21A

c21A+ c22B
. (7)

Combining this inequality with (6) gives the result.

3. Chebyshev method

Let hn =
∑n

k=1 dnk
uk, where uk is the same as given in Theorem 2, such that∑n

k=1 dnk
= 1, that is guaranteed if uk = u for all 1 ≤ k ≤ n, then hn = u. By the

proof of Theorem 2 we have

u− uk = (I − 2

c21A+ c22B
LS

′

L)k(u − u0),

so

u− hn =

n∑

k=1

dnk
u−

n∑

k=1

dnk
uk =

n∑

k=1

dnk
(u − uk)

=

n∑

k=1

dnk
(I − 2

c21A+ c22B
LS

′

L)k(u− u0).

Defining R = I − 2
c2
1
A+c2

2
B
LS

′

L and Qn(x) =
∑n

k=1 dnk
xk, we obtain

u− hn = Qn(R)(u− u0). (8)

Proposition (7) and the spectral theorem deduce that

‖u− hn‖ = ‖Qn(R)(u − u0)‖ ≤ ‖Qn(R)‖‖u− u0‖
≤ max

|x|≤α0

|Qn(x)|‖u − u0‖, (9)

where α0 =
c2
2
B−c2

1
A

c2
2
B+c2

1
A
.

The aim is to minimize this error. Therefore we try to find

min
Qn(x)∈πn

max
|x|≤α0

|Qn(x)|, (10)

where πn is the set of all polynomials of degrees no more than n such that Qn(1) = 1.
The minimax problem (10) is achieved by Chebyshev polynomials [6], satisfying the
recurrence relation

C0(x) = 1, C1(x) = x, Cn(x) = 2xCn−1(x)− Cn−2(x), ∀n ≥ 2. (11)

In fact,

Cn(x) =

{
cos(n cos−1(x)), |x| ≤ 1

cosh(cosh−1(x)) = 1
2 ((x+

√
x2 − 1)n + (x+

√
x2 − 1)−n), |x| ≥ 1.

In this case, the following lemma holds [6].
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Lemma 1. Let πn be the same as given before. For real numbers a, b such that
a < b < 1, set

Pn(x) =
Cn(

2x−a−b
b−a

)

Cn(
2−a−b
b−a

)
.

Then

max
a≤x≤b

|Pn(x)| ≤ max
a≤x≤b

|Qn(x)|,

where Qn ∈ πn.

Furthermore,

maxa≤x≤b|Pn(x)| =
1

Cn(
2−a−b
b−a

)
.

Setting a = −α0 and b = α0 deduce that

Pn(x) =
Cn(

2x+α0−α0

α0+α0
)

Cn(
2+α0−α0

α0+α0
)

=
Cn(

x
α0

)

Cn(
1
α0

)
. (12)

By Lemma 1, Pn(x) =
Cn(

x

α0
)

Cn(
1

α0
)
solves (10) and minimizes the error ‖u− hn‖ in (9).

Using (11) and (12),

Cn(
1

α0
)Pn(x) = Cn(

x

α0
) =

2x

α0
Cn−1(

x

α0
)− Cn−2(

x

α0
)

=
2x

α0
Cn−1(

1

α0
)Pn−1(x) − Cn−2(

1

α0
)Pn−2(x),

and replacing R instead of x yields:

Cn(
1

α0
)Pn(R) =

2R

α0
Cn−1(

1

α0
)Pn−1(R)− Cn−2(

1

α0
)Pn−2(R).

Hence,

Cn(
1

α0
)Pn(R)(u− u0) = (

2R

α0
Cn−1(

1

α0
)Pn−1(R)− Cn−2(

1

α0
)Pn−2(R))(u − u0).

Combining the last equation and (8) gives

Cn(
1

α0
)(u− hn) =

2

α0
Cn−1(

1

α0
)R(u − hn−1)− Cn−2(

1

α0
)(u− hn−2). (13)

Now, since Ru = u− 2
c2
1
A+c2

2
B
LS

′

Lu, by using (13) we have

Cn(
1

α0
)(u−hn)=

2

α0
Cn−1(

1

α0
)(I− 2

c21A+ c22B
LS

′

L)(u−hn−1)−Cn−2(
1

α0
)(u−hn−2),
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that is

Cn(
1

α0
)u− Cn(

1

α0
)hn =

2

α0
Cn−1(

1

α0
)u

+
2

α0
Cn−1(

1

α0
)(−hn−1 −

2

c21A+ c22B
LS

′

L(u− hn−1))

−Cn−2(
1

α0
)u + Cn−2(

1

α0
)hn−2.

Finally, the definition of Cn in (11) implies that

Cn(
1

α0
)hn =

2

α0
Cn−1(

1

α0
)(hn−1 +

2

c21A+ c22B
LS

′

L(u− hn−1))

−Cn−2(
1

α0
)hn−2. (14)

By defining βn =
2

α0
Cn−1(

1

α0
)

Cn(
1

α0
)

and (11), we observe that

−
Cn−2(

1
α0

)

Cn(
1
α0

)
= 1− βn.

Now by (11) and (14) we can write

hn =
2

α0

Cn−1(
1
α0

)

Cn(
1
α0

)
(hn−1 +

2

c21A+ c22B
LS

′

L(u− hn−1))−
Cn−2(

1
α0

)

Cn(
1
α0

)
hn−2

=
2

α0

Cn−1(
1
α0

)

Cn(
1
α0

)
(hn−1 +

2

c21A+ c22B
LS

′

L(u− hn−1))

−
2
α0
Cn−1(

1
α0

)− Cn(
1
α0

)

Cn(
1
α0

)
hn−2

= βn(hn−1 +
2

c21A+ c22B
LS

′

(f − Lhn−1))(1 − βn)hn−2

= βn(hn−1 +
2

c21A+ c22B
LS

′

(f − Lhn−1))− βnhn−2 + hn−2.

Therefore

hn = βn(hn−1 − hn−2 +
2

c21A+ c22B
LS

′

(f − Lhn−1)) + hn−2.

More precisely, by (11) we obtain

βn = (
α0Cn(

1
α0

)

2Cn−1(
1
α0

)
)−1 = (

α0

2

2
α0
Cn−1(

1
α0

)− Cn−2(
1
α0

)

Cn−1(
1
α0

)
)−1 = (1− α2

0

4
βn−1)

−1.

Now, based on the preceding statement, we present the following iterative method
to give an approximated solution to equation (1). Suppose that {Hλ}λ∈Λ is a frame
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of subspaces for H and S
′

denotes the frame operator of the frame of subspaces
{LHλ}λ∈Λ with bounds A and B. Also consider c1 and c2 as given in (5) and let ǫ
be a positive number.

Algorithm [L, ǫ, A,B, c1, c2] → uǫ

(i) Let α0 =
c2
2
B−c2

1
A

c2
2
B+c2

1
A
, σ = c2

√
B−c1

√
A

c2
√
B+c1

√
A

(ii) h0 := 0, h1 := 2
c2
1
A+c2

2
B
LS

′

f , β1 = 2, n = 1

(iii) While 2σn

1+σ2n

‖f‖
c1

> ǫ

(1) n := n+ 1

(2) βn = (1− α2

0

4 βn−1)
−1

(3) hn = βn(hn−1 − hn−2 +
2

c2
1
A+c2

2
B
LS

′

(f − Lhn−1)) + hn−2, n ≥ 2

(iv) uǫ := hn.

We note that σ < 1 and this implies that the algorithm terminates in finite
iteration. Convergence of the above algorithm is proved in the following theorem.

Theorem 3. The approximated solution hn in the Algorithm [L, ǫ, A,B, c1, c2] sat-
isfies

‖u− hn‖ ≤ 2σn

1 + σ2n

‖f‖
c1

.

Proof. First, we note that by definition Cn(x)

Cn(
1

α0
) = Cn(

c22B + c21A

c22B − c21A
)

=
1

2
((
c22B + c21A

c22B − c21A
+

√
(c22B + c21A)

2

(c22B − c21A)
2
− 1)n+

1

(
c2
2
B+c2

1
A

c2
2
B−c2

1
A
+
√

(c2
2
B+c2

1
A)2

(c2
2
B−c2

1
A)2

− 1)n
)

=
1

2
((
c22B + c21A

c22B − c21A
+

√
4(c22B)(c21A)

(c22B − c21A)
2
)n +

1

(
c2
2
B+c2

1
A

c2
2
B−c2

1
A
+
√

4(c2
2
B)(c2

1
A)

(c2
2
B−c2

1
A)2

)n
)

=
1

2
((
(
√
c22B +

√
c21A)

2

c22B − c21A
)n +

1

(
(
√

c2
2
B+

√
c2
1
A)2

c2
2
B−c2

1
A

)n
)

=
1

2
((
c2
√
B + c1

√
A

c2
√
B − c1

√
A
)n +

1

( c2
√
B+c1

√
A

c2
√
B−c1

√
A
)n

)

=
1

2
(
1

σn
+ σn) =

1 + σ2n

2σn
.

Now, by Lemma 1 and inequalities 9 and 5

‖u− hn‖ ≤ 1

Cn(
1
α0

)
‖u‖ = (Cn(

1

α0
))−1‖u‖ =

2σn

1 + σ2n
‖u‖ ≤ 2σn

1 + σ2n

‖f‖
c1

.

This proves the theorem.
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Similarly to the Richardson iterative method (Theorem 2), this algorithm de-
pends on the knowledge of the frame bounds and the guaranteed speed of conver-
gence also depends thereon. But this algorithm designs an iterative method that
guarantees a faster convergence than the Richardson method, specially when B is
much larger than A.

4. Numerical experiments

In this section, we present two examples to confirm the theoretical results given in
the previous sections.

Example 2. Consider the boundary value problem

{
−ű = f in Ω = (0, 1),
u(0) = u(1) = 0,

on the space H = span{xi(1−x) : i = 1, 2, . . . , 20}. The function f is chosen such
that u(x) = 4x3(1− x) − 3x4(1− x) is the exact solution.

Now, we consider the frame of subspaces {W1,W2} for H such that

W1 = span{xi(1− x) : i = 1, 2, ..., 10}, W2 = span{xi(1− x) : i = 10, 11..., 20}.

The value σ is derived 0.81 that enables the algorithm to converge at limited iter-
ations. Table 1 shows the error ‖u − ū‖L2([0,1]), where ū denotes the approximated
solution given by the Chebyshev method. As we seen, after 53 iterations in 67 sec-
onds, the proposed method would converge.

n 2 15 30 53 CPU(sec.)
‖u− ū‖L2([0,1]) 1.36 0.81 0.012 0.001 67

Table 1: L2-norm of the error between the exact and approximated solutions

Example 3. Consider the boundary value problem

{
−ű+ 2u = f in Ω = (0, 1),
u(0) = u(1) = 0,

on the space H = span{sin(iπx) : i = 1, 2, . . . , 40}. The function f is chosen such
that u(x) = 3sin(2πx)− sin(8πx) is the exact solution.

Now, we consider the frame of subspaces {W1,W2} for H such that

W1 = span{sin(iπx) : i = 1, 2, ..., 20}, W2 = span{sin(iπx) : i = 20, 21..., 40}.

The value σ is derived 0.91 that enables the algorithm to converge at limited
iterations. Table 2 shows the error ‖u−ū‖L2([0,1]), where ū denotes the approximated
solution given by the Chebyshev method. As we seen, after 98 iterations in 126
seconds, the proposed method would converge.
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n 2 20 40 98 CPU(sec.)
‖u− ū‖L2([0,1]) 1.25 0.91 0.014 0.001 126

Table 2: L2-norm of the error between the exact and approximated solutions
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