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For alternant hydrocarbons whose molecular graphs possess n vertices
and m edges Tiirker recently put forward a lower bound for total n-electron
energy (E), namely (1/2) (2 m n)1/2 :$ E (*). The original proof of (*) contains
an error. We propose an alternative method for proving (*), which applies
to all molecular graphs, except perhaps to some containing very many four-
membered cycles. As a byproduct, a class of novellower bounds for E is ob-
tained.

INTRODUCTION

The theory of total n-electron energy (E), as calculated within the framework of
the Huckel molecular orbital approximation, is a traditional and well-elaborated
field of research in the chemical graph theoryl " Among other resuits, a plethora of
upper and lower bounds for E is known, especially for a1ternant or benzenoid hy-
drocarbons; an exhaustive list of such bounds can be found in the review," of which
we mention here only the classical result of McClelland:6

e « (2 m n)1/2 (1)

where n and m denote the number of vertices and edges, respectively, of the molecu-
lar graph. Eq. (1) holds for all conjugated molecules having filled bonding and empty
antibonding MO energy levels. In particul ar, Eq. (1) holds for all alternant hydro-
carbons in ground electro n states.

In arecent work," Turker came to the conclusion that in the case of a1ternant
hydrocarbons there is a lower bound for E, having a form similar to McClelland's
estimate Eq. (1), namely

% (2 m n)1/2 :o; E . (2)
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Although based on an elegant mathematical technique, the proof of Eq. (2) put
forward in the paper? is technically incorrect.š In view of this, we tried to find an
alternative route towards Eq, (2). This new proof of Eq, (2) is outlined in the sub-
sequent section. Our analysis made it possible to design a whole class of lower
bounds for E, which are better than Eq. (2) and whose form is

g (2 m n)1J2 ~ E (3)

with g being an appropriately chosen constant, greater than 1/2. Formulas of type
Eq. (3) are discussed in the last section of this paper.

TOWARDSTHE LOWER BOUND Eq. (2)

First of all, it must be mentioned that relation (2) does not hold for all bipartite
graphs. It is, for instance, violated for the star with nine vertices. (The maximal ver-
tex degree in this graph is 8.) Another easily recognizable violation is the graph with
10 vertices and only one edge. (This graph is disconnected.)

Molecular graphs, representing conjugated n-electron systems, are always con-
nected and their vertex degrees never exceed three.1-3 Alternant hydrocarbons are
represented by bipartite graphs.l" It seems that Eq. (2) holds for all connected bi-
partite graphs whose vertex degrees are less than four.

The starting point in our proof of the inequality Eq. (2) are

(4)

and

(5)

where M4 is the fourth spectral moment of the molecular graph under consideration,
q is the number of four-membered cycles in it, and D2 is the sum of squares of the
vertex degrees. Detailed derivations of both relations (4) and (5) were previously
publicized.v'" Both Eqs, (4) and (5) hold for all alternant hydrocarbons.

Now,from Eq. (4) it is immediately seen that Eq. (2) will certainly be satisfied if

(6)

Combining Eq, (6) with Eq. (5), we obtain

(7)

Hence, Eq. (7) is a sufficient condition for the validity of Eq. (2).
We now show that Eq, (7) is satisfied for all molecular graphs, except perhaps

for some graphs in which q is very large as compared to n.
Denote by ni the number of vertices of degree i, i = 1, 2, 3. Then,2.3
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from which

D2 = 6 m - 2 n + 2 n3 .

Condition Eq. (7) now becomes

m (8 min - 5) +2 n ;::2 n3 + 4 q . (8)

Bearing in mind that 2 min is just the mean value of the vertex degress.v" which
we denote by «d», Eq. (8) is rewritten as

m (4 <d» - 5) + 2 n ;::2 n3 + 4 q . (9)

With the only exception of the (two-vertex) molecular graph of ethylene, for all
other molecualr graphs, «d» > 5/4, i.e. 4 <d» - 5 is positive-valued. In view of this,
condition Eq. (9) will certainly be satisfied if

n > n3 + 2 q . (10)

Consequently, if Eq, (10) holds, then also Eq. (7) holds, and then Eq, (2) holds too.
On the other hand, it is dear that Eq. (10) is obeyedby all molecular graphs, except by
those few which have very many four-membered cydes relative to the number of verti-
ces. Among such graphs are the ladders.P the cube and polycubegraphs.P These, how-
ever, do not correspond to any chemically realistic rc-electronsystems. The cyclobutadi-
eno-annelated phenylenes.P for which n = 6 h + 4, n3 + 2q = 6 h + 2, where h is the
number of hexagons, provide a chemically meaningful example with extremely high
n3- and q-values; they nevertheless obey Eq. (10).

Condition Eq. (10) is, of course, satisfied by all conjugated hydrocarbons which
do not posses four-membered cycles. Among them are all acyclic polyenes, all ben-
zenoids etc.

This shows that the lower bound Eq. (2) holds for practically all, chemically rele-
vant, alternant n-electron systems.

For certain graphs that violate relation (10), in particular for ladders and the
cube, as well as for tri(cydobutadieno)-benzene, direct numerical calculation showed
that Eq. (2) is applicable. Bound Eq. (2) holds also for ethylene.

A CLASS OF LOWER BOUNDS FOR TOTAL rc-ELECTRONENERGY

The reasoning outlined in the preceding section can be straightforwardly ex-
tended to finding lower bounds for E of the form Eq. (3). Instead of Eq. (9), which
is sufficient condition for the validity of Eq. (2), we now have
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which is a sufficient condition for the validity of Eq. (3).
Next, one has to determine the molecular graphs for which <d>/g2 - 5 is not nega-

tive-valued, i.e., for which «d» ;:::5 g2. For connected graphs with at least n vertices,
«d» ;:::2(n - l)ln = <d>tree' Renee, if we choose g, such that 2(n - l)ln = 5 g2, i.e.

g = [(2 n - 2)/(5 n)]1I2 (11)

then <d>/g2 - 5 will be positive-valued or zero for all connected graphs with n or
more vertices. For such graphs, the lower bound is obeyed whenever condition Eq.
(10) is fulfilled.

Choosing n = 3, 4, 5, ... we arrive at the following sequence of lower bounds for
E. They all hold provided condition Eq, (10) is satisfied, which we showed to be the
case with practically all molecular graphs of interest in the theory of conjugated 7(-

electron molecules. Renee, for alternant conjugated hydrocarbons with more than
two carbon atoms,

(4/15)112 (2 m n)1/2 ~ E ; (4115)1/2 = 0.5163978...

for alternant hydrocarbons with more than three carbon atoms,

(3/10)112 (2 m n)ll2 ~ E ; (3/10)112 = 0.5477226...

for alternant hydrocarbons with more than four carbon atoms,

(8/25)112 (2 m n)1I2 ~ E ; (8/25)112 = 0.5656854...

for alternant hydrocarbons with more than five carbon atoms,

(113)112(2 m n)1I2 ~ E ; (113)112= 0.5773503...

ete. We thus arrived at a series of lower bounds for E, all of which represent im-
provements of the original estimate Eq. (2). Each member of this series is better
than the previous one, but applies to amore restricted set of molecular graphs. The
greatest value of g which could be obtained by the above reasoning is (2/5)112 =
0.6324555...

In order to gain some numerical experience about the quality of the bounds of
the type Eq, (3), we tested them for the set of 106 benzenoid hydrocarbons from the
book of Zahradnik and Pancir.l" (Recall that the same set was used on numerous
previous occasions for examining the precision of approximate formulas for total 7(-

electron energy,") The results obtained are collected in Table I.
It is seen from Table I that neither Turker's bound Eq, (2) nor its improvements

Eqs, (3) and (11) are very sharp. Bound Eqs. (3) and (11) becomes better than
Turker's for n greater than 2. The quality of Eqs. (3) and (11) gradually increases
with the increasing value of n.
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TABLE I

The quality of McClelland's upper bound Eq. (1), Turker's lower bound Eq. (2) and of the
newly deduced lower bounds of the type Eq. (3) and (11) in the case of benzenoid

hydrocarbons; if E is the total n-electron energy and E* the respective bound,
then iS = I(E - E*)IEI x 100; data for E are taken from l"

the size of the sample employed is 106

formula average 1)
maximal iS minimal iS
observed observed

Eq. (1) 9.94 11.45 6.07
Eq. (2) 45.03 46.97 44.28
Eqs. (3)&(11), n = 3 43.23 45.23 42.45
Eqs. (3)&(11), n = 4 39.78 41.91 38.96
Eqs. (3)&(11), n = 5 37.81 40.00 36.98
Eqs. (3)&(11), n = 6 36.53 38.76 35.66
Eqs. (3)&(11), n = 7 35.63 37.89 34.74
Eqs. (3)&(11), n = 8 34.96 37.25 34.07
Eqs. (3)&(11), n = 9 34.45 36.75 33.55
Eqs. (3)&(11), n = 10 34.04 36.36 33.13
Eqs. (3)&(11), n = 20 32.23 34.62 31.30
Eqs. (3)&(11), n = 50 31.17 33.59 30.22
Eqs. (3)&(11), n = 100 30.82 33.25 29.87
Eqs. (3)&(11), n = <XI 30.47 32.92 29.52

It would be interesting to find the best possible McClelland-type lower and up-
per bounds for total n-electron energy, of the form

and to determine the constants gL and gu for the case of

(a) conjugated hydrocarbons with filled bonding and empty antibonding MO
energy levels,

(b) alternant hydrocarbonds
(c) benzenoid hydrocarbons
(d) species as under (a), (b) or (c), with more than n carbon atoms, n fixed.

These tasks, however, remain to be accomplished in the future.
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SAŽETAK

Klasa donjih granica za ukupnu x-elektronsku energiju
alternantnih konjugiranih ugljikovodika

Ivan Gutman

Za alternantne ugljikovodike čiji molekulski graf ovi imaju n čvorova i m grana Turker je ne-
davno predložio donju granicu za ukupnu 1t-elektronsku energiju (E), naime (112) (2 m n)1f2~ E (*).
Izvorni dokaz relacije C) sadržava grešku. U radu se predlaže novi postupak za dokazivanje
relacije (*), koji se primjenjuje na sve molekulske grafove izuzev, možda, one koji sadržavaju
veoma mnogo četvoročlanih ciklusa. Kao sporedni rezultat dobivena je klasa novih donjih gra-
nica za E.




