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An algorithm, MOLORD, is proposed for defining real number invari-
ants for subgraphs of various sizes in molecular graphs. The algorithm is
based on iterative line derivati ves and accounts for heteroatoms by means
of their electronegativities. It can be used in topological equivalence per-
ception as well as to provide local and global descriptors for QSPR or QSAR
studies. The algorithm is implemented on a TURBO PASCAL, TOPIND
program and examplified on a set of selected graphs.

INTRODUCTION

In a previous paper. of this series.! we presented a powerful algorithm, called
MOLCEN, which allows us to find the centricity and centrocomplexity of subgraphs
ofvarious size in a graph G. MOLCEN made use od iterative line derivatives.f L)G),
LOVIs (LOcal Vertex Invariants), and TIs (Topological Indices) derived on the
gro und of layer matrices, LM.

A layer matrix, LM,3-5 collects the properties (topological and chemical) of ver-
tices u located on concentric shell s (layers) at a distance j around each vertex i E

G. The j-th layer of vertex i, G(u)j is defined by

(1)

whereas the layer matrix entries are denoted by

(2)
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Hence, the layer matrix can be written as

LM(G) = {lmi,j; i E [l,n] ;j E [O,d]} (3)

where:

m, Mare labels for a given property and the corresponding matrix, respectively

Q stands for the mathematical operator acting on the vertices u E G(u)j, at
each j-Iayer; usually Q is l:, and

d is the diameter of G, i.e. the largest distance in the graph.

We defined" two types of LOVIs on the LM matrices: one of centricity, C(LM)i'
and the other of centrocomplexity, x(LM)i' according to Eqs. (4) and (5)

(4)

[ ]

-1
ecc.

x(LM'h = 2: lmU· lO-zj . ti
)=0

(5)

where:

dsp is a specified topological distance, usually larger than the graph diameter
(within this work, dsp = 10)

z is the number of digits of the (integer part of)max lmU - value in the graph

ti is a weighting factor, accounting for heteroatoms (e.g. a Sanderson type of
electronegativity," see below)

Summation of the LOVIs values over all i vertices in G provides the correspond-
ing global indices (TIs), denoted by capital letters.

Within the MOLCEN algorithm, the values of the above mentioned LOVIs are
normalized within the range (O - 1) by being divided by their largest value in the
graph. They are useful in the centric ordering of vertices in a graph and in the topo-
logical equivalence perception. However, these LOVIs are not useful for the charac-
terization of similar local neighbourings within a set of molecular graphs.

The present paper offers a modified algorithm, called MOLORD,which provides
a spectrum of non-normalized LOVIs and TIs. The new algorithm is examplified on
sone representative molecular graphs. As the algorithm is based on iterative line de-
rivatives of a graph, formulas are given for the calculation of the vertex degree and
number of edges in line derivatives of regular graphs. A set of topological indices
given by MOLORDwas tested for correlating ability with the critical pressure of oc-
tane isomers.
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LINE DERIVATIVESOF GRAPHS

The line derivative of a graph is obtained by representing its lines by points,
and then by joining two such points with aline, if the lines they represent were ad-
jacent in the original graph G (which is zero order derivative, Lo)' By repeating this
procedure n times, one obtains the iterative line derivative of the order n, Ln. The
number of vertices Pn+1 and edges qn+1 in L,,+1is given by the following relations+?

Pn+} = q" (6)

qn + 1= - qn + 1/2 L (k;)2
i E Lli

(7)

(8)

with ki being the vertex degrees and B" - Bertz's branching index.š which is just
the number of edges in the L" derivative.

In regular graphs ti.e. graphs in which all vertices have the same degree), the
number of edges qn+1can be calculated by a recursive relation derived from Eq. (7)
or Eq. (8) by substituting the value for the vertex degree (see also Ref. 2):

k" = 2q,/p" = 2qn/qn _ 1 (9)

qn+} = -qn + 2q~/qn -1 . (10)

The number of edges in Ln+1can also be calculated by

q" +1= 112 . kn +1. Pn +1. (11)

Since in regular graphs

k" + 1= 2(kn-1) (12)

and taking into account Eq. (6), Eq. (11) becomes

q" + 1= qn(kn-1) . (13)

From relations (12) and (13) we were able to derive relationships for computing kn
and q" from the starting parameters, koand qoonly (i.e. from the degree and number
of edges in the initial graph, Lo)
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"
k" = 1 + 2" . ko - L 2e

e=O
(14)

(15)

MOLORDALGORITHM

The aim of the MOLORD algorithm is to characterize vertices or subgraphs (of
various size) of the initial graph G by means of invariants derived from the topology
of a series of line derivatives of this graph, Lo(=G),LI....,Lm. Before detailing the al-
gorithm, some notations need to be defined.

First, recall that the vertices i" of graph L" (i.e. the current derivative graph)
denote pairs of vertices of the lower-order derivative graph, L,_1:

in = (jn-I' k,,-I) (16)

where the two points j and k in L" _1 are necessarilly connected by an edge of this
graph and are themselves pairs of vertices of graph L" _ 2. We can write that
i:-1 E i; and kn -1 E in· The relatedness of vertices (subgraphs) in the process of deri-
vatization can be expressed by

if (i" E i" + 1)

otherwise
(17)

The definition can be easily extended for any two arbitrary ranks n and m ~ n,
stating that 8(i",im) = 1 only if the vertex ni appears in at least one of the subsets
defining vertex im. In going back to Lo,one can see that i" denotes a subgraph, eon-
sisting of n edges, in Lo.

The algorithm consists of the following four steps:

Step 1, computes local, lein), and global, Ol(Ln ) classical invariants on each L" within
the set of derivative graphs Lo to Lm:

GI(L,,) = L lein) . (18)

Step 2, evaluates a partial local invariant Plm(i,,) of a vertex i" with respect to the
mth order derivative graph, Lm

(19)
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Here, I(im) denotes the function used to calculate a given local invariant of vertex
im with respect to the topology of graph Lm containing ito Further, the parti al invari-
ant of in with respect to Lm is calculated by summing up all the local invariants I(im)
of those vertices in Lm which are »related- to in according to the m-n successive de-
rivatives, Ln, ... ,Lm. The ratio GI(Ln)lGI)(Lm) is used as a scaling factor meant to en-
sure that the resulting PI values can be compared with each other irrespective eur-
rent Lm for which they are evaluated.
Step 3, computes a synthetic local invariant of vertex in, in a series of successive de-
rivative graphs, L", ... ,Lm:

m

SIm(in) = L Plk(in) . f" - k .
k=n

(20)

Subscript m in SIm(in) means that the last Lm derivative graph has been taken into
account. The empirical factor f can be used to give a different weighting to the eon-
tributions arising from derivatives of various ranks. Note that in the case of n = m,
the synthetic invariant SIm(in) reduces to the classical invariant I(i,.).
Step 4, evaluates the final expression for the global synthetic index of a graph L"

(21)

Within this work, the algorithm is examplified by using LOVIs and TIs derived on
the gro und of the LDS (layer matrix of distance sum)4,8,9whose entries are given by

lm=L DSl,) u
UE G(U)j

(22)

with DSu being the sum of distances from vertex u to all other vertices in the graph.
In calculating x(LDS) (see Eq. (5», the values of lm, are divided by the values of
the vertex degree, hi'

MOLORD algorithm provides a spectrum of local, SIm(i,.) (per subgraph of vari-
ous size) and global values GSln,cLn), (with m varying from n to a selected m) for a
given topological index, TI. It is examplified on 2-methylbutane (1), for which Figure
1 show s the derivative graphs Lo to L3 along with the corrresponding LDS matrices.

Note that the subgraph 1235 of Lo is characterized by threepoints in L3(1) so
that the value 2.11958 represents the sum of their corresponding values.

CENTRIC ORDERING OF VERTICES (SUBGRAPHS)

As pointed out above, the MOLORD algorithm is capable of ordering the vertices in
molecular graphs either in term s of the centricity »C« or centrocomplexity »X«. Table I
lists the centric ordering of the subgraphs (consisting of O to 3 edges) of 2,2-dimethyl-
nonane (2) induced by c(LDS)i (values SIm(i,.), considered in decreasing order).

In order to obtain a comparison term for the above centric ordering of subgraphs
in graph 2, consider the lD - 3D centric criteria of Bonchev et al. 10 They are as follows
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Jv. l .~~'~~f
3 "12 25 125 1235 1235

Lo (1) L, (1) L, (1) L, (1)

Lo(l) LI(1) L2(1) L3(1)

LDS(Lo(l» LDS(LI(l» LDS(L2(1)) LDS(L3(1»

1 8 5 14 9 (1,2) 4 7 5 (1,2,3) 3 11 O (1,2,3,4) 5 14 5
2 522 9 O (1,2,3,5) 4 20 O
3 61416 O (2,3) 3 13 O (1,2,5) 4 6 4 (1,2,3,5) 5 14 5(2,5) <'1 7 5 (2,3,4) 4 6 4
4 9 6 5 16 (1,2,3,5) 5 14 5
5 8 5 14 9

(3,4) 5 3 8 (2,3,5) 3 11 O (2,3,4,5) 5 14 5

Step 1; values I(i,,)

1 0.12420 (1,2) 0.49134 (1,2,3) 0.96463 (1,2,3,4) 0.58360
2 0.57461 (2,3) 0.95847 (1,2,5) 0.49256 (1,2,3,5) 2.11958
3 0.32565 (2,5) 0.49134 (2,3,1) 0.49256 (2,3,4,5) 0.58360
4 0.11037 (3,4) 0.19878 (2,3,5) 0.96163
5 0.12420

GI(L,,) 1.25903 2.13992 2.91439 3.28678

Step 2; values PI2(il)

(1,2) (0.96463 + 0.49256) x (2.13992/2.91439) = 1.06996
(2,3) (0.96463 + 0.49256 + 0.96463) x (2.13992/2.91439) = 1.77825
(2,5) (0.96463 + 0.49256) x (2.13992/2.91439) = 1.06996
(3,4) 0.49256 x (2.13992/2.91439) = 0.36167

valu es PI3UI)

(1,2) (0.58360 + 2.11958) x (2.13992/3.28678) = 1.75996
(2,3) (0.58360 + 2.11958 + 0.58360) x (2.13992/3.28678) = 2.13992
(2,5) (0.58360 + 2.11958) x (2.13992/3.28678) = 1.75996
(3,4) (0.58360 + 0.58360) x (2.13992/3.28678) = 0.75993

Steps 3 and 4; values SIm(il) and GSlm(LI);f = 10:

SII(il) SI2UI)
(1,2) 0.49134 x 10(1-1) 0.49134 x 10(1-1)+ 1.06996 x 10(1-2)= 0.59834
(2,3) 0.95847 x 10(1-1) 0.95847 x 10(1-1)+ 1.77825 x 10(1-2)= 1.13629
(2,5) 0.49134 x 10(1-1) 0.49134 x 10(1-1)+ 1.06996 x 10(1-2)= 0.59834
(3,4) 0.19878 x 10(1-1) 0.19878 x 10(1-1)+ 0.36167 x 10(1-2)= 0.23494

GSII(LI) 2.13992 GSI2(LI) 2.56791

SI3UI)

0.49134 x 10(1-1)+ 1.06996 x 10(1-2)+ 1.75996 x 10(1-3)= 0.61594
0.95847 x 10(1-1)+ 1.77825 x 10(1-2)+ 2.13992 x 1011-3)= 1.15769
0.49134 x 10(1-1)+ 1.06996 x 10(1--2)+ 1.75996 x 10(1-3)= 0.61594
0.19878 x 10(1-1)+ 0.36167 x 10(1-2)+ 0.75993 x 10(1-3)= 0.24254

(1,2)
(2,3)
(2,5)
(3,4)

GSI3(LI) 2.63210

Figure 1. MOLORD algorithm applied to 2-methylbutane (L). LDS matrices; values derived for
I=X(LDS); ti = 1.
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TABLE I

Centric ordering given by c(LDS)i (values SIm(im» in 2,2-Dimethylnonane (2); f=10

5; 4; 6; 3; 7; 2;
8; {I; 10; Il}; 9

5;.4; 6; 3; 7; 2;
8; {I; 10; Il}; 9

5; 4; 6; 3; 7; 2;
8; {I; 10; Il}; 9

5; 4; 6; 3; 7; 2;
8; {I; 10; Il}; 9

(4,5); (5,6); (3,4);
(6,7); (2,3); (7,8);
{(1,2); (2,10); (2,11)};
(8, 9)

(4,5); (5,6); (3,4);
(6;7); (2,3); (7,8);
{(1,2); (2,10); (2,11)};
(8, 9)

(4,5); (5,6); (3,4);
. (6,7); (2,3); (7,8);
{(1,2); (2,10); (2,11)}
(8, 9)

(3, 4, 5); (4, 5, 6); (2, 3, 4); (5, 6, 7);
(Cl, 2, 3); (2, 3, 10); (2, 3, un,
(6, 7, 8);
{(I, 2, 10); (1, 2, 11); (2, 10, Il)};
(7,8,9);

(3, 4, 5); (4, 5, 6); (2, 3, 4);
{(I, ~, 3); (2, 3, 10); (2, 3, u»,
(5, 6, 7); .
{(I, 2, 10); (1, 2, 11); (2, 10, Il)};
(6, 7, 8); (7, 8, 9)

{(2, 3, 10, 11); (1, 2, 3, 10); (1, 2, 3, un, (1, 2, 10, 11); (2, 3, 4, 5); (3, 4, 5, 6);
{Cl, 2, 3, 4); (2, 3, 4, 10); (2, 3, 4, un, (4, 5, 6, 7); (5, 6, 7, 8); (6, 7, 8, 9)

lD : minimal vertex eccentricity, ecc, = min.

2D : minimal vertex distance sum, D8i = min.
3D : minimal number of occurrences of the largest distance (or, when this is

identical for two or more vertices, the next largest distance, etc.)

Criteria lD - 3D are applied heirarchically. The last criterion is sometimes non-
decisive since there are graphs with pair degenerate distance degree sequences for
nonequivalent vertices.9,1l However, in our test, application of lD - 3D criteria to
matrix LDS(L2(2» (see below) results in the same ordering as given by values SI2(i2)

LDS (L2(2»:

(1,2,3) 27 144 59 30 36 44 54 O
(1,2,10) 33 120 51 26 30 36 44 54
(1,2,11) 33 120 51 26 30 36 44 54
(2,3,10) 27 144 59 30 36 44 54 O
(2,3,11) 27 144 59 30 36 44 54 O
(2,3,4) 24 107 129 36 44 54 O O
(2,10,11) 33 120 51 26 30 36 44 54
(3,4,5) 26 54 117 143 54 O O O
(4,5,6) 30 62 68 135 99 O O O
(5,6,7) 36 74 80 24 81 99 O O
(6,7,8) 44 90 30 26 24 81 99 O
(7,8,9) 54 44 36 30 26 24 81 99
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In general, the ordering induced by SIm(i,) values obey the lD - 3D criteria
when n = m. When n < m, the ordering could be different (compare the ordering
given by the values SI2(i2) and SI3(i2), respectively - Table 1).

An additional example is given for cuneane (3). Table II shows the centric or-
dering induced by c(LDS);, (values SIm(in» in this graph (f = 5.000).

TABLE II

Centric ordering given by c(LDS); (values SIm(in» in cuneane (3); f = 5.000

5

~
1~3

1 tJ

3

SIo(io)

(2, 5, 7, 8); {I, 3, 4, 6} {2, 5}; {7, 8}; {l, 3, 4, 6}

(7, 8); (2, 5); {(I, 2); (2, 3); (4, 5); (5, 6)}
{(I, 7); (3, 8); (4, 7); (6, 8)}; {(I, 4); (3, 6)}

{(I, 2, 3); (4, 5, 6)}; {(I, 7, 8); (3, 7, 8); (4, 7, 8); (6, 7, 8)}
{(I, 2, 7); (2, 3, 8); (4, 5, 7); (5, 6, 8)}; {(I, 2, 5);(2, 3, 5); (2, 4, 5); (2, 5, 6)};
{(I, 2, 4); (1, 4, 5); (2, 3, 6); (3, 5, 6)}; {(I, 4, 7); (4, 1, 7); (3, 6, 8); (6, 3, 8)};
{(I, 7, 4); (3, 8, 6)}

(a) {(I, 2, 3, 5); (2, 4, 5, 6)}; (b) {(I, 4, 7, 8); (3, 6, 7, 8)};
(c) {(I, 2, 4, 7); (1, 4, 5, 7); (2, 3, 6, 8); (3, 5, 6, 8)}; (d) {(I, 4, 7); (3, 6, 8)};
(e) {(I, 7, 8, 6); (3, 8, 7, 4)}; (D {(3, 2, 1, 4); (1, 2, 3, 6); (1, 4, 5, 6); (3, 6, 5, 4)};
(g) {(3, 2, 1, 7); (1, 2, 3, 8); (6, 5, 4, 7); (4, 5, 6, 8)};
(h) {(2, 1, 7, 8); (2, 3, 8, 7); (5, 4, 7, 8); (5, 6, 8, 7)} (i) {(I, 2, 5, 6); (3, 2, 5, 4)};
(j) {(I, 7, 8, 3); (4, 7, 8, 6)}; (k) {(5, 2, 1, 7); (5, 2, 3, 8); (2, 5, 4,7); (2, 5, 6, 8)};
(1) {(4, 1, 7, 8); (1, 4, 7, 8); (6, 3, 8, 7); (3, 6, 8, 7)};
(rn) {(4, 1, 2, 5); (1, 4, 5, 2); (5, 2, 3, 6); (2, 5, 6, 3)}; (n) {(2, 1,4,5); (2, 3, 6, 5)};
(o) {(I, 2, 5, 4); (3, 2, 5, 6)}; (p) {(2, 1,4, 7); (5, 4, 1, 7); (2, 3, 6, 8); (5, 6, 3, 8)};
(q) {(2, 3, 8, 6); (3, 8, 6, 5); (1, 7, 4, 5); (2, 1, 7, 4)}

* see Figure 2

Figure 2. presents the cuneane subgraphs i3 (of three edges - labelled a to q)
ordered according to their values SI3(i3).
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a..

5 \-:5~6,u, 4 !j 'nre::;:::J \ 1. I 3 10'
7 8 I 3 7 8 7 8

e 4 r 4

5
5 ,u, 'f'i' ,U'A6z----

{ 3
7 6 1 a 1 8

I k t
, !j ",--5-.....,6

jQtJ\ t:::j ~2t:: /L.-2--A
1\\ //{ 3 t 3 I 3 .. 8

m. ft, (1- t-

Figure 2. Pictorial representation of cuneane subgraphs i3 (e to q) ordered according to values
SI3(i3)

CENTROCOMPLEXITYORDERING OF VERTICES (SUBGRAPHS)

The »x--type operators provide an interesting ordering, which states a »centre
of complexity« (or a centre of importance, i.e. a heteroatom). Table III lists the or-
dering induced by the x(LDS)i values in graph 2.

HETEROATOMPERCEPTION

The »x--type operators are sensitive to heteroatoms by means of the ti factor
which, within this work, represents EVGi (valence group electronegativities) values,
.defined" as follows

(23)
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TABLE III

Centrocomplexity ordering given by x(LDS)i (values S/mei,,))
in 2,2-Dimethylnonane (2); f = 10.

2; 4; 5; 3; 6; 7;
8; {1; 10; 11}; 9

2; 3; 4; 5; 6; 7;
8; {1; 10; 11}; 9

(2,3); {(1,2);(2,10);(2,11)}
(4,5); (3,4); (5,6); (6,7);
(7,8); (8,9)

(2,3);{(1,2);(2,10);(2,11)};
(3,4); (4,5); (5,6); (6,7);
(7,8); (8,9)

{(1,2,3);(2,3,10);(2,3,11)}; (2,3,4); {(1,2,10);(1,2,11);(2,10,11)};
(3,4,5); (4,5,6); (5,6,7); (6,7,8); (7,8,9)

{(2,3,10,11);(1,2,3,10);(1,2,3,11)}; (1,2,10,11);
{(1,2,3,4);(2,3,4, 10);(2,3,4,11)}; (2,3,4,5);
(3,4,5,6); (4,5,6,7); (5,6,7,8); (6,7,8,9)

hi = (8 - GA) - ki (24)

(25)

where:

ESA, ESH the Sanderson electronegativities+ for atoms Ai and hydrogen,
respectively

hi number of hydrogen atoms belonging to group Gi
GAi group number in the Periodic System for atom A belonging to group Gi

ki degrees of vertex i (i.e. group Gi; when ki > (8 - GA;), then hi = O

ESGi Sanderson electronegativities for group Gi (i.e. the geometric mean of
electronegativities of the atoms belonging to group G;)

Factor ti (Eq. 5) is computed for the vertices in in L, as the geometric mean of
EVGi values of the vertices (of Lo) which in represents (see Refs. 1,12,13). Heteroa-
tom perception is examplified on cuneane and some of its N-rooted congeners
(graphs 3 and 7 - Figure 3 and Tables IV and VJ.

The intramolecular ordering induced by x(LDS)i index ii.e. values SI1(io)) in
graph 2 follows the same trend as the coefficients of the first eigenvector. A com-
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5 5

f!j6 ff-i/ 4Lt=t6 4~/~'-i764~~11\83 1t3J 3

II N

1 2 3 «» '~3 13
N-N N-N

8 7 7

3 4 5 6 7

Figure 3. Cuneane and N-rooted cuneane (3 to 7).

parison of the two sets of values is given in Table VI . The only difference is that
the x(LDS\ index puts vertices 1, 10, 11, and 9 in the set of »monovalent- vertices,
after the divalent ones. For other considerations about the use of coefficients of the
eigenvectors as topological invariants, consult Refs. 9,14-17.

TABLE IV

Centrocomplexity index x(LDS); and X(LDS) in cuneanes (3 to 7);
values SIm(io) and GSIm(Lo); f = 10.

Graph 3 4 5 6 7

values SIoCio):

2 0.337702 2 0.353210 7 0.353210 2 0.353210 2 0.353210
5 0.337702 5 0.337702 8 0.353210 5 0.353210 5 0.353210
7 0.337702 7 0.337702 2 0.337702 7 0.337702 7 0.353210
8 0.337702 8 0.337702 5 0.337702 8 0.227702 8 0.353210
1 0.310649 1 0.324915 1 0.310649 1 0.310649 1 0.310649
3 0.310649 3 0.310649 3 0.310649 3 0.310649 3 0.310649
4 0.310649 4 0.310649 4 0.310649 4 0.310649 4 0.310649
6 0.310649 6 0.310649 6 0.310649 6 0.310649 6 0.310649

values GSIo(Lo):

2.593402 2.623177 2.624419 2.624419 2.655436

values SII(io):

2 0.404711 2 0.422259 7 0.420017 2 0.422272 2 0.422311
5 0.404711 5 0.405217 8 0.420017 5 0.422272 5 0.422311
7 0.402482 7 0.402963 2 0.404749 7 0.402493 7 0.420029
8 0.402482 8 0.402481 5 0.404749 8 0.402493 8 0.420029
1 0.374424 1 0.390656 1 0.374943 1 0.374943 1 0.')75461
3 0.374424 3 0.374931 3 0.374943 3 0.374943 3 0.375461
4 0.374424 4 0.374883 4 0.374943 4 0.374943 4 0.375461
6 0.374424 6 0.374426 6 0.374943 6 0.374943 6 0.375461

values GSII(Lo):

3.112083 3.147812 3.149303 3.149303 3.186523
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TABLE V

Centrocomplexity index x(LDS)i and X(LDS)i in cunaenes (3) to (7);
values SIm(il) and GSIm(LI); f = 10.

Graph 3 4 5 6 7

values SII(ij):

(2,5) 0.268012 (1,2) 0.280276 (7,8) 0.280261 (2,5) 0.280320 (2,5) 0.280320
(1,2) 0.267970 (2,5) 0.274097 (2,5) 0.268012 (1, 2) 0.274054 (7,8) 0.280261
(2,3) 0.267970 (2,3) 0.274054 (1, 2) 0.267970 (2, 3) 0.274054 (1,2) 0.274054
(4,5) 0.267970 (4,5) 0.267970 (2,3) 0.267970 (4, 5) 0.274054 (2,3) 0.274054
(5,6) 0.267970 (5,6) 0.267970 (4,5) 0.267970 (5,6) 0.274054 (4,5) 0.274054
(7,8) 0.267956 (7,8) 0.267956 (5,6) 0.267970 (7,8) 0.267956 (5,6) 0.274054
(1, 7) 0.254624 (1,7) 0.260405 (1,7) 0.260405 (1, 7) 0.254624 (1, 7) 0.260405
(3,8) 0.254624 (3,8) 0.254624 (3,8) 0.260405 (3, 8) 0.254624 (3,8) 0.260405
(4, 7) 0.254624 (4,7) 0.254624 (4,7) 0.260405 (4, 7) 0.254624 (4, 7) 0.260405
(6, 8) 0.254624 (6, 8) 0.254624 (6, 8) 0.260405 (6,8) 0.254624 (6, 8) 0.260405
(1,4) 0.242557 (1,4) 0.248064 (1, 4) 0.242557 (1, 4) 0.242557 (1,4) 0.242557
(3, 6) 0.242557 (3, 6) 0.242557 (3, 6) 0.242557 (3, 6) 0.242557 (3, 6) 0.242557

values GSI1(Lj):

3.111455 3.147218 3.146885 3.146099 3.183529

values SI2(ij):

(2,5) 0.320767 (1, 2) 0.334647 (7,8) 0.334616 (2,5) 0.334692 (2,5) 0.334693
(1,2) 0.320733 (2,5) 0.327854 (1,2) 0.320936 (1,2) 0.327828 (7,8) 0.334628
(2,3) 0.320733 (2,3) 0.327824 (2,3) 0.320936 (2,3) 0.327828 (1, 2) 0.328032
(4,5) 0.320733 (4, 5) 0.321131 (4,5) 0.320936 (4, 5) 0.327828 (2, 3) 0.328032
(5,6) 0.320733 (5,6) 0.320937 (5,6) 0.320936 (5,6) 0.327828 (4,5) 0.328032
(7,8) 0.320704 (7,8) 0.320907 (2,5) 0.320771 (7, 8) 0.320717 (5,6) 0.328032
(1, 7) 0.305766 (1, 7) 0.312525 (1, 7) 0.312524 (1, 7) 0.305978 (1, 7) 0.312737
(3,8) 0.305766 (4,7) 0.306145 (3,8) 0.312524 (3,8) 0.305978 (3. 8) 0.312737
(4,7) 0.305766 (3, 8) 0.305970 (4,7) 0.312524 (4,7) 0.305978 (4, 7) 0.312737
(6,8) 0.305766 (6,8) 0.305771 (6,8) 0.312524 (6,8) 0.305978 (6.8) 0.312737
(1,4) 0.293140 (1,4) 0.299612 (1,4) 0.293518 (1,4) 0.293543 (1, 4) 0.293918
(3, 6) 0.293140 (3,6) 0.293340 (3,6) 0.293518 (3, 6) 0.293543 (3, 6) 0.293918
Values GSI2(Lj):

3.733746 3.776662 3.776261 3.777719 3.820234

TABLE VI

Comparison between the eigenvector and x(LDS)i in graph 2;
values SIlUO); f = 1.

vertex
eigenvector
x(LDS)i

2 3 4 5 6 7
0.6177 0.4357 0.3061 0.2133 0.1461 0.0965
0.1603 0.0889 0.0864 0.0832 0.0750 0.0643

1 10 11 9
0.2913 0.2913 0.2913 0.0276
0.0318 0.0318 0.0318 0.0208

8
0.0585
0.0521

vertex
eigenvector
x(LDS);
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It is very difficult to find a property (either a physical or a theoretical one) that
can be correlated with the values derived from higher L, (i.e. SI1(io)), particularly
in regular graphs (in which our LOVIs demonstrated their discriminating ability).
The difficulty arises from the fact that such graphs show degenerate vertex proper-
ties (i.e. walk degree and distance degree sequencesl"). However, the cyclicity, ex-
pressed by self-returning walks of elongation (e), srw/e) (i.e. the diagonal elements
of the powers of adjacency matrix, A") could be such a (nondegenerate) property. Ta-
ble VII shows the correlation (about 0.973) between the values SI1(io) of the LOVIs
built up on matrix LDS and srw/6), the minimal elongation at which the vertices
are differentiated, within graph 8. As we have shown elsewhere," our layer matrices
differentiate qua si equivalent vertices at low values of elongation, so that, when
combinedwith derivative graphs L", n values no larger than 2 suffice for this purpose.

TABLE VII

Self-Returning Walks srwi,<6) c(LDS)i, x(LDS)i, (values SI1(io))and
their correlation within graph 8.

13

Vertex x(LDS)i

8

c(LDS)i

1
2
3
4
5
6
7
8
9
10
11
12
13
14

93
97
99

103
99
93
99
97
97
93
97
99

103
93

0.1407856
0.1433617
0.1433550
0.1459216
0.1433550
0.1407856
0.1433550
0.1433617
0.1433617
0.1407856
0.1433617
0.1433550
0.1459216
0.1407856

0.1327922
0.1329572
0.1329574
0.1331226
0.1329574
0.1327922
0.1329574
0.1329572
0.1329572
0.1327922
0.1329572
0.1329574
0.1331226
0.1327922

Correlations:

srw(6)i us. c(LDS)i : R = 0.97300; S = 0.81834

srw(6\ us. x(LDS), : R = 0.97329; S = 0.81403
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Another example illustrates the capability of indices calculated on LDS of de-
rivative graphs Lo and LI of octane isomers (C(LDS(Lo)), X(LDS(Lo)), C(LDS(Ll)),

and X(LDS(Ll)) - denoted in Table VIlI to X as Co . Xo . Cl and XI) to estimate the
critical pressure ep of these hydrocarbures.l''

TABLE VIH

Values of the basic topological indices within the set of octane isomers and their critical
pressures (ep)

Co Cl Xo XI XW(l) CP

C8 0.4903 0.6411 0.7113 0.8035 7.8284 24.54
2MC7 0.6144 0.7869 0.7629 1.0081 7.5401 24.52
3MC7 0.6510 0.8480 0.8046 1.1110 7.6161 25.13
4MC7 0.6816 0.9002 0.8211 1.1549 7.6161 25.09
3EC6 0.7983 1.1329 0.8656 1.2558 7.6921 25.74
25M2C6 0.7565 1.0666 0.8219 1.2461 7.2518 24.54
24M2C6 0.8085 1.1487 0.8709 1.3813 7.3278 25.23
23M2C6 0.8154 1.1606 0.8917 1.4474 7.3615 25.94
34M2C6 0.8640 1.2444 0.9267 1.5451 7.4375 26.57
3E2MC5 1.0849 1.5449 0.9448 1.5889 7.4375 26.65
22M2C6 0.7856 1.1013 0.8725 1.5540 7.1213 24.96
33M2C6 0.8760 1.2566 0.9476 1.7956 7.2426 26.19
234M3C5 1.1052 1.5837 0.9745 1.8022 7.1068 26.94
3E3MC5 1.1592 1.7009 1.0084 1.9854 7.3640 27.71
224M3C5 1.0667 1.4709 0.9503 1.8949 6.8330 25.34
223M3C5 1.1348 1.6292 1.0180 2.1335 6.9628 26.94
233M3C5 1.1890 1.7543 1.0426 2.2288 7.0081 27.83
2233M4C4 1.4589 2.4852 1.1284 2.8649 6.5000 28.30

M = methyl; E = ethyl.

TABLE IX

Orthogonal indices Q(TI,XW(1») and Q(TI,XW2») built up on CO,Cl,xo and XI as origin TI
and Xwe); (values multiplied by 10-2).

D D D D D D D f2
(CO,x.WC1») (CO,x.WC2») (Cl,X.W(l») (Cl,X.WC2») (XO,x.W(l») (XO,x.W(2») (Xl,X.W(1)) (Xj,x.W(2»)

C8 7.9336 6.1156 12.4379 10.5179 3.2395 0.7935 7.1942 10.3981
2MC7 -7.2926 1.2642 -7.3042 1.8524 -12.4321 -4.3901 -9.6930 -0.1835
3MC7 4.3100 -3.3301 4.0980 -3.0396 5.8163 -2.7241 3.9126 -0.7571
4MC7 7.6704 6.5145 7.3540 6.6430 10.0310 8.0496 6.4736 8.7571
3EC6 28.0533 7.0281 29.4500 8.2103 28.9705 8.1079 19.9625 5.8508
25M2C6 -20.5525 -1.3960 -18.7119 5.0129 -26.1999 -7.3371 -24.6358 -8.3367
24M2C6 -7.2516 -1.9530 -5.9965 -0.7049 -6.1114 -1.4210 -9.1423 -4.4662
23M2C6 -3.1290 -6.5999 -1.8827 -5.3954 2.5511 -1.9331 -1.9148 -5.3231
34M2C6 9.8013 -13.0161 10.9360 -12.0678 19.0825 -4.7182 11.3908 -9.1165
3E2MC5 34.0026 10.5922 29.6592 6.5384 23.6918 2.7751 13.9421 -3.2416
22M2C6 -30.4132 0.0435 -29.5970 1.1101 -26.3461 2.5844 -19.7134 5.1272
33M2C6 -8.3731 -6.7304 -7.7915 -6.1507 4.9381 4.7755 6.5192 6.1957
234M3C5 3.1573 -2.8799 -0.9898 -6.6379 -1.8025 -6.5714 -6.6729 -13.3221
3E3MC5 34.7961 -3.1048 32.0320 -6.0222 32.5589 -3.5138 29.7365 -2.8828
224M3C5 -28.4369 14.3693 -35.4004 8.5776 -35.3375 8.1388 -28.6423 7.0542
223M3C5 -7.9920 -3.3739 -12.5585 -7.4653 -5.1089 -2.6801 -1.7407 -0.8062
233M3C5 2.4708 -8.9922 -0.2325 -11.7335 5.6940 -5.1810 8.3522 -5.0724
22333M4C -18.7545 5.4492 -5.5022 15.2664 -23.2354 2.8331 -5.3286 10.1249
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TABLE X

145

Statistics of the correlation of critical pressure (CP) of octanes with
Co,xo,X~e)'Cl,xl' and their orthogonal indices (denoted f2(Th,TI2); see text)

Variable R s
1 Co
2 s;
3 XW1)
4 Cl
5 XI

0.89810
0.92414
0.57221
0.89758
0.86791

0.54235
0.47115
1.01135
0.54366
0.61255

6 Co ; x,
7 Co ; XWl)
8 Xo; XW1)
9 Co ; f2(Co,XWl»)

10 Cl ; f2(CbxWl»)
11 x, ;Q(Xo,X Wl»)
12 XI ; Q(XbXWl))
13 Co ; f2(CO,XW2»)
14 Cl ; Q(CbXW2»)
15 Xo ; f2(Xo,XW2»)
16 XI; f2(Xl,XW2l)

0.92422
0.94179
0.97180
0.94179
0.94628
0.97180
0.97173
0.93587
0.93804
0.93309
0.88941

0.48635
0.42819
0.30031
0.42819
0.41185
0.30031
0.30068
0.44876
0.44135
0.45806
0.58215

17 Co ; Xo ; XW1)
18 Co ; XI; XW1)

19 Cl ; x, ;XWl)
20 Cl ; XI ; XWl)
21 Co ; f2(Co,XW(1») ; f2(Co,XW(2»)
22 s; ;f2(XO,XW1» ; f2(XO,XW2»
23 Cl ; f2(Xl>XW1» ; f2(Xl>XW2»
24 Xo ; f2(Xl>XW1» ; f2(Xl>XW2»
25 Cl ; f2(Cl>XW(l» ; f2(C1>XW2»
26 C, ; f2(Co,XW(1» ; f2(CO,XW(2»
27 X, ; f2(X1,XW(I» ; f2(X1,XW2»
28 XI ; f2(XO,XW(l» ; f2(Xo,XW2»
29 XI ; f2(Co,XW'» ; f2(CO,XW(2»
30 XI ; f2(Cl>XWI» ; f2(Cl>XW2»

0.97339
0.97921
0.97835
0.97760
0.97788
0.98032
0.98129
0.98225
0.98474
0.98521
0.99100
0.99113
0.99149
0.99214

0.30213
0.26746
0.27287
0.27747
0.27577
0.26027
0.25381
0.24727
0.22944
0.22590
0.17649
0.17517
0.17161
0.16501

From Table X one can see that our basic indices show rather poor correlations
with ep, (lower than 0.93 - entries 1; 2 and 4; 5) but they are still better than that
given by Randić's index'" X(0.57221 - entry 3), denoted here as XW(1). Symbol XW<e)
represents an extended connectivity index, calculated by Razinger+' with Randić's
formula by using walk degrees, w/el, of various elongation (e) (see also Ref. 18). In
this work, indices XW<e) are calculated per vertex by

x~e) =L (~e). Wje)t1i2

j:(i.J) E E(G)

(26)

(27)
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The summation in Eq, (26) runs over all} vertices adjacent to vertex i. It is obvious
that XW<e) (G) is two times larger than the corresponding per edge connectivity index.

To improve the correlation , we used orthogonal indices, [l(TII, TI) (Table IX)
built up according to the Randić's procedure for orthogonalization of a set of ordered
TIs: TII is the origin index and TIj are made orthogonal in a sequential process, one
descriptor at a time (for details the reader can consult Refs. 22-24). The procedure
enables separation of information brought by each descriptor within the set of 01'-

thogonal indices. Here, TII is one of the basic indices Co,x; Cl and XI and TIj be-
longs to the set XW<e), e = 1,2, ...,7. Among the resulting orthogonal descriptors, only
[l(TII, XW<l))and [l(TII, XW<2») improved the correlation and are therefore, shown in
Tables IX and X.

Thus, in two variable regressions, the orthogonal descriptors [l(TII, XW<I»)give
exactly the same correlation as that given by a TII and the nonorthogonal XW<I)
(compare entries 7 and 8 with 9 and 11, respectively - Table X). This is not surpris-
ing since [l(TII, XW<l))are produced in the first step of the orthogonalization process
and represent just the part of XW<l)nonexplained by TII according to the regression.
The maximum correlation value obtained was 0.97180., (with variables Xo and XW<l))
(entry 8) and Xo and [l(TII, XW<I»)(entry 11), respectively). The second set of orthogo-
nal indices [l(TII> XW<2») shows slightly lower correlations (entries 13 and 16) in com-
parison with those given by [l(TII> XW<l)).

In three variable regressions, the use of orthogonal indices clearly improved the
correlations in comparison with the regressions performed with nonorthogonal indi-
ces (entries 21 to 30 us. 17 to 20). The presence of the basic indices Cl OI' XI (i.e.
indices calculated on derivative graphs LI) in regression, either as nonorthogonal OI'

as the origin of an orthogonal index, resulted in a supplementary rise of the coeffi-
cient of correlation (over 0.98 - entries 23 to 30) and a corresponding drop of the
standard error of estimate Oess than 0.26). The maximum correlation value obtained
was 0.99214 (standard error 0.16501 - variables: XI; [l(CI, XW<l))and [l(CI, XW<2»).
This fact demonstrates that the critical pressure is controlled by the topology of
edges, as given by the indices constructed on derivative graphs LI and the connec-
tivity indices XW<l)and XW<2).

Correlations of 0.903 and 0.971 (standard errors of 0.530 and 0.294, respectively)
were reported by Balaban and Catana-? by using two very elaborated indices XC and
XC' (called distance-enhanced exponential connectivity indices), in single variable re-
gressions.

DISCUSSION

The idea to »see- the total graph environment of each subgraph was developed
by Diudea et al. Irelative to the layer matrices of the line derivati ves L of molecular
graphs. At the vertexlatom level, the question was also considered by Hall and Kierl3
on the ground of the »topological state« matrix. Their algorithm offer s a set of r-in-
dices with highly discriminating power, which are useful in topological equivalence
perception and in the QSPRlQSAR studies.

The MOLORD algorithm provides a »spectrum« of invariants (i.e. SIm(i,) and
GSIm(L,,); m = n, n+1, n+2, ...), derived from a set of successive derivative graphs, L".
Among the proposed local invariants, the »c--type ones enhance the contribution of
more remote vertices whereas the »x--type invariants that of the nearer neighbours.
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As emphasized in our previous works.v' the »c--type indices, and particularly
c(LDS)i' provide a centric ordering of the subgraphs in agreement with Bonchev's
1D - 3D criteria. It is well examplified in graphs 2 and 3. However, the ordering
could change at lower values of factor f (see Eq. (20». For example, with f = 10, the
ordering given by SI2(i2) values in graph 2 changes at higher m values, but it is re-
tained with f = 1.000. This procedure has a meaning close to the hierarchical appli-
cation of 1D - 3D criteria.

The partitioning of subgraphs of various sizes into classes of topological equiva-
lence is reached, in general, at the level of SIm(i,,); m = n+1 and no additional de-
rivative graphs (higher m values) are needed. In this respect, it is not essential that
the ordering changes. The topological symmetry is well illustrated for cuneane in
Figure 2.

By means of the ti weighting factor, the x(LDS)i index is able to discriminate
various locations of heteroatoms in a molecular graph. This fact is illustrated in Fig-
ure 3 and Tables IV and V, for cuneane and its N-rooted congeners (graphs 3 to 7;
see also Ref. 25). Note that similarly located subgraphs (particularly atomsrhave
close values of x(LDS)i within the considered set of graphs. Such LOVIs and the cor-
responding global indices were found to have a good correlating ability in
QSPRJQSARstudies (see the resuits of this work and also Ref. 8).

Since the derivative graphs are based on connectivities, a large number of itera-
tions resuits in an exponentail rise of the vertex degree (see Eq. (14», excepting the
graphs with max ki = 2. As a consequence, the higher terms of L" will stress the
complexity of a given graph, Lo. Thus, it is easily conceivable that the »e-s-type or-
dering will converge towards the one of »x--type as n increases. The spectrum of val-
ues given by the MOLORD algorithm clearly follows the complexity trend of L". A
way to limit the contribution of higher rank derivative graphs is to enlarge that f
parameter sufficiently.

CONCLUSIONS

The MOLORD algorithm provides a »spectrum- of invariants, which are com-
puted for subgraphs of various sizes extracting the topological information from the
derivative graphs L". New relations are derived for the vertex degree and the num-
ber of edges in the L" of regular graphs using parameters of the initial graph Lo.
The classical invariants the algorithm uses are calculated on the layer matrices, LM
(particularly the layer matrix of distance sums, LDS). These invariant are real num-
bers, found to give good correlations in the QSPRJQSARstudies.

The MOLORDalgorithm appears to be a powerful tool in topological equivalence
perception and could be promising for the graph isomorphism testing (see Ref. 2).
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SAŽETAK

Molekulska topologija. 14. Algoritam MOLORD
i realne invarijante podgrafova

Mircea V. Diudea, Dragos Horvath i Danail Bonchev

Predložan je algoritam, nazvan MOLORD za određivanje (realnih) invarijanti podgrafova
u molekulskim grafovima. Algoritam uzima u obzir različitost atoma, na osnovi njihove elek-
tronegativnosti i može se koristiti za uočavanje njihove ekvivalencije ili za definiranje lokalnih
i globalnih deskriptora u QSPR i QSAR. Algoritam je implementiran u Turbo Pascalu, a nje-
gova je primjena prikazana na nizu izabranih grafova,




