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Exact quantum solution of the collinear collision problem is found in the im-
pulsive model. The transition probabilities compare wellwith those for real systems,
except when multiple collisions become important.

l. INTRODUCTION

Various models are used when understanding the collision processes is required.
Their role is to emphasize those features which are dominant in collisions and to
neglect those which are not so important. There are various kind of models! e_g_
the distorted wave Born approximation, the Infinite Order Sudden (lOS) approxi-
mation, collinear model, two dimensional model etc., but among them there is the
one which needs particular attention. We call it the impulsive model, although dif-
ferent authors have different approach to describe il. Physically it is associated with
the process whereby energy transfer between projectile and target happens in very
short time intervals. Particular example of our interest is energy transfer due to the
direct collision between atom and molecule, in contrast to orbiting which is not eon-
sidered impulsive process. Most of energy transfer in such collisions occurs in the
region of the short range repulsive wall of atorn-molecule potential, and it takes
very short time interval. Since the repulsive wall is very steep it is not a great error
if it is replaced by an infinitely high barrier. We assume that the rest of the potential
can be approximated by a spherically symmetric average of the potential. We shall
call this model the impulsive model, although it is also known as the hard sphere
or the hard wall model'

In this paper we show how to find exact quantum solution of this model for
a general collinear atom-molecule collision problem. The method of solution is ge-
neral enough to be easily extended to more dimensions.' By using this technique
we investigate validity of the model on various systems. We also show how to find
approximate solution for the model and discuss its relationship to the various other
approximate solutions.
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The proposed method of solution of the impulsive model is algebraie, meaning
that the transition amplitude (S-matrix) is solution of a set of linear equations. How-
ever, there are various other approaches to find solution of the collinear collision
problem, but they are all approximate. The technique of these solutions is based
either on the time independent or time dependent approach. In the time inde-
pendent approach the simplest solution is the distorted wave approximation.v' but
it has limited use." Furthermore in the limit of the impulsive model it becomes mea-
ningless because the coupling matrix in the diabetic multiehannel equations is in-
finite." Perturbation technique can be formulated in the adiabatie basis," when
coupling matrix is finite, but even then it is only restricted to systems where one
can find simple basis. Even then the perturbation approach gives only accurate re-
sults for systems with small number of channels and very small energy transfer. Ano-
ther possibility is to use the lOS approximation, whieh gives the S-matrix in a closed
form, I but it is restrieted to systems with small energy transfer. The approximation
solution, however, was found in the momentum representation of the scattering am-
plitude.9,lO In this representation one obtains the transition amplitudes as expansion
in powers of the potential but not in the way the Born expansion does. Each power
of potential is also weighted by the similar power of the propagator for a free atom.
This is interpreted as expansion of transition amplitude in multiple collisions events.
Thus, for example, the lowest approximation is interpreted as contribution of the
single collision event. In this respect the approximation is also caUed the impulsive.
There are a few other ways of solving this problem.'! within the time independent
formalism, but they are very specific for the collinear collisions and therefore not
useful if one has the aim of applying them to multiđimensional problems. In the
time-dependent approach approximate solution for the transition amplitudes is
found in a closed formP-15 We shall discuss it in the last section of the paper.

Il. QUANTUM THEORY

Hamiltonian for a collinear system of an atom A and a diatomic molecule BC
is in their centre of mass coordinates

n2 a2 n2 a2 KH = -- - - -- - + - (y - YO)2+V(XJI) (1)
2fl ax2 2flBC ay2 2

where fl is the reduced mass of the system, us«: is the reduced mass of the molecule,
while the coordinates X and y are defined in terms of the coordinates XA, XB and
xc of the three atoms as

XBf11B+XCmC
X =XA - ---:---

me+nu-
(2)

y = XB - Xc

where mA, mB and mc are masses of the respective atoms. It was assumed that the
molecule BC is harmonie oscillator and the atom-molecule potential is V(x,y).
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The potential V(x,y) is assumed to be function of only the coordinatex, however,
it is infinitely repulsive at certain separation between atsms A and B (atoms are
assumed to be aligned in the order A - B - C). In other words the potential V(x,y)
has the form

V:(x ) = { U(x); Z >Zo
Ji 00 • z <z, - o

where z is the distance between atoms A and B and it is given by

(3)

z =X - Y
mB+mC

(4)

Zo is the radius of the infinite repulsive core between atoms A and B. Solution
of Schr6dinger's equation for this potential one easily finds when z > Zo. A particular
solution is

(5)

where ~n(Y) is the harmonie oscillator eigenfunction of the n-th state with the
eigenenergy en, and wn(x) is the wave funetion for potential U(x) and energy E - en.
The harmonie oscillator eigenfunction are

(

KV4 ) vz 2/
~n(Y) = liV2n Vz2nn! f1 ~t H n (Q) e-Q 2

where Hn(Q) is the Hermite polynominal and

Q = (~2f1BC) V2(y_yO)

(6)

(7)

where yo is the equilibrium separation of the harmonie oscillator. The energies
en are

en = n W (n+1/2) = li CK/f1BC)1J2 (n+1/2) (8)

The most general solution is a linear combination ot the particular solutions
(5), which we write as

'l'n =L ~n (y)[w~(x) Amn + w';;-{x) Bmn]
m

(9)

where W~ and w; are the two irregular solution, defined with the boundary
condition for x -+ 00

+ +' kWin (x) = e-JX
m (10)

where the channel wave numbers km are

(11)
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The index n of the coefficients Srnn and Brnn designates the n-th linearly inde-
pendent solution. These coefficients are determined by imposing two scattering pro-
cess and b) it must be zero for Z = z., the second condition gives

~ + mc _ mc~ tpm(Y)[wm (zo+ y)Amn + Wm (zo+ y) Bmn] = O
m mB + mc mB + mc

which must be satisfied for all y. If we write

(12)

tpm(y)w,;(zo + mc y) = Ltp1 (y) <1 I ± I m>
mB + mc 1

where the coefficients are given by
00

<1 I ± I m> = f dy tp1(y) W,; (z, + mc y) tpm(y)
_00 mB + mc

then the set of equations (12) is

(13)

(14)

~ tp1 (y) [ <11 + Im> Amn+<ll-lm> Bmn} = O

The solution is

(15)

A = < I + I > -1 ; B = _ < I _ I >-1 (16)

where we have defined matrices < I ± I > with the elements

<1±I>mn = <ml±ln> (17)

The scattering solution, if the incident wave propagates towards x ....• 00, has
the asymptotic form

1J1n = w+(x) tpn(y) + ~ w;(x) tpm (y) Smn(Z:) V2 (18)

where ISmn 12 are transition probabilities.
If (9) and (18) are compared then Srnn are

Smn= _ [< I-I >-1< 1+ I]mn (~:) V2 (19)

For the impulsive model this result is exact. It simplifies considerably if small
energy transfer is assumed. The inverse of < I - I > is then approximately

00 -1
[< 1- I > -l]mn -= f dy tpm(y)(w,;) tpn(y) (20)

_00

which can be shown by calculating the product < I - I > -1< I - I >, taking into ac-
count the completeness of the basis functions tpn(y) and the assumption of small

ener:
n

t:n:er(!k:
r
) ';,hT d;e~~:~~:e Wm "'- w,. The elementsSm, are Ihe;21)

n _00 Wm

which resembles very much the lOS approximation.'
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In our study we shall consider the case when U(x) in (3) is zero. The two ir-
regular solution W±m are then

(22)

and the matrices < I ± I > are
00

<m I± In> = f dy cpm(y) e±ikn(zo+mcy / (ms+mc)) cpn(y)
-00

(23)

For the harmonie oscillator eigenfunction (6) the integral (23) can be evaluated
analytically.l" and for m :5 n it is given by <m I± In> =

V 2m~~ nl (± ik~Cr-m e±ikn »» ± ikoZo-k~CV4L~-m(k~ CV2) (24)

where

mc
1]=---

ms+mc (25)

and L';n-m (z) is the Laguerre polynomial. For m »n the indices m and n in (24)
interchange, expect the index of kn.

The approximation (21) has also a simple expression. The wave number kn in
the integral (23) is replaced by k-s+k« and the formula (24), which this change, gives
the approximate value of the S-matrix (21). In this approximation the probability
for transition m+n is

p = ml e-zzn-m (Ln-m(z»)
2

• n> mmn, m ,-n. (26)

(27)

III. CLASSICAL THEORY

In this section we give a review of the classical theory for the collinear atom-
diatomie molecule collisions17,18 because we shall compare quantum and classical
resuits. Classical equations of motion for the collinear atom-diatom system (mole-
cule is treated as harmonie oscillator), which was described in the previous section,
is in their centre of mass coordinates

d~ __ av . ~ _ _ aV
j-l del - ax' j-lsc dt2 - K(y-yo) - ay (28)

where the para mete rs are the same as in the previous section. It is convenient to
transform x and y into a new set of coordinates which explicitly exhibit the observ-
ables. The new canonical variables are x, n, Px and <1>,where n plays the role of the
vibrational quantum number, whieh is defined as
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p2 K
Eosc = n OJ n = -Y- + - (y_YO)2 (29)

2/1BC 2

where Eosc is the oscillator energy. <I>is the phase of oscillator and it is defined
by

<I>= tan-l(K~~O))
In this set of coordinates the equations of motion are

(30)

dn
=dt (

2n ) vz aV m.
- cos 'vn OJ /1BC ay

( )

V2
dY' 1 av .
-dt = OJ + 2'" - SIn <I>

OJ "n /1BC ay (31)

d av dx 1
dtPx = - ax ; dt = li P»

and the initial conditions are chosen according to the following recipe. For the co-
ordinate x one takes a fixed value which is large enough so that the potential V(x,y)
is small. The velocity Vx is determined from the conservation of total energy and
n is given the value of the initial state nj of the molecule. The condition on the
phase <l>iis that after collision the molecule is in the chosen final state nt. In practice
one calculates the function nr(<I>i) in the interval O:S<l>i<2n and then the proper
value for <l>iis chosen by interpolation.

Transition probability from the initial state ni to the final nr is given by 1

1 1
p", ~"' ~ 2x ~ 1 <lnr r

d<l>i

(32)

where the sum extends over all phases <l>iwhich satisfy the previous condition. The
derivative in (32) can be calculated numerically. This means that once <l>iis found
then ne is calculated for the values <l>j±~, which gives the approximate derivate

dnr ::: ne(<I>i+~) - n[(<I>i-~)
d<l>i 2 ~ (33)

Another way is to calculate this derivative directly. Let us assume that one
knows the solution of the set of equations (31) for particular initial conditions. If
<l>iis slightly changed the setx,px, n and <I>also changes bya small value (we consider
only the cases without catastrophies i.e. the cases when the final value of solution
of (31) is continuous function of the initial conditions). If all the initial conditions
are kept constant, except <l>iis slightly changed, then at any instant of time the so-
lution of (31) is approximately
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(34)

where q represents one of the variables X, n, px, or <I>.The time derivate of Sq is

d ~ afv ~ afv aq"
dl /),.qv =.LJ -a /),.q,t =.LJ -a a<I>' <5<I>i (35),,=1 q,t ,,=1 q" 1

where f are the function on the right of equations (31). If we take the limit <5<I>i
-+ O then

d aqv _ ± afv aq"
dl a<f5i -,,=1 aq,t a<I>i (36)

The set of equations (36) should be solved together with (31) in order to obtain
dn/d<I>j,which has now the exact value in contrast to (33) which is approximate. The
initial conditions for (36) are an/a<I>j = ax/a<f.}= av,Ja<I! = O and a<lta<I!= 1.

Within the classical theory one can also study the impulsive model. In the sim-
plest case, when the potential V(x,y) is zero except at the hard core, the model is
known as the hard sphere model. Und er the assumption of single impact between
A and B this model gives for the energy transfer from the incoming atom in to the
molecule (e.g. ref (9))

tili = rECM(1 - v1;~SCOS<I» (1+ VI S~: COS<I»

where

(37)

mAme 4mAmwne(mA+mB+me)s = . r =
mB(mA+mB+me) , (mA+mB)2 (me+mB)2

(38)

The energy transfer tili is defined as the difference between the final and the
initial vibrational energy of the molecule. ECM is the initial kinetic energy of the
system and Eosc is the initial vibrational energy of the molecule. If the potential
V(x,y) is not zero, but is defined as in (3), we can also use (37) for the energy transfer,
except that the initial relative translational energy should be lowered by the value
U(x) at the hard core.

When multiple collisions between A and B are considered the formula (37) is
no longer applicable. Energy transfer is obtained by considering various possibilities
of multiple collisions between all partners A, B and C, and the result is not as strai-
ghtforward as (37).

IV. APPLICATION

We have made a study of energy transfer in a collinear He - CO collision, and
compared the accuracy of the impulsive model against the exact calculations. It was
assumed that He atom hits oxygen atom of CO molecule, which was assumed to
be harmonie oscillator with the force constant K= 1900 Nm -1. For the interaction
between He and CO we have taken exponential repulsion of the form
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V(x,y) = Vo e-a(z-zo) (39)

where Vo = 1.610-21 J (0.01 eV), a=20 1010 m-1 (20 A-1) and zo = 3.10-10
m (3 A), while in the impulsive model it had the form (3) with U(x) =0. The potential
of the impulsive model is obviously the limit of (39) when a ~ 00.

In Figure 1. we show the two dimensional plot of the entire potential for the
system with K=900 Nm -1 (this system will be also discussed). The solid line rep-
resents the impulsive potential. The broken line is the intermediate case when a
= 50 10-10 m-1 (50 A -1).

1.9

o
y(A)

2.3 2 eV
1.5 eV
1 eV

O.5eV

/ /'
/

II

2.1

,I \
II \

1.7

3.4 3.8 4.2 ox (A)

Figure 1. Patentiai energy eontours for the system atom-diatomie molecule. The moleeule
i~assumed to be harmonie oseilIator and atom-moleeule patentiai is (39). Solid line is for a=20
A -1while thoedotted line is for impulsive model potential. The broken line is the intermediate
ease a=50 A -1.

We have made study of this system at collision energy E=3.2 J (2eV). At this
energy there are 7 open channels (n=6 is the last open channel), which is sufficient
number of channel s to observe reasonable resolved structure of transition prob-
abilities. Furthermore, with this number of open channels we are in the regime of
the semiclassicallimit, where it is expected that classical mechanics is adequate de-
scription of collisions.
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Figure 2. shows resuits of four different calculations for the transition prob-
abilities O -+ n:. exact quantum (solid line), impulsive quantum (broken line), ap-
proximate impulsive quantum based _on (26) (dotted line) and classical
(broken - dotted line). ClassicaItransition probabilities were obtained by integrating
the set of equations (31) and (36). Exact quantum transition probabilities were ob-
tained by integrating the appropriate set of muitichannel equations, using the log-
derivative method (the term exact is perhaps too strong but we shall use il in order
to distinguish it from the other calculations).

pO.•n

I

I
I
I
I0.4
I

n
Figure 2. Transition probabilities for He-CO collision at 2 eV collision energy from exact

quantum (solid line), impulsive model (broken line), approximation (26) (dotted line) and clas-
sical (broken- dotted line) calculations. lnitially CO is in the ground state.

Impulsive model results are in reasonable good agreement with the exact enes.
Since the qualitative features of transition probabilities are reproduced well it is cle-
ar that hard collisions (impulsive) are an important factor which determines energy
transfer in atom-molecule collisions. Deviation between the two resuits can be at-
tributed to the simple choice of the pot.ential in the impulsive model. If instead of
the choice U(x)=0 in (3) we had assumed that the potential has some average value
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of the true potential V(x,y), the agreement could be improved. The result would be
lowering the kinetic energy of colIisions prior to the impact with the hard core, and
hence transition probabilities for large energy transfer would be lowered. Likewise
the low energy transfer probabilities would be enchanced, which is just the deviation
in Figure 2.

Transition probabilities based on the formula (26) are not in such a good agree-
ment with the exact resuIts, altrough they are not entirely meaningless. The reason
for this is that the energy transfer is relatively large compared with the number of
open channels, and hence the assumption leading to (26) are not satisfied. The clas-
sical resuIts are entirely different from the quantum, so much so that even the ave-
raged quantum probabilities do not reproduce the classicalones. This is
manifestation of the fact that the ground state wave function of the harmonie oscil-
Iator (the initial state of CO) cannot be described semiclassicalIy.

The agreement between the exact and the quantum impulsive transition prob-
abilities is much better if the mass of incoming atom is srnaIl compared to the mass
of the atom which it hits in the molecule. In order to check this we have analyzed
energy transfer assuming that He mass is m« = 1 a.u. The resuIts are shown in Fig-
ure 3, with the same legend as in Figure 2. .

P
o
_
n

0.5

0L-~0~--L-~~~5~--Ln--

Figure 3. Transition probabilities as in Figure 2. expect the mass of Ile atom is m»:=1 a.u.
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I I
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0.3 \ ~/
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0.1
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We notice that the impulsive model transition probabilities and the exact ones
are almost equal. The same is true with the approximate impulsive model results,
which is result of the smaller overall errergy transfer into the molecule due to the
lighter incoming atom.

Energy transfer depends also on the force constant K of the harmonie oscillator.
For the case with mA=l a.u. we have case of relatively loosely bound atoms, more
like a Van der Waals dimer tha n a molecule. Because of smaller K it is expected
that there will be more open channels. Figure 4. shows resuits for this system. All
three quantum calculations give nearly the same result, similar to that in Figure 3.
There is deviation for the elastie channel, but for the rest of the channels the dif-
ference is practically negligible. We have also done calculations for the same system
but with mA=4 a.u. The comparison is more or less the same as in Figure 2. and
therefore we conclude that for the working of the impulsive model, and especiallly
its approximation, the mass of the incoming atom is more critical tha n the force
constant of the molecule.

I I
1 I

P I IO-n

1 I

0.4 I I
I I

1 /. /
1/ ••
("
I

0.3 I
\
\
\

''''-
0.2

Figure 4. Transition probabilities as in Figure 2. except the mass of He atom ismA=l a.u.
and K=900 nm-l.
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So far we have only analyzed energy transfer if initially the molecule is in its
ground state. Next we have assumed that the oscillator is initially in the n=4 state.
For the mass mA=l a.u. and K=1900 Nm-1 the resuIts are shown in Figure 5.

0.4

0.3

0.2

Ul

I
I
I
I, 1

1\ i
1 .

1
I \

I \

/
\
\

./

..

5 n

Figure 5. Transition probabilities as in Figure 3. expect CO is initially in n=4 state.

The exact quantum and impulsive transition probabilities are in good agree-
ment. However, the approximation (26) is not very good, although it reproduces
the qualitative features of the exact resuits, because the initial state n =4 is close
to the last open channel n=6 and therefore change of the channel wave number
kn with the vibrational energy is nonnegligible. This is just the opposite to the eon-
dition under which the formula (26) was derived suggesting that this approximation
may not be so good.
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. M~ch better agreement between the approximatio~ (2?) and the ex~ct results
ISobtained for m=l a.u. and K=900 Nm : , as shown m FIgure 6. In this case the
last open channel is n=10 and the wave numbers around the initial state n=4 are
less sensitive to the variations in the vibrational energy. Furthermore, energy tran-
sfer is not sufficiently effective so that only up to n =7 state is ciassically pop ulated,
as it can be seen from Figure 6. Therefore the condition for the approximation (26)
is much better satisfied tha n in the previous case, resulting in a better agreement
between these two calculations. Even so the approximation (26) is not perfect, but
it reproduces all the qualitative features of the exact transition probabilities.

0.3

Figure 6. Transition probabilities as in Figure 4. expect CO is initially in n=4 state.

So far analysis showed that the impulsive model of collisions gives very good
description of energy transfer. In fact one can say that deviation from the true results
can be treated as perturbation. However, this is not always the case, as shown in
Figure 7., where transition probabilities are calculated for mA=4a.u. and K=1900
Nm-1. The impulsive model is totally out of accord with the exact results, and the
approximation (26) is not even shown.

The reason for this deviation one finds in the occurrence of multiple collisions.
Multiple collisions sets in when all, or most, of the initial translational energy of
atom and molecule is transferred into the vibrational energy of molecule. When this
happens then after the impact between atom and molecule they do not separate fast
enough so that second collision between atom A and atom B may occur, which we
call multiple collisions. On the second impact the molecule releases its vibrational
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0.3
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I,, I, ,, ,

I
I
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\ ,
, I

'>J

5 n
Figure 7. Transition probabilities for He-CO system when CO is initially in n=4 state.

energy into the translational and as a consequence large vibrational transitions will
be first affected. From the impulsive model we can estimate when it is likely that
multiple collisions will be important. The largest energy transfer occurs when the
atom hits the molecule at the moment when the molecule is contracting and going
through its equilibrium point. After energy transfer the atom must get beyond the
amplitude of the oscillator before the molecule makes 3/4 of its oscillation period.
If it does not then the molecule will hit the atom, thus producing multiple collision
effect. From this condition we obtain inequality

E8sc/ ECM + 1 1 4,u
o < + 2 (40)

Eosc / ECM + !1E / ECM 9n ,uBC

where EOosc is the initial energy of oscilIator and !1E is given by (37) for the phase
<1>=0.If the inequality (40) is satisfied then there will be multiple collisions. In our'
case this inequality is 1.007<1.023 and indeed multiple collisions are expected. How-
ever, since this condition is marginally satisfied, it is doubtful whether the real sy-
stem will show multiple collisions. Ifwe look in Figure 7. we notice that the classical
transition probability is slightly asymmetric with respect to the left and right of its
minimum (in the absence of multiple collisions it is strictly symmetric) which in-
dicates multiple collisions, but not very pronounced. On the other hand, in the im-
pulsive model this effect is much more pronounced (which we confirmed but it is
not shown) and therefore its aftect on the transition probabilities is more dramatic.
There have been studies of multiple collisions 19 and the condition for their onset
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has been given. However, that condition is much cruder and for our system it gives
that it is far from being in the regime of multiple collisions.

Although (19) includes multiple collisions, deviations between our resuits and
those for exact potential are due to different reason. Any small change in potential
(we have assumed U(x) in (3) to be zero) is likely to cause large distortions of the
transition probabilities since with multiple collisions the exponentially separating
trajectories will be very important. In general, therefore, it is expected that the im-
pulsive model will become inadequate for describing collisions with large energy
transfer, but on the other hand the question is how accurate the potential should
be in order to reproduce proper transition probabilities? Nothing, but the most ac-
cura te potential and good comparison with experiment but loses the beauty of sim-
ple models.

V. D1SCUSSION

The solution (19) for the S-matrix in the impulsive model is exact and (21) is
its approximation, which is valid for small energy transfer. These formulae are valid
for a general potential (3) and they are not restrieted to harmonie osci11ator of the
diatomic molecule. In the simplest case when atoms are treated as hard spheres and
diatomie molecule is harmonie osci11ator, the integrals which enter (21) and (26)
can be evaluated analytically. In partieular, the transition probabilities based on the
approximation (21) are given by (26). Since we discussed in Introduction various
other approaches to the collinear collision problem, it would be of interest to com-
pare those resuits with our approximation (26). Basically we distinguish among them
three (we do not consider the distorted wave approximation) solutions: a) from the
time dependent approach, b) from the momentum representation and c) from the
lOS approximation. The first one gives for the transition probability P« ...•n14

min(n,m)2:
1=0

2

(42)Il (m-I)! (n-I)!

where E is the classical energy transfer into an initially nonvibrating molecule.
For the harmonie oscillator E is given by

00

f dr' F(t') e' u) t'

-00

2
1 (43)

where F(t) is an effective force whieh acts on the molecule. The formula (41) should
be compared with (26). It is relatively easy to show that the sum in (41) can be
transformed into the Laguerre polynomial L~I-m, therefore, both formulae are for-
mally equal, except for the normalization kmlkn. However, the major difference is
in the argument, which in the case of (41) is essentially the final energy of osci11ator
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while in (26) it is essentially the momentum transfer squared. Our result is much
closer to the transition probability obtained from the momentum representation."
The probability is excatly the same as (26), including the form of argument, except
that instead of the prefactor km/kn there is (1+M)2(km +kn) 2/(4kmkn), where M=mc
mA/[mB (mA+mB+mc)]. We have investigated this approximation for the examples
which discussed in the previous section. In general, this approximation is not qua-
litatively better than ours, in fact sometimes it gives better results and sometimes
worse. The lOS approximation is the same as (26) except that km=kn.

This was a brief account of the results of various approaches to the impulsive
model. The question, however, is not how much do they differ one from the other
but to what degree the impulsive model describes reality. We have seen that in most
cases the model is quite adequate and one would need a smal1 correction to take
it more accurate. The exception is when multiple collisions sets in, but then more
fundamental questions are raised, as discussed in previous section. One correction
to the model is to assume that U(x) in (3) is not zero, but has a form Vo exp( -ax),
where the parameters a and Vohave some effective value. In such a case the irregular
solutions (22) would generalize to

w±=1±2 i~ (2i ~) (44)

where Z= VO exp( -ax). With these solution one could evaluate the integrals (14)
and obtain correction to the model. Even then, however, the transition probabilities
are not expected to be accurately reproducing the exact results, but this solution
may be the starting point for the perturbation expansion in the powers of the dif-
ference between U(x) and V(x,y). This would appear quite a straightforward proce-
dure but this is not the case. The source of the problems can be traced to the
unperturbed solutions, which cannot be easily obtained for the potential with a hard
core.
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SAŽETAK

Impulsivni model u kolinearnom sudaru

N Petrović i S. D. Bosanac

Prikazano točno kvantnornehaničko rješenje impulsivnog modela i primijenjeno na koli-
nearni problem. Vjerojatnosti prijelaza dobro se slažu s onima za realni sistem, osim u slučaje-
vima kada se višestruki sudari ne mogu zanemariti.




