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A series expansion is derived for overlap integrals between
Slater type orbitals with nearly equal screening constants and
simple analytical expressions are obtained if both of them are
equal. Unlike the known standard methods no numerical instabi-
lities arise and also no restrictions exist with respect to the
quantum numbers n, 1 and m of the orbitals.

INTRODUCTION

The methods of evaluating over1ap integrals over Slater type orbitals can
be divided into three different groups. The first one is based on the trans-
formation to elliptical coordinates as carried out in the classical paper of
Mulliken et al:', the second one uses a single-center expansion technique.š-"
while the last one is founded on the Fourier transformation method.š-"
Common to all these methods is the occurence of numerical instabilities when
the screening constants of the Slater functions become almost equal requiring
a special treatment in this case. For this reason, in arecent note" the single-
-center expansion technique has been applied to compute these over1ap inte-
grals with equal screening constants resulting in a collection of very lengthy
and cumbersome formulas. Therefore, in this communication we shall show
that much simpler expressions can be obtained for this case in deriving an
analytical formula by the Fourier transformation method. Moreover, it has
the additional advantage to be applicable without any numerical problems,
even if the screening constants are slightly different. For this purpose, at
first we give the general expression for over1ap integrals obtained in this
way, and afterwards we derive from this the desired limit when both of the
screening constants approach each other.

OVERLAP INTEGRALS; GENERAL CASE

Starting with the Fourier representation of a like wave function"
-}oo ~ 1\ ~-+-+_ -+

fPi (r - R) = Ri (I r - R I) Y Li (r - R) = S d3 k e'k(r-R) fPi (k)

with the Fourier transformed

(1)

"'" ...:.. 1\ .,.
fPi (k) = (2n2 i'ir1 Y (k) R. (k)

Li "I,
(2)
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and the spherical Bessel transformed of order li
~ co

Ri, I, (k) = J r2 dr j I. (kr) Ri (r)
O

(3)

the overlap integral takes the form
~ --i>

Si: = J d3r qJi* (r - R,,) qJj (r - R)

A
(-1) (1+1,-lj)/2 Y * (R.) G (LL.) A (n.l. nl.· R)

I' L L, I I ,,' I I'= 4n ~
L

(4)

--i> --i> --i>

Here, CL (LiLj) is a Gaunt number, R = R", - Rv, and the radial part is given
as3,4

00

AI (nJi' nh; R) = (2/n) J k2 dk ji (kR) Rj, I, (k) R i,lj (k)
O

Assuming now the radial function to be a Slater-type orbital (STO), the
spherical Bessel transformed, eq. (3), becomes

(5)

_ ni+l
Rj,l, (k) = ci k tj ~ (k2 + C/f" Bn (ni + 1, li; O; niO= 1 + (ni + lY2 (6)

n? nio

with the normalization constant c, and the B-coefficients being defined by the
recurrence relations
(1)

(2)

Bn_m (nI.; C) = O if n ~ l + 2m; m = O, , n

Bn (nl; C) = (2n-2)!!C"-H; (2n)!! = 2·4· · 2n (7)

(3) B", (n + 1, I; C) = 2nCBm_1 (nl; C) - (n + l) (n - l -1) Bm_1 (n -1, l; C)

where the last equation has been given in ref -.4 apart from a printing error; the
first few members of these B-coefficients are listed in Table 1.

The radial integral (5) may now be expressed by the following quadratic
form

nj + 1 n. + 1 lA, ,
AI (nil i' nh; R) = c'Cj ~ ~ a, (ni + 1, li; Ci) W nn,"'lj; R) Bn' (nj + 1, lj; Cj)

n'~ njo n ~ nio

(8)

W';'~' defined by
k'+2). . (kR)

WlA, (I- I- . R) - (21 ) J dk JI
nn' SiSj' - rt (k2 + C/),,(k2 +C/)'"

(9)

obeys the recurrence relations"

Il IR) n - 1 Ct+!
(1) WnO = ~2"c (n -I)! kn_2_1 «.R)

(2) WI,)'+l = 2l + 3 WI+1,). _ WI+2,).
nn' R nn' nn'

(10)

(11)

(12)
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where kl (x) is the modified spherical Hankel function of the second kind.
From these formulas, eqs. (7) and (10)-(12), the fast and efficient computation
of the overlap integrals is guaranteed if 1 S/ - U ! ~ 1.

OVERLAP INTEGRALS FOR NEARLY EQUAL SCREENING CONSTANTS
In case that 1 S/ - si21 is less than unity the application of eq. (12) leads

to numerical instabilities. This can be avoided in the usu al way by downward
recursion from a certain nl11ax; however, in unfavourable cases (i S/ - si21 = 1)
nmax may exceed values of larger than 100, making this procedure rather
time consuming. This difficulty can be overcome in the following way. Let
be without loss of generality Sj ~ 1;i, i. e. Si = Sj - E. (E ~ O); then

(
C/2_c/)n

(k2 + C/)" = (k2 + «, - s)")" = (k2 + Cl)" 1 - (131
k2 + C/

Substituting this expression into the formula (9) for the W-coefficients, we
obtain the series expansion

A 00 kl+2A ji (kR) ( C·2- C/ ) -n
W~n' (Ci Cj; R) = (2/:rr) ~ dk (k2 + C/)"+'" 1- k~ + Cr

(2/:rr) 'i( n-I +,u) (U-U)f.L S k
l
+
2A

jz(kR)dk
f.L~O n-I / t O (k2 + C/)n+n'+f.L

(14)

which is convergent for all k since Sj ~ C. For A. = 1 we can use eq. (10) to

express W by Rankelfunctions (n = n +n' + 1)

(15)~
(n + ,u)!

In the special case Si = Sj = S only the first term of the series survives yield-
ing the simple result

(16)

which can be used together with eq. (11) to calculate all the W-coefficients
as will be shown in the next section. The main advantage of the series expan-
sion (14), however, consists of the possibility of computing the overlap inte-
grals fast and accurate when O< 1 S/ - Si2 ! ::s 1. For even in the unfavou-
rable case 1 S/ - si21 = 1 only ten to fifteen terms are necessary to achieve
an accuracy of ten significant figures. We have compared the computation
time for this procedure with the single-center expansion method used pre-
viously by us" and found the former one to be more than four times faster.

APPLICATIONS AND CONCLUSION
A simple procedure for calculating overlap integrals between two Slater

orbitals with nearly equal exponents has been described. Unlike the known
standard methods no numerical instabilities occur, the integrals can be gene-
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rated easily by a computer program without the need of additional storage
space for any coefficients, and no restrictions exist with regard to the quan-
tum numbers n, l, m. In the case of equal exponents the expressions become
particularly simple. Therefore, the present analysis is of inter est in view of
the role which overlap integrals play in semiempirical theories of chemical
bonding as Extended HiickeF or maximum overlap methods" where for
qualitative discussions simple analytic formulas for overlap integrals and
their derivatives? are useful which can be derived from eq. (4) choosing
without loss of generality R parallel to the z-axis:

sr: = ~ [4n (-1) (l+ l,-lj) (2L + 1)]," GIO (Lim, Ljm) Al (nJi' njLj; R) (17)
L

With the appropriate values for the Gaunt integrals'" one obtains:

(nip, njP; o) = } { 2
Ao (nil, njI; R) - A2 (nil, nj1; R) *

(niP, njP; n) = -1

(nis, njP; o) = 3 Aj (niO, njl; R)

(nid, njd; o) = ) 1 2) 1 6)
(nid, njd; n) = Ao (ni2, nj2; R) - 5/7 A2 (ni2, nj2; R) * 1 + 3/7 A4 (ni2, nj2; R) * -4

(nid, njd; iS) = -2 1

(nis, njd; o) = 5 A2 (niO, nj2; R)

The Al (nili, njlj; R) are easily calculated using eqs. (11) and (16) together with
table I yielding the following results (x = ~R):

x3
(ls, ls; o) = --k2 (x)

3

x3 X2
(28,28; o) = --[k2 (x) - x k3 (x) +--k4 (x)]9 5

2x5 X X2
(3s, 3s; o) = -- [k4(x) - -- ks (x) + --k6 (x)]

~ 3 ~

~ ~ ~ ~(48,48; o) = --[k4 (x) - 2x ks (x) + -- X2 k6 (x) ---k7 (x) + -- ks (x)]
525 21 7 189

X4
(2p, 2p; n) = -k3 (x)

15

X4
(2p, 2p; o) = -lk3 (x) - x k2(x)]

15

r
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2~ 3~(3p, 3p; o) = (3p, 3p; n) --- [k2 (x) - x k3 (x) + - k4 (x)]
225 14

x5
(3d, 3d; eS) = - k4 (x)

105

x5
(3d, 3d; n) = 105 [k4 (x) - x . k3 (x)]

x5 4 X2
(3d, 3d, o) = -- [k (x) _- x . k3 (x) + -- k2 (x)]

105 4· 3 3

All overlap integrals with equal exponents are thus reduced to simple sums
of Hankel functions of the second kind defined by the recurrence relations

kZ+l (x) = 2l + 1 kz (x) + kZ_l (x)
x

Moreover, if both exponents are not too much different it is possible to eva-
luate the overlap integral to a good approximation by taking Si = Sj o:=:

= (Si + Sj)/2.
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SAZETAK

Računanje integrala prekrivanja SIaterovih orbitaIa s gotovo jednakim eksponentima

M. Grodzicki

Dobiveni su jednostavni analitički izrazi za računanje integrala prekrivanja
Slaterovih orbitala s jednakim eksponentima. Ako se eksponenti međusobno malo
razlikuju integrali se računaju s pomoću prikladnog razvoja u red. Prednost po-
stupka sastoji se u tome da nema numeričkih nestabilnosti, koje se ponekad pojav-
ljuju pri primjeni dosadašnjih metoda.




