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Fractality and Lapidus zeta functions at infinity∗
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Abstract. We study fractality of unbounded sets of finite Lebesgue measure at infinity by
introducing the notions of Minkowski dimension and content at infinity. We also introduce
the Lapidus zeta function at infinity, study its properties and demonstrate its use in analysis
of fractal properties of unbounded sets at infinity.
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1. Introduction

In this paper, we are interested in relative fractal drums (A,Ω) in which the set A
has degenerated to the point at infinity. In short, a relative fractal drum (A,Ω)
generalizes the notion of a bounded subset of RN and is defined as an ordered pair
of subsets of RN , where A is nonempty and Ω is of finite N -dimensional Lebesgue
measure satisfying a mild technical condition; that is, we assume that there exists
δ > 0 such that Ω ⊆ Aδ. The motivation for introducing this notion is firstly in the
fact that it enables a unified approach to studying bounded sets, fractal strings (for
which the notion of inner Minkowski dimension is crucial), the vibration of drums
with fractal boundary and many other situations as well as fractal properties of
unbounded sets. Secondly, they are interesting because they give a way to analyze
local fractal properties of a given set as well as give rise to new phenomena such as
negative Minkowski dimension which gives a new insight into the elusive notion of
fractality.

The Lapidus (or distance) zeta function of (A,Ω) is defined as the Lebesgue
integral

ζA,Ω(s) :=

∫

Ω

d(x,A)s−N dx, (1)

for all s ∈ C such that Re s is sufficiently large, where d(x,A) denotes the Euclidean
distance from x toA. Its main property is that the abscissa of convergenceD(ζA,Ω) of
ζA,Ω coincides with the upper box dimension of (A,Ω), i.e., D(ζA,Ω) = dimB(A,Ω).
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In other words, the integral (1) converges absolutely and defines a holomorphic
function in the open half-plane {Re s > dimB(A,Ω)}. For the study of relative fractal
drums, their corresponding fractal zeta functions and the general higher-dimensional
theory of complex dimensions see [10, 21] along with the survey articles [11, 12].
This higher-dimensional theory generalizes the well known theory of geometric zeta
functions for fractal strings and their complex dimensions developed by Michel L.
Lapidus and his collaborators in the last two decades (see [13] and the relevant
references therein). We now give a short summary of the main notions and results
of the mentioned higher-dimensional theory.

We start by introducing the notions of Minkowski content and box (or Minkowski)
dimension of a relative fractal drum. For any real number r, we define the r-
dimensional relative Minkowski content of (A,Ω) by

Mr(A,Ω) = lim
t→0+

|At ∩ Ω|
tN−r

, (2)

if the above limit exists. If that is not the case, then we define the upper and the
lower relative Minkowski content of (A,Ω) with the limit in (2) replaced by the
upper and the lower limit, respectively, and denoted by Mr

(A,Ω) and Mr(A,Ω),
respectively. The relative box (Minkowski) dimension of (A,Ω) is then defined in the
usual way:

dimB(A,Ω) = inf{r ∈ R : Mr(A,Ω) = 0} = sup{r ∈ R : Mr(A,Ω) = +∞}. (3)

Again, if the limit in (2) does not exist we define the upper and the lower relative box
dimension of (A,Ω) analogously by using the upper and lower Minkowski content
of (A,Ω), respectively, and write dimB(A,Ω) and dimB(A,Ω), respectively. Note
that dimB(A,Ω) ∈ [−∞, N ], and the values can indeed be negative, even equal to
−∞; see [10]. Also, note that for these definitions to make sense it is sufficient that
|Aδ ∩ Ω| < ∞ for some δ > 0.

The main result about the relative distance zeta function is the following holo-
morphicity theorem.

Theorem 1 (see [10]). Let (A,Ω) be a relative fractal drum in RN . Then the
following properties hold:

(a) The relative distance zeta function ζA,Ω(s) is holomorphic in the half-plane
{Re s > dimB(A,Ω)}. Furthermore, for any s ∈ R such that s < dimB(A,Ω)
the integral in (1) defining ζA,Ω diverges.

(b) If the relative box (or Minkowski) dimension D := dimB(A,Ω) exists, D < N ,
and MD(A,Ω) > 0, then ζA,Ω(s) → +∞ as s ∈ R converges to D from the
right.

The next theorem relates the relative distance zeta function and the Minkowski
content of a given relative fractal drum (A,Ω).

Theorem 2 (see [10]). Assume that (A,Ω) is a nondegenerate relative fractal drum
in R

N , that is, 0 < MD(A,Ω) ≤ MD(A,Ω) < ∞ (in particular, dimB(A,Ω) = D),
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and D < N . If ζA,Ω(s) can be extended meromorphically to a neighborhood of s = D,
then D is necessarily a simple pole of ζA,Ω(s), and

(N −D)MD(A,Ω) ≤ res(ζA,Ω, D) ≤ (N −D)MD(A,Ω). (4)

Furthermore, if (A,Ω) is Minkowski measurable, then

res(ζA,Ω, D) = (N −D)MD(A,Ω). (5)

In the case when the set A degenerates to the point at infinity, we will denote
this new kind of a relative fractal drum with (∞,Ω). In this case, it is clear that
fractal properties of such a relative fractal drum will depend only on the set Ω. We
will extend the notions of Minkowski content and box dimension for such relative
fractal drums and define a new class of Lapidus zeta functions associated to them.
Furthermore, it will be shown that this new class of Lapidus zeta functions has
analogous properties as in the case of ordinary relative fractal drums and hence, it
provides an analytic approach to the study of fractality of unbounded sets. More
precisely, we will show that analogs of Theorems 1 and 2 also hold for unbounded
sets at infinity and are given in Theorems 5 and 6 below, respectively.

The motivation to study fractal properties of unbounded sets comes from a vari-
ety of sources. In particular, the notion of ”unbounded” or ”divergent” oscillations
appears in problems in oscillation theory (see, e.g., [5,8]), automotive industry (see,
e.g., [23]), civil engineering (see, e.g, [19]) and mathematical applications in biology
(see, e.g., [16]). Unbounded (divergent) oscillations are oscillations the amplitude
of which increases with time. For instance, the oscillations of an airplane that has
positive static stability but negative dynamic stability is an example of divergent
oscillations that appear in aerodynamics (see, e.g., [4]).

Furthermore, unbounded domains themselves are also interesting in the theory
of elliptic partial differential equations. More precisely, the question of solvability of
the Dirichlet problem for quasilinear equations in unbounded domains is addressed
in [17] and [18, Section 15.8.1]. Also, unbounded domains can be found in other
aspects of the theory of partial differential equations; see, for instance [1, 7, 9, 20]
and [24].

The structure of the paper is as follows. In Section 2, we introduce the notions
of Minkowski content and box dimension at infinity and derive some properties of
these new notions as well as study a number of interesting and nontrivial examples.

In Section 3, we define the Lapidus zeta function at infinity, study its properties
and prove the main holomorphicity theorem (Theorem 5). Furthermore, we also
show the connection with the distance zeta function of the geometrically inverted
relative fractal drum. We revisit the examples from Section 2 and use them to
illustrate the new results.

Section 4 is dedicated to obtaining the second main result of this paper given
in Theorem 6 which connects the residue of the Lapidus zeta function at infinity
and the Minkowski content at infinity of the given relative fractal drum. We also
introduce the notion of complex dimensions at infinity.

Finally, in Section 5, we construct an interesting family of sets which possess a
Cantor-like structure at infinity. This reflects in the distribution of their complex di-
mensions and possibly broadens our understanding of the notion of fractality. These
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sets are also interesting since they can be used further as building blocks to construct
sets which exhibit (algebraic or transcendental) quasiperiodicity at infinity, but we
leave this construction for future work.

2. Minkowski content and box dimension of unbounded sets

at infinity

In this section, we introduce the notions of Minkowski content and box (or Minkowski)
dimension at infinity, derive some of their main properties and illustrate them on a
number of nontrivial and interesting examples.

Let Ω be a Lebesgue measurable subset of the N -dimensional Euclidean space
RN of finite Lebesgue measure, i.e., |Ω| < ∞. Firstly, we will introduce a new
notation for the sake of brevity, namely,

tΩ := Bt(0)
c ∩ Ω, (6)

where t > 0 and Bt(0)
c denotes the complement of the open ball of radius t centered

at 0. We introduce the tube function of Ω at infinity by t 7→ |Bt(0)
c ∩ Ω| for t > 0,

where | · | denotes the N -dimensional Lebesgue measure and we will be interested in
the asymptotic properties of this function when t → +∞. Furthermore, for any real
number r, we define the upper r-dimensional Minkowski content of Ω at infinity

Mr
(∞,Ω) := lim sup

t→+∞

|Bt(0)
c ∩ Ω|

tN+r
, (7)

and, analogously, by taking the lower limit in (7) as t → +∞, we define the lower
r-dimensional Minkowski content of Ω at infinity denoted by Mr(∞,Ω). It is easy
to see that the above definition implies the existence of a unique D ∈ R such that
Mr

(∞,Ω) = +∞ for r < D and Mr
(∞,Ω) = 0 for r > D and similarly for the

lower Minkowski content. The value D is called the upper box dimension of Ω at
infinity and we denote it with dimB(∞,Ω). Similarly to the case of ordinary relative
fractal drums, we have

dimB(∞,Ω) := sup{r ∈ R : Mr
(∞,Ω) = +∞} = inf{r ∈ R : Mr

(∞,Ω) = 0}. (8)

Analogously, by using the lower Minkowski content of Ω at infinity, we define the
lower box dimension of Ω at infinity and denote it by dimB(∞,Ω) and the analog
of (8) is also valid in this case. Of course, if the upper and lower box dimensions
coincide, we define the box dimension of Ω at infinity and denote it by dimB(∞,Ω).

In the case when the upper and the lower Minkowski content at infinity coincide,
we define the r-dimensional Minkowski content of Ω at infinity and denote it by

Mr(∞,Ω). Furthermore, in the case when 0 < MD(∞,Ω) ≤ MD
(∞,Ω) < +∞.

for some D ∈ R (which implies that D = dimB(∞,Ω)), we say that Ω is Minkowski
nondegenerate at infinity. We say that Ω is Minkowski measurable at infinity if it is
Minkowski nondegenerate at infinity and its lower and upper Minkowski content at
infinity coincide.
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Proposition 1. Let Ω be a Lebesgue measurable subset of RN of finite Lebesgue
measure. Then dimB(∞,Ω) ≤ dimB(∞,Ω) ≤ −N , i.e., the upper and the lower box
dimensions of Ω at infinity are always negative, that is, less than or equal to −N .

Proof. From definitions (7) and (8) and the fact that |Ω| < ∞ we have that |Bt(0)
c∩

Ω| → 0 as t → +∞, which implies that if N + r > 0, then Mr
(∞,Ω) = 0.

Remark 1. Intuitively, the conclusion of Proposition 1 is expected, since Ω having
finite Lebesgue measure implies that it must have a certain flatness property relative
to infinity. (Compare with the notion of flatness introduced in [10].) Furthermore,

if dimB(∞,Ω) = −N , then it follows from the definition that M−N
(∞,Ω) = 0 and,

consequently, Ω must be Minkowski degenerate at infinity.

The next two results about the monotonicity are simple consequences of the
definitions involved.

Lemma 1. Let Ω1 ⊆ Ω2 ⊆ RN be two Lebesgue measurable sets and |Ω2| < ∞. Then
for any real number r we have that Mr

(∞,Ω1) ≤ Mr
(∞,Ω2) and Mr(∞,Ω1) ≤

Mr(∞,Ω2)

Corollary 1. Let Ω1 ⊆ Ω2 ⊆ R
N be two Lebesgue measurable sets with |Ω2| < ∞.

Then, dimB(∞,Ω1) ≤ dimB(∞,Ω2) and dimB(∞,Ω1) ≤ dimB(∞,Ω2).

Let us now take a look at a few examples.

Example 1. Let α > 0 and β > 1 be fixed and define aj := jα, lj := j−β and
bj := aj + lj. We define

Ω(α, β) :=

∞⋃

j=1

Ij ⊆ R, (9)

that is, as a union of countably many intervals Ij := (aj , bj). Then, for the set
Ω(α, β) defined by (9) we have that

D := dimB(∞,Ω(α, β)) =
1− (α+ β)

α
and MD(∞,Ω(α, β)) =

1

β − 1
. (10)

To prove this, firstly, we observe that for j large enough the intervals Ij become
disjoint, i.e., j−β < (j + 1)α − jα. As we see, Ω(α, β) is a union of intervals
that “escape” to infinity and |Ω(α, β)| ≤ ∑∞

j=1 j
−β < ∞. Let us compute the box

dimension and Minkowski content of Ω(α, β) at infinity. For t > 0, let j0 be such
that for every j > j0 it holds that aj > t, that is, j0 = ⌊t1/α⌋. Now we fix t large
enough so that the intervals Ij are disjoint for j ≥ j0. From this, we have

|Bt(0)
c ∩Ω(α, β)| =

∑

j>j0

j−β + χΩ(t)(bj0 − t), (11)

with χΩ being the characteristic function of Ω. This implies the following estimate

∑

j>j0

j−β ≤ |Bt(0)
c ∩ Ω(α, β)| ≤

∑

j>j0

j−β + j−β
0 . (12)
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Furthermore, using the integral criterion
∫ +∞
j0+1 x

−β dx ≤ ∑
j>j0

j−β ≤ (j0 + 1)−β +
∫ +∞
j0+1

x−β dx for estimating the sum, we have

1

β − 1
(j0 + 1)1−β ≤ |Bt(0)

c ∩ Ω(α, β)| ≤ 1

β − 1
(j0 + 1)1−β + (j0 + 1)−β + j−β

0 .

Finally, by using the fact that t1/α − 1 ≤ j0 + 1 ≤ t1/α + 1, we conclude that

1

β − 1
(t

1
α + 1)1−β ≤ |Bt(0)

c ∩ Ω(α, β)| ≤ 1

β − 1
(t

1
α − 1)1−β + 2(t

1
α − 2)−β,

which implies that Mr(∞,Ω(α, β)) is different from 0 and +∞ if and only if r+1 =
(1− β)/α, i.e., if (10) holds.

As we can see, in the above example the Minkowski content depends only on
the parameter β, i.e., the rate at which Ω(α, β) “escapes” to infinity is not relevant
for it. Furthermore, by changing the values of parameters α and β, we can obtain
any prescribed value in (−∞,−1) for dimB(∞,Ω(α, β)). Moreover, we have that
dimB(∞,Ω(α, β)) → −∞ and MD(∞,Ω(α, β)) → 0 as β → +∞.

Example 2. For α > 1 let Ω := {(x, y) ∈ R2 : x > 1, 0 < y < x−α}. Then we
have that

D := dimB(∞,Ω) = −1− α and MD(∞,Ω) =
1

α− 1
. (13)

Indeed, let t > 1 and let x(t) be such that

x(t)2 + x(t)−2α = t2. (14)

Then we have
∫ +∞
t

x−α dx ≤ |Bt(0)
c ∩ Ω| ≤

∫ +∞
x(t)

x−α dx which implies that

1
1−α ≤ |Bt(0)

c∩Ω|
t1−α ≤ 1

1−α

(
x(t)
t

)1−α

. Furthermore, from (14) we have that

x(t)
t = (1 + x(t)−2(α+1))−

1
2 → 1, as t → +∞, and we conclude that (13) holds.

Remark 2. Note that dimB(∞,Ω) → −∞ and MD(∞,Ω) → 0 as α → +∞.

Next, we will prove a useful lemma which states that the box dimension and
Minkowski measurability at infinity are independent of the choice of the norm on
RN in the sense that we can replace the ball Bt(0) in the definition of the Minkowski
content at infinity with a ball in any other norm on RN . More precisely, let ‖ · ‖ be
another norm on R

N . We denote by Kt(0) the open ball of radius t around 0 in the
new norm; define the associated upper Minkowski content at infinity

N r
(∞,Ω) := lim sup

t→+∞

|Kt(0)
c ∩Ω|

tN+r

and analogously, N r(∞,Ω) and N r(∞,Ω).
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Lemma 2. Let Ω ⊆ RN with |Ω| < ∞ and assume that two norms, | · | and ‖ · ‖,
are given on RN , i.e., there are a, b > 0 such that a| · | ≤ ‖ · ‖ ≤ b| · |. Then, for any
r ∈ R we have

a−(N+r)Mr
(∞,Ω) ≤ N r

(∞,Ω) ≤ b−(N+r)Mr
(∞,Ω), (15)

and analogously for the corresponding lower Minkowski contents.

Proof. From a|x| ≤ ‖x‖ ≤ b|x| we have that Bt/b(0) ⊆ Kt(0) ⊆ Bt/a(0) for any
t > 0 and, consequently,

a−(N+r) |Bt/a(0)
c ∩ Ω|

(
t
a

)N+r
≤ |Kt(0)

c ∩ Ω|
tN+r

≤ b−(N+r) |Bt/b(0)
c ∩ Ω|

(
t
b

)N+r
.

Taking the upper limit as t → +∞, we obtain the first statement of the lemma. The
second one is obtained by taking the lower limit instead of the upper.

Corollary 2. Let Ω be an arbitrary Lebesgue measurable subset of RN with finite
N -dimensional Lebesgue measure. Then

(a) The upper and lower box dimensions of Ω at infinity do not depend on the
choice of the norm on R

N in which we measure the neighborhood of infinity.

(b) The Minkowski nondegeneracy of Ω is independent of the choice of the norm
on RN in which we measure the neighborhood of infinity.

There are special cases when we even get the same values for the Minkowski
contents for different norms on RN . One of these cases is addressed in the next
lemma which will prove to be useful in some of the future calculations. It can easily
be generalized to the N -dimensional case but we will need it only in the case of R2.

Lemma 3. Let Ω ⊆ R2 with |Ω| < ∞ such that Ω is a subset of a horizontal
(vertical) strip of finite width. Let Kt(0) be an open ball in the | · |∞-norm of
radius t > 0 with the center at the origin and r a real number. Then, we have that
Mr

(∞,Ω) = N r
(∞,Ω) and Mr(∞,Ω) = N r(∞,Ω).

Proof. Without loss of generality, we will assume that the set Ω is contained in the
horizontal half-strip {(x, y) : x ≥ 0, 0 ≤ y ≤ d}. Then, for t ≥ d we have that
|K√

t2−d2(0)c ∩ Ω| ≤ |Bt(0) ∩ Ω| ≤ |Kt(0)
c ∩ Ω| and consequently for r ∈ R

(
√
t2 − d2)N+r

tN+r

|K√
t2−d2(0)c ∩ Ω|

(
√
t2 − d2)N+r

≤ |Bt(0) ∩ Ω|
tN+r

≤ |Kt(0)
c ∩ Ω|

tN+r
.

Taking the upper and lower limits as t → +∞ completes the proof.

In the next example, we will show that the value dimB(∞,Ω) = −∞ can be
achieved.

Example 3. Let Ω := {(x, y) ∈ R2 : x > 1, 0 < y < e−x} and let us calculate the

box dimension of Ω at infinity using the |·|∞-ball in R2: |Kt(0)
c∩Ω| =

∫ +∞
t e−x dx =

e−t. Consequently, we have that |Kt(0)
c∩Ω|

t2+r = e−t

t2+r → 0 when t → +∞ for every r ∈ R

and therefore dimB(∞,Ω) = −∞.
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In the rest of the paper, we will always implicitly assume that dimB(∞,Ω) > −∞
when dealing with relative fractal drums of the type (∞,Ω) (unless explicitly stated
otherwise).

As we have shown in Proposition 1, the upper box dimension of any subset of
the plane of finite Lebesgue measure does not exceed −2. The next proposition will
show that the value −2 can be achieved and it can be easily adapted to constructing
a subset Ω of RN with finite Lebesgue measure such that dimB(∞,Ω) = −N .

Proposition 2. There exists a Lebesgue measurable subset Ω ⊆ R2 with |Ω| < ∞
such that

dimB(∞,Ω) = −2 and M−2(∞,Ω) = 0. (16)

Proof. Let αk := 1 + 1/k for k ≥ 1 and we define

Ω̃k :=

{
(x, y) ∈ R

2 : x > 1, 0 < y <
2−k

k
x−αk

}
.

We will “stack” the sets Ω̃k on top of each other. In order to do so, we define Ωk

to be an Sk-translated image of Ω̃k along the y-axis where Sk :=
∑k

j=1 2
−jj−1 and

define Ω := ∪k≥1Ωk. We observe that Ω is contained in the horizontal strip of finite
height {(x, y) ∈ R2 : 1/2 ≤ y ≤ S}, where S := limk→∞ Sk = log 2. Furthermore,
we have that

|Ωk| = |Ω̃k| =
2−k

k

∫ +∞

1

x−1− 1
k dx =

2−k

k
· k = 2−k

so that |Ω| = ∑∞
k=1 2

−k = 1. Using the same calculation as in Example 2 yields

Dk := dimB(∞,Ωk) = −1− αk = −2− 1

k
and MDk(∞,Ωk) = 2−k.

Finally, by using Corollary 1 we have that −2 ≥ dimB(∞,Ω) ≥ Dk for every k ≥ 1,
which implies (16).

3. Holomorphicity of Lapidus zeta functions at infinity

This section is dedicated to proving the main theorem about the holomorphicity of
the Lapidus zeta function at infinity (Theorem 5). Furthermore, we also derive the
connection with the geometric inversion of a given relative fractal drum at infinity
(see Theorem 3 and the discussion there). Finally, we revisit the examples from the
previous section and use them to illustrate the new results of this section.

Let Ω ⊆ RN be a measurable set with |Ω| < ∞. We define the Lapidus zeta
function of Ω at infinity by the Lebesgue integral

ζ∞,Ω(s) :=

∫

BT (0)c∩Ω

|x|−s−N dx, (17)

for a fixed T > 0 and s in C with Re s sufficiently large. We will also call this
zeta function the distance zeta function of Ω at infinity and use the two notions
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interchangeably. From now on, our main goal will be to show that this new zeta
function has analogous properties as the distance zeta function for relative fractal
drums studied in [10, 21]. Furthermore, we also write ζ∞,Ω(s;T ) when we want to
emphasize the dependence of ζ∞,Ω on T > 0. On the other hand, the dependence
of the distance zeta function at infinity on T > 0 is inessential in the sense that for
0 < T1 < T2 the difference

ζ∞,Ω(s;T1)− ζ∞,Ω(s;T2) =

∫

BT1,T2(0)∩Ω

|x|−s−N dx,

with
Ba,b(0) := {x ∈ R

N : a < |x| < b}, (18)

is an entire function of s. Indeed, since T1 ≤ |x| ≤ T2 for x ∈ E, this will follow from
Theorem 4(c) with E := BT1,T2(0) ∩ Ω, ϕ(x) := |x| and dµ(x) := |x|−N dx in the
notation of that theorem. Therefore, from now on, we will emphasize the dependence
of the Lapidus zeta function of Ω at infinity on T and write ζ∞,Ω(s;T ) only when
it is explicitly needed. Also note that if Ω is bounded, then for T sufficiently large,
we have that ζ∞,Ω(s;T ) ≡ 0.

The definition of the Lapidus zeta function of Ω at infinity is, as we will demon-
strate immediately, closely related to the distance zeta function of a certain relative
fractal drum. This relative fractal drum is actually the image of (∞,Ω) under the
geometric inversion in R

N , i.e., it is equal to (0,Φ(Ω))§, where

Φ(x) :=
x

|x|2 (19)

and 0 is the origin. To derive the mentioned relation we will need to compute the
Jacobian of the geometric inversion and use the change of variables formula for the
Lebesgue integral. To compute the Jacobian we will use the well-known Matrix
determinant lemma (see, e.g., [6]) which we state here for the sake of exposition.

Lemma 4 (Matrix determinant lemma). Let A be an invertible matrix and u, v
column vectors. Then we have that det(A + u ⊗ v) = (1 + vτA−1u) detA, where
u⊗ v := uvτ and τ denotes the transpose operator.

Lemma 5. Let Φ(x) := x/|x|2 be the geometric inversion on RN . Then for the
Jacobian of Φ we have: det ∂Φ

∂x = −|x|−2N .

Proof. With x = (x1, . . . , xN ) and δij the Kronecker delta we have that

(
∂Φ

∂x

)

ij

=
∂Φi

∂xj
=

δij
|x|2 − 2xixj

|x|4 (20)

and consequently
∂Φ

∂x
=

1

|x|4 (|x|
2I− 2x⊗ x), (21)

§We should actually write ({0},Φ(Ω)) here, but we will always abuse the notation in this way for
a relative fractal drum (A,Ω) when the set A consists of a single point.
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where x := [x1, . . . , xN ]τ and I is the identity matrix. Now we can apply the matrix
determinant lemma with A := |x|2I, u := −2x and v := x from which we obtain

det
∂Φ

∂x
=

1

|x|4N (1−2xτ(|x|2I)−1x) det(|x|2I)= (1−2|x|−2xτx)|x|2N
|x|4N =−|x|−2N.

The next theorem will show that, from the point of view of the distance zeta
functions, there is no difference between the unbounded relative fractal drum (∞,Ω)
and the relative fractal drum (0,Φ(Ω)) obtained from it by geometric inversion.

Theorem 3. Let Ω be a Lebesgue measurable subset of RN of finite measure, 0 the
origin and fix T > 0. Then we have

ζ∞,Ω(s;T ) = ζ0,Φ(Ω)(s; 1/T ). (22)

Proof. Defining y = Φ−1(x) and using Lemma 5, this is a consequence of the change
of variables formula once we observe the fact that |y| = 1/|x|:

ζ∞,Ω(s;T ) =

∫

BT (0)c∩Ω

|x|−s−N dx =

∫

Φ(BT (0)c∩Ω)

|y|s+N |y|−2N dy

=

∫

B1/T (0)∩Φ(Ω)

|y|s−N dy = ζ{0},Φ(Ω)(s; 1/T ).

This result suggests that we can analyze fractal properties of Ω ⊆ RN at infinity
by analyzing fractal properties of the ‘inverted’ relative fractal drum (0,Φ(Ω)). A
similar approach (in the context of unbounded subsets of RN ) was made in [22].
Of course, in that approach, we can use results of [10] about relative fractal drums
and relative distance (and tube) zeta functions. On the other hand, we stress that
in that case we deal with the usual relative box dimension of the inverted relative
fractal drum, i.e., with dimB(0,Φ(Ω)) which is defined via the r-dimensional relative
Minkowski content, namely, Mr(0,Φ(Ω)). However, it is not evident what are the
relations between the “classical” relative box dimension (and Minkowski content) of
the inverted relative fractal drum with the notions of box dimension and Minkowski
content at infinity introduced in Section 2. We will give an answer to this question
in future work as well as to the natural question about the effect of the one-point
compactification on fractal properties of unbounded sets at infinity as well as how
to analyze fractal properties of unbounded sets of infinite measure at infinity. (See
also [21].)

To prove the holomorphicity theorem, we will need the following proposition
which complements [25, Lemma 3].

Proposition 3. Let Ω ⊆ RN be a Lebesgue measurable set with |Ω| < ∞, T > 0 and
let u : (T,+∞) → [0,+∞) be a strictly monotone C1 function. Then the following
equality holds

∫

BT (0)c∩Ω

u(|x|) dx = u(T )|BT (0)
c ∩ Ω|+

∫ +∞

T

|Bt(0)
c ∩ Ω|u′(t) dt. (23)



Fractality and Lapidus zeta functions at infinity 151

Proof. We will use a well-known fact (see, e.g., [14, Theorem 1.15]) that for a
non-negative Borel function f on a separable metric space X the following identity
holds

∫

X

f(x) dx =

∫ ∞

0

|{x ∈ X : f(x) ≥ t}| dt. (24)

We let f(x) := u(|x|), X := BT (0)
c ∩ Ω and consider separately the cases of a

strictly decreasing and a strictly increasing function u.
(a) Let u be strictly decreasing and u(+∞) := limτ→+∞ u(τ). For the set ap-

pearing on the right-hand side of (24) we have

A(t) := {x ∈ BT (0)
c ∩ Ω : u(|x|) ≥ t} = {x ∈ BT (0)

c ∩ Ω : |x| ≤ u−1(t)}.

For 0 ≤ t ≤ u(+∞) it is true that u(|x|) ≥ t for any x ∈ RN because u(+∞) =
minτ≥0 u(τ) and we have A(t) = BT (0)

c ∩ Ω. Furthermore, if u(+∞) < t ≤ u(T ),
it is clear that

A(t) = (BT (0)
c ∩ Ω) \ (Bu−1(t)(0)

c ∩ Ω) = BT,u−1(t)(0) ∩ Ω.

Finally, for t > u(T ) we have that A(t) = ∅ because u(T ) = maxτ≥0 u(τ) and using
(24) we get

∫

BT (0)c∩Ω

u(|x|) dx =

∫ u(+∞)

0

|BT (0)
c ∩ Ω| dt+

∫ u(T )

u(+∞)

|BT,u−1(t)(0) ∩ Ω| dt

=u(+∞)|BT (0)
c ∩ Ω|+

∫ u(T )

u(+∞)

|BT (0)
c ∩ Ω| dt

−
∫ u(T )

u(+∞)

|Bu−1(t)(0)
c ∩ Ω| dt

=u(T )|BT (0)
c ∩ Ω|+

∫ +∞

T

|Bs(0)
c ∩Ω|u′(s) ds,

where we have introduced the new variable s = u−1(t) in the last equality.
(b) Let now u be a strictly increasing function and u(+∞) := limτ→+∞ u(τ) =

supτ≥0 u(τ) ∈ (0,+∞]. In this case we have

A(t) := {x ∈ BT (0)
c ∩ Ω : u(|x|) ≥ t} = {x ∈ BT (0)

c ∩ Ω : |x| ≥ u−1(t)}.

For 0 ≤ t ≤ u(T ), we have that u(|x|) ≥ t for any x ∈ RN because u(T ) =
minτ≥0 u(τ) and we have A(t) = BT (0)

c ∩ Ω. Furthermore, if u(T ) < t < u(+∞),
it is clear that A(t) = Bu−1(t)(0)

c ∩ Ω, and for t ≥ u(+∞) the set A(t) is an empty
set. Altogether, we have

∫

BT (0)c∩Ω

u(|x|) dx =

∫ u(T )

0

|BT (0)
c ∩ Ω| dt+

∫ u(+∞)

u(T )

|Bu−1(t)(0)
c ∩ Ω| dt

= u(T )|BT (0)
c ∩ Ω|+

∫ +∞

T

|Bs(0)
c ∩ Ω|u′(s) ds,
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where, again, we have introduced the new variable s = u−1(t) in the last equality.
This concludes the proof of the proposition.

Proposition 4. Let Ω ⊆ RN be a measurable set with |Ω| < ∞, T > 0. Then for
every σ ∈ (dimB(∞,Ω),+∞), the following identity holds:

∫

TΩ

|x|−σ−N dx = T−σ−N |TΩ| − (σ +N)

∫ +∞

T

t−σ−N−1|tΩ| dt. (25)

Furthermore, the above integrals are finite for such σ.

Proof. The proposition is a direct consequence of Proposition 3 with u(t) := t−σ−N

when σ 6= −N and for σ = −N equation (25) is trivially fulfilled. Namely, let us fix
σ1 ∈ (dimB(∞,Ω), σ). Then for T large enough we have that for a constant M > 0
we have |Bt(0)

c ∩ Ω| ≤ Mtσ1+N for every t > T . From this we get that

∫ +∞

T

t−σ−N−1|Bt(0)
c ∩ Ω| dt ≤ M

∫ +∞

T

t−σ−N−1tσ1+N dt = M

∫ +∞

T

tσ1−σ−1 dt

and the last integral above is finite because σ1 − σ − 1 < −1.

In order to prove the holomorphicity theorem we will need the following theorem
cited from [10] along with its proof for the sake of exposition.

Theorem 4 (see [10, Theorem 2.1.44]). Let (E,B(E), µ) be a measure space, where
E is a locally compact metrizable space, B(E) is the Borel σ-algebra of E, and µ is
a positive or complex (local) measure, with total variation (local) measure denoted
by |µ|. Furthermore, let ϕ : E → (0,+∞) be a measurable function. Then:

(a) If ϕ is essentially bounded (that is, if there exists C > 0 such that ϕ(t) ≤ C
for |µ|-a.e. t ∈ E), and if there exists σ ∈ R such that

∫
E ϕ(t)σd|µ|(t) < ∞,

then

F (s) :=

∫

E

ϕ(t)sdµ(t) (26)

is holomorphic on the right half-plane {Re s > σ}, and F ′(s) =
∫
E ϕ(t)s logϕ(t)

dµ(t) in that region.

(b) If there exists C > 0 such that ϕ(t) ≥ C for |µ|-a.e. t ∈ E, and if there exists
σ ∈ R such that

∫
E ϕ(t)−σd|µ|(t) < ∞, then

G(s) :=

∫

E

ϕ(t)−sdµ(t) (27)

is holomorphic on {Re s > σ}, and G′(s) = −
∫
E
ϕ(t)−s logϕ(t) dµ(t) in that

region.

(c) Finally, if there exist positive constants C1 and C2 such that C1 ≤ ϕ(t) ≤ C2

for |µ|-a.e. t ∈ E, and there exists σ ∈ R such that
∫
E
ϕ(t)σd|µ|(t) < ∞, then

the Dirichlet-type integrals F and G in (a) and (b), respectively, are entire
functions.
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Proof. We use [2, Theorem B.4, p. 295] (see also [15]). In our case, f(s, t) := ϕ(t)s,
Z := {Re s > σ}. Note that for any σ1 > σ, we have ϕ(t)σ1 ≤ ‖ϕ‖σ1−σ

∞ ϕ(t)σ , so that
ϕσ ∈ L1(|µ|) implies that ϕσ1 ∈ L1(|µ|). In particular, since |f(s, t)| = ϕ(t)Re s, it
follows that f(s, t) = ϕ(t)s ∈ L1(|µ|) for all s ∈ C such that Re s > σ.

Let K be a compact subset of Z = {Re s > σ}. Since

|f(s, t)| = ϕ(t)Re s ≤ ‖ϕ‖Re s−σ
∞ ϕ(t)σ , (28)

we have that |f(s, t)| ≤ gK(t) := CKϕ(t)σ for all s ∈ K and |µ|-a.e. t ∈ E, where
CK = maxs∈K ‖ϕ‖Re s−σ

∞ . This proves part (a) of the theorem.
Part (b) follows from part (a) applied to ϕ(t)−1.
Finally, part (c) follows similarly to (a), by noting that

|f(s, t)| = ϕ(t)Re s ≤ max{CRe s−σ
1 , CRe s−σ

2 }ϕ(t)σ, (29)

for every complex number s.

Now we can state and prove the holomorphicity theorem for the Lapidus zeta
function at infinity, but firstly we will introduce a new notation for the sake of
brevity; namely,

a,bΩ := Ba,b(0) ∩ Ω. (30)

Theorem 5. Let Ω be any Lebesgue measurable subset of RN of finite N -dimensional
Lebesgue measure. Assume that T is a fixed positive number. Then the following
conclusions hold.

(a) The abscissa of convergence of the Lapidus zeta function at infinity

ζ∞,Ω(s) =

∫

BT (0)c∩Ω

|x|−s−N dx (31)

is equal to the upper box dimension of Ω at infinity, i.e.,

D(ζ∞,Ω) = dimB(∞,Ω). (32)

Consequently, ζ∞,Ω is holomorphic on the half-plane {Re s > dimB(∞,Ω)}
and for every complex number s in that half-plane we have that

ζ′∞,Ω(s) = −
∫

BT (0)c∩Ω

|x|−s−N log |x| dx. (33)

(b) If D = dimB(∞,Ω) exists and MD(∞,Ω) > 0, then ζ∞,Ω(s) → +∞ for s ∈ R

as s → D+.

Proof. (a) If we let D := dimB(∞,Ω), then from the definitions of the upper
Minkowski content and of the upper box dimension at infinity we deduce that

lim supt→+∞
|Bt(0)

c∩Ω|
tN+σ = 0 for every σ > D. Now, let us fix σ1 such thatD < σ1 < σ

and take T > 1 large enough, such that for a constant M > 0 it holds that
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|Bt(0)
c ∩ Ω| ≤ Mtσ1+N for every t > T. Furthermore, we estimate ζ∞,Ω(σ) in

the following way

ζ∞,Ω(σ) =

∫

BT (0)c∩Ω

|x|−σ−N dx =
∞∑

k=1

∫

Tk,Tk+1Ω

|x|−σ−N dx

≤
∞∑

k=1

max
{
(T k)−σ−N , (T k+1)−σ−N

}
|Tk,Tk+1Ω|

≤ max
{
1, T−σ−N

} ∞∑

k=1

(T k)−σ−NM(T k)σ1+N

= M max
{
1, T−σ−N

} ∞∑

k=1

(T σ1−σ)k < ∞.

The last inequality follows from the fact that T > 1 and σ1 − σ < 0. We let now
E := BT (0)

c ∩ Ω, ϕ(x) := |x| and dµ(x) := |x|−N dx and note that ϕ(x) ≥ T > 1
for x ∈ E. Part (a) follows now directly from Theorem 4(b).

To conclude the proof that D is the abscissa of convergence of ζ∞,Ω we take
s ∈ (−∞, D) and use Proposition 4:

IT :=

∫

TΩ

|x|−s−N dx =
|TΩ|
T s+N

− (s+N)

∫ +∞

T

t−s−N−1|tΩ| dt ≥
|TΩ|
T s+N

. (34)

Now, we fix σ such that s < σ < D. From Mσ
(∞,Ω) = +∞ we conclude that there

exists a sequence (tk)k≥1 such that Ck :=
|tkΩ|
tN+σ
k

→ +∞ when tk → +∞. It is clear

that the function T → IT is nonincreasing and we have

IT ≥ Itk ≥ t−s−N
k |tkΩ| = t−s−N

k tN+σ
k Ck = Ckt

σ−s
k → +∞. (35)

Therefore, IT = +∞ for every s < D which proves that D(ζ∞,Ω) = D.

(b) Let us assume now that D = dimB(∞,Ω) exists, and MD(∞,Ω) > 0. From
Proposition 1 we have thatD ≤ −N . On the other hand, the conditionMD(∞,Ω) >
0 and Remark 1 imply that D 6= −N . Consequently, we may assume that D < −N .
Furthermore, MD(∞,Ω) > 0 implies that there exists a constant C > 0 such that
for a sufficiently large T we have that |tΩ| ≥ CtN+D for every t > T . Hence, for
D < s < −N we have the following:

ζ∞,Ω(s) =

∫

BT (0)c∩Ω

|x|−s−N dx = T−s−N |TΩ| − (s+N)

∫ +∞

T

t−s−N−1|tΩ| dt

≥ −(s+N)

∫ +∞

T

t−s−N−1|tΩ| dt ≥ −(s+N)C

∫ +∞

T

t−s−N−1+N+D dt

= −(s+N)C
TD−s

s−D
→ +∞,

(36)

when s → D+, and this proves part (b).



Fractality and Lapidus zeta functions at infinity 155

Remark 3. Consider a special case when dimB(∞,Ω) = −N . Then, from the

definition of the upper Minkowski content at infinity, it follows that M−N
(∞,Ω) = 0

and ζ∞,Ω(−N) = |TΩ|. This shows that the condition MD(∞,Ω) > 0 from part (b)
of Theorem 5 cannot be omitted in the general case.

Remark 4. Similarly to the case of standard relative fractal drums (see [10]), it
is easy to see that Theorem 5 is still true if we replace the norm appearing in the
definition of the distance zeta function at infinity with any other norm on RN .

Let us now revisit Examples 1 and 2 from the previous section and compute the
corresponding distance zeta functions at infinity.

Example 4. Let Ω := Ω(α, β) be the set from Example 1. Then, for T := aj0 large
enough so that TΩ is a countable union of disjoint intervals we have that

ζ∞,Ω(s;T ) =
1

s

∞∑

j=j0

(j−αs − (jα + j−β)−s). (37)

Furthermore, we have that

D(ζ∞,Ω( · ;T )) =
1− (α+ β)

α
= dimB(∞,Ω) (38)

and s = 0 is a removable singularity of ζ∞,Ω( · ;T ).
To see this, note that for the distance zeta function of Ω at infinity we have:

ζ∞,Ω(s;T ) =
∫
BT (0)c∩Ω x−s−1 dx =

∑∞
j=j0

∫ bj
aj

x−s−1 dx from which follows (37) af-

ter integrating. By setting σ := Re s and using the mean value theorem for integrals,
we estimate

|ζ∞,Ω(s;T )| ≤
∞∑

j=j0

∫ bj

aj

x−σ−1 dx =

∞∑

j=j0

c−σ−1
j (bj − aj)

for some cj ∈ (aj , bj) so that cj ≍ jα as j → +∞ which, in turn, implies that∑∞
j=j0

c−σ−1
j (bj − aj) ≍ ∑∞

j=j0
j−α(σ+1)j−β . The right-hand side is convergent if

and only if σ > 1−(α+β)
α from which we conclude by using (10) that D(ζ∞,Ω( · ;T )) =

1−(α+β)
α = dimB(∞,Ω), which is in accord with Theorem 5.

Example 5. Let Ω := {(x, y) ∈ R2 : x > 1, 0 < y < x−α} for α > 1. Then for the
distance zeta function of Ω at infinity calculated using the | · |∞ norm on R2 we have

ζ∞,Ω(s; 1; | · |∞) =
1

s+ α+ 1
.

It is meromorphic on C with a single simple pole at s = −1 − α. In particular,
dimB(∞,Ω) = −1− α.

In order to show this, let us compute the distance zeta function of Ω at infinity:

ζ∞,Ω(s; 1; | · |∞) =

∫

1Ω

|(x, y)|−s−2
∞ dxdy =

∫ +∞

1

dx

∫ x−α

0

x−s−2 dy =
1

s+ α+ 1
.
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The last equation holds if and only if Re s > −1−α. From this and (13), we conclude
that D(ζ∞,Ω( · ; | · |∞)) = −1 − α = dimB(∞,Ω) which is, of course, in accord with
Theorem 5. Moreover, the distance zeta function ζ∞,Ω( · ; | · |∞) of Ω at infinity can
be meromorphically extended to the whole complex plane with a single simple pole at
s = D.

Revisiting Proposition 2 will show that the conditions of Theorem 5 cannot be
relaxed.

Proposition 5. Let Ω be as in Proposition 2. Then for the corresponding Lapidus
zeta function at infinity calculated via the | · |∞-norm on R2 we have

ζ∞,Ω(s; | · |∞) =
∞∑

k=1

2−k

k(s+ 2 + 1
k )

. (39)

Furthermore, we also have that

D(ζ∞,Ω( · ; | · |∞)) = dimB(∞,Ω) = −2 (40)

and ζ∞,Ω(−2; | · |∞) = |Ω| = 1. Moreover, ζ∞,Ω( · ; | · |∞) is holomorphic on the set

C \ ({−2} ∪ {−2− 1/k : k ≥ 1}) (41)

and s = −2 is an accumulation point of its simple poles. Finally, for the residues of

ζ∞,Ω( · ; | · |∞) we have that res
(
ζ∞,Ω ( · ; | · |∞) ,−2− 1

k

)
= 2−k

k for every k ≥ 1.

Proof. Let us calculate the distance zeta function at infinity using the | · |∞ norm on
RN . For T = 1 > log 2 we have that |(x, y)|∞ = x for (x, y) ∈ 1Ω and consequently

ζ∞,Ω(s; 1; | · |∞) =

∫

Ω

|(x, y)|−s−2
∞ dxdy =

∞∑

k=1

∫

Ωk

|(x, y)|−s−2
∞ dxdy

=

∞∑

k=1

∫

Ωk

x−s−2 dxdy =

∞∑

k=1

∫

Ω̃k

x−s−2 dxdy

=

∞∑

k=1

∫ +∞

1

dx

∫ 2−k

k x−αk

0

x−s−2 dy =

∞∑

k=1

2−k

k

∫ +∞

1

x−s−3− 1
k dx

=

∞∑

k=1

2−k

k(s+ 2 + 1
k )

.

The last equation above is valid if and only if Re s > −2 − 1/k for every k ≥ 1.
Furthermore, by using the Weierstrass M -test we have that the last sum appearing
above defines a holomorphic function on C \ ({−2} ∪ {−2 − 1/k : k ≥ 1}), which
implies that D(ζ∞,Ω( · ; | · |∞)) = −2. On the other hand, by direct computation
we have that ζ∞,Ω(−2; | · |∞) = |Ω| = 1, but the zeta function cannot be even
meromorphically extended to a neighborhood of s = −2. This follows from the fact

that for Re s > −2 we have that ζ∞,Ω(s; |·|∞) =
∑∞

k=1
2−k

k zk(s), where the functions
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zk are meromorphic on C with simple poles at sk = −2 − 1/k. Furthermore, the
above sum converges uniformly on compact subsets of C \ {sk : k ≥ 1}, i.e., it
defines a holomorphic function on that set, but it has an accumulation of simple
poles at s = −2, and by the principle of analytic continuation, the same is true for
ζ∞,Ω( · ; | · |∞). In other words, D(ζ∞,Ω( · ; | · |∞)) = −2 and this, in turn, is equal to
dimB(∞,Ω) according to (16).

Remark 5. Although Proposition 5 is stated in terms of the distance zeta function
calculated via the | · |∞-norm, Proposition 6 below will guarantee that the difference
ζ∞,Ω( · ; | · |∞)− ζ∞,Ω is holomorphic at least on the half-plane {Re s > −4}. From
this we conclude that (40) is also true for ζ∞,Ω, ζ∞,Ω(−2) = 1, and ζ∞,Ω is holo-
morphic (at least) on the set {Re s > −4}\({−2}∪{−2−1/k : k ≥ 1}) with s = −2
being an accumulation point of its simple poles.

4. Residues of the Lapidus zeta function at infinity

In this section, we will derive results which relate the upper and the lower Minkowski
content of (∞,Ω) with the residue of the distance zeta function at infinity at s =
dimB(∞,Ω). The main result is stated in Theorem 6 below which is an analogue to
Theorem 2 from the introduction.

Theorem 6. Let Ω ⊆ RN be such that |Ω| < ∞ and dimB(∞,Ω) = D < −N ,

0 < MD(∞,Ω) ≤ MD
(∞,Ω) < ∞. If ζ∞,Ω has a meromorphic continuation to a

neighborhood of s = D, then D is a simple pole and it holds that

−(N +D)MD(∞,Ω) ≤ res(ζ∞,Ω, D) ≤ −(N +D)MD
(∞,Ω). (42)

Moreover, if Ω is Minkowski measurable at infinity, then we have

res(ζ∞,Ω, D) = −(N +D)MD(∞,Ω). (43)

Proof. Firstly, using the fact that MD(∞,Ω) > 0 we can apply part (c) of Theo-
rem 5 to get that ζ∞,Ω(s) → +∞ as R ∋ s → D+. In fact, by looking at the proof of
part (c) of Theorem 5 we can see that s = D is a singularity of ζ∞,Ω that is at least
a simple pole. It remains to show that the order of this pole is not greater than one.

Let us define CT := supt≥T
|tΩ|
tN+D . From MD

(∞,Ω) < +∞ we have that CT < +∞
for T large enough. Now, for s ∈ R such that D < s < −N by using Proposition 4
we have

ζ∞,Ω(s) = T−s−N |TΩ| − (s+N)

∫ +∞

T

t−s−N−1|tΩ| dt

≤ T−s−NCTT
N+D − (s+N)

∫ +∞

T

t−s−N−1CT t
N+D dt

= CTT
D−s − CT (s+N)

∫ +∞

T

tD−s−1 dt

= CTT
D−s − CT (s+N)

TD−s

s−D
= −(N +D)CT

TD−s

s−D
.

(44)
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This implies that 0 ≤ ζ∞,Ω(s) ≤ C1(s−D)−1, where C1 > 0 is a constant indepen-
dent of s and T and from this we conclude that s = D is a pole of at most order
one, i.e., it is a simple pole. To compute the residue at s = D we observe that its
value is independent of T because the difference ζ∞,Ω(s;T2) − ζ∞,Ω(s;T1) is an en-
tire function. Furthermore, from (44) we have (s−D)ζ∞,Ω(s) ≤ −(N +D)CTT

D−s

and taking limits on both sides as s → D+ yields res(ζ∞,Ω, D) ≤ −(N +D)CT . Fi-

nally, by taking the limit as T → +∞ we get res(ζ∞,Ω, D) ≤ −(N +D)MD
(∞,Ω).

The proof of the inequality involving the lower Minkowski content is completely
analogous and this completes the proof.

The next technical proposition is needed in order to establish a finer connection
between the zeta function at infinity defined via the Euclidean norm and the one
defined via the | · |∞-norm. It is very useful since the later zeta function can be
calculated explicitly in the examples we are interested in. The proof follows from a
more general theorem (see [21, Theorem 4.55]) which is proved by using the complex
mean value theorem [3, Theorem 2.2] and the theorem about complex differentiation
under the integral sign (see, e.g., [2, 15]). Due to the technical nature we omit the
proof here and refer the reader to [21, Theorem 4.55 and Proposition 4.58] for a
detailed proof.

Proposition 6. Let Ω ⊆ RN with |Ω| < ∞ be such that it is contained in a cylinder
x2
2+x2

3+· · ·+x2
N ≤ C for some constant C > 0 where x = (x1, . . . , xN ). Furthermore,

let D := dimB(∞,Ω) and T > 0. Then

ζ∞,Ω(s;T )−
∫

BT (0)c∩Ω

|x|−s−N
∞ dx (45)

is holomorphic on (at least) the half-plane {Re s > D − 2}.
Furthermore, if any of the two distance zeta functions possesses a meromorphic

extension to some open connected neighborhood U of the critical line {Re s = D},
then the other one possesses a meromorphic extension to (at least) V := U ∩{Re s >
D − 2}. Moreover, their multisets of poles in U ∩ {Re s > D − 2} coincide.

We now introduce the notion of complex dimensions of (∞,Ω) analogously to
the case of ordinary relative fractal drums.

Definition 1. Let Ω ⊆ RN be of finite N -dimensional Lebesgue measure and such
that its Lapidus zeta function at infinity can be meromorphically extended to some
open connected neighborhood W of the half-plane {Re s ≥ dimB(∞,Ω)}. We define
the set of visible complex dimensions of (∞,Ω) through W as the set of poles of the
distance zeta function ζ∞,Ω contained in W and denote it by

P(ζ∞,Ω,W ) := {ω ∈ W : ω is a pole of ζ∞,Ω} (46)

which will be abbreviated to P(ζ∞,Ω) when there is no ambiguity concerning the
choice of W (or when W = C).

Furthermore, if ζ∞,Ω possesses a meromorphic continuation to the whole of C, we
will call the set P(ζ∞,Ω,C) the set of (all) complex dimensions of (∞,Ω). The subset
of P(ζ∞,Ω,W ) consisting of poles with the real part equal to dimB(∞,Ω) is called
the set of principal complex dimensions of (∞,Ω) and is denoted by dimPC(∞,Ω).
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5. Cantor-like sets at infinity

In this section, we will construct a subset of R2 with a prescribed box dimension
D ∈ (−∞,−2) at infinity that will have a Cantor-like structure in a sense that
will be described below. This set depends on two parameters and is denoted by

Ω
(a,b)
∞ in Definition 2. Furthermore, these sets can be used as building blocks for the

construction of (algebraically and transcendentally) quasiperiodic sets at infinity by
using some classical results from transcendental number theory (see [21]).

Figure 1: An example of the Cantor-like two-parameter set Ω
(a,b)
∞ from Definition 2. Here, a = 1/4

and b = 2. Note that the axes are not in the same scale and only the first four steps in the

construction of the set Ω
(1/4,2)
∞ are shown; that is, for m = 1, 2, 3, 4

Definition 2. For a ∈ (0, 1/2) and b ∈ (1+log1/a 2,+∞) we define a two-parameter

unbounded set denoted by Ω
(a,b)
∞ . We start with the countable family of sets

Ω(a,b)
m := {(x, y) ∈ R

2 : x > a−m, 0 < y < x−b}, m ≥ 1.

Now, we will construct the set Ω
(a,b)
∞ by “stacking” the translated images of the sets

Ω
(a,b)
m along the y-axis on top of each other. More precisely, for each m ≥ 1 we take

2m−1 copies of Ω
(a,b)
m and arrange all of these sets by vertical translations so that they

are pairwise disjoint and lie in the strip {0 ≤ y ≤ S}. Here, S is the sum of widths

of all of these sets, i.e., S =
∑∞

m=1 2
m−1 · (a−m)−b = ab

1−2ab . Moreover, without loss
of generality, we can arrange them in an “increasing fashion”, i.e., stacking them

from bottom to top as m increases (see Figure 1). Finally, we define Ω
(a,b)
∞ as the

disjoint union of all of these sets.

Remark 6. The condition b > 1 + log1/a 2 ensures that Ω
(a,b)
∞ has finite Lebesgue

measure:

|Ω(a,b)
∞ | =

∞∑

m=1

2m−1|Ω(a,b)
m | =

∞∑

m=1

2m−1

∫ +∞

a−m

x−b dx =
1

b− 1

∞∑

m=1

2m−1(a−m)1−b

=
1

2(b− 1)

∞∑

m=1

(2ab−1)m =
ab−1

(b − 1)(1− 2ab−1)
.

and the last sum above is convergent for b > 1 + log1/a 2 since then 2ab−1 < 1.
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Example 6. The distance zeta function of the two-parameter unbounded set Ω
(a,b)
∞

calculated via the | · |∞-norm on R
2 is given by

ζ∞,Ω
(a,b)
∞

(s; | · |∞) =
1

s+ b + 1
· 1

a−(s+b+1) − 2
(47)

and is meromorphic on C. Furthermore, the set of complex dimensions of Ω
(a,b)
∞ at

infinity visible through W := {Re s > log1/a 2− b− 3} is given by

{−(b+ 1)} ∪
(
log1/a 2− (b + 1) +

2π

log(1/a)
iZ

)
. (48)

Finally, we also have that dimB(∞,Ω
(a,b)
∞ ) = log1/a 2− (b + 1).

In order to see this, let us choose T = 1 and calculate:

ζ∞,Ω
(a,b)
∞

(s; 1; | · |∞) =

∫

Ω
(a,b)
∞

|(x, y)|−s−2
∞ dxdy =

∞∑

m=1

2m−1

∫

Ω
(a,b)
m

x−s−2 dxdy

=

∞∑

m=1

2m−1

∫ +∞

a−m

dx

∫ x−b

0

x−s−2 dy

=
∞∑

m=1

2m−1

∫ +∞

a−m

x−s−2−b dx =
1

2(s+ b+ 1)

∞∑

m=1

(2as+b+1)m

=
1

s+ b+ 1
· 1

a−(s+b+1) − 2
,

where the last two equalities follow since Re s > log1/a 2− (b+ 1). From this we see
that D(ζ∞,Ω

(a,b)
∞

( · ; | · |∞)) = log1/a 2 − (b + 1) and the zeta function has a (unique)

meromorphic extension to all of C defined by (47). Furthermore, we have that

dimB(∞,Ω
(a,b)
∞ ) = log1/a 2 − (b + 1). Since (∞,Ω

(a,b)
∞ ) is contained in a strip of

finite width, we can apply Proposition 6 to conclude that the difference ζ∞,Ω
(a,b)
∞

( · ; | ·
|∞) − ζ∞,Ω

(a,b)
∞

is holomorphic on the half-plane {Re s > log1/a 2 − (b + 1) − 2} =

{Re s > log1/a 2 − b − 3} from which we conclude that the complex dimensions of

(∞,Ω
(a,b)
∞ ) visible through W are given by (48).

The two-parameter set Ω
(a,b)
∞ is Cantor-like in the sense that its construction

parallels, in a way, the construction of the (generalized) Cantor set. For instance, if

we choose a = 3−1, then the construction of the sets Ω
(1/3,b)
m for m ≥ 1 parallels the

deletion of the middle-third interval in the standard middle-third Cantor set. This
Cantor-like structure can also be seen in the structure of complex dimensions of the
two sets. Namely, the set of principal complex dimensions of the middle-third Cantor

set is given by log3 2+
2π
log 3 iZ while the set of principal complex dimensions of Ω

(1/3,b)
∞

is equal to log3 2− (b+ 1) + 2π
log 3 iZ. As we can see, the oscillatory period p := 2π

log 3

of these two sets coincides. In the definition of fractality proposed in [10], we have
defined a set or a relative fractal drum to be fractal if it possesses a nonreal complex
dimension. The motivation for this definition is justified, under mild hypotheses,
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in the case of relative fractal drums since it is shown in [10] that nonreal complex
dimensions generate oscillations in the inner geometry of the relative fractal drum.
We expect that analogous results can also be derived in the case of fractal sets at
infinity.

It is not difficult to compute the box dimension of Ω
(a,b)
∞ at infinity directly and

obtain that dimB(∞,Ω
(a,b)
∞ ) = log1/a 2− (b+1). Furthermore, one also obtains that

Ω
(a,b)
∞ is not Minkowski measurable at infinity which is expected due to the presence

of nonreal complex dimensions. For the detailed calculation see [21, Example 4.63].
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