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We study the dynamics of a mushy layer in directional solidification for the case of
a thin near-eutectic mush with a deformable and permeable mush–liquid interface.
We examine the onset of convection using linear stability analysis, and the weakly
nonlinear growth of liquid inclusions that signal the onset of chimneys. This analysis
is compared to past analyses in which the mush–liquid interface is replaced by a
rigid impermeable lid. We find qualitative agreement between the two models, but the
rigid-lid approximation gives substantially different quantitative behaviour.

In linear theory, the rigid-lid approximation leads to an over-estimate of the critical
Rayleigh number and wavenumber of the instability. The condition for the onset of
oscillatory instability is also changed by a factor of about 5 in composition number
C. In the weakly nonlinear theory, the location of the onset of liquid inclusions is
near the undisturbed front for the free-boundary analysis, whereas it lies at the centre
of the mushy layer when the rigid-lid approximation is used. For hexagonal patterns,
the boundary between regions of parameter space in which up and down hexagons
are stable, shifts as a result of coupling between the liquid and mush regions.

1. Introduction
A mushy layer is a region of partially solidified melt, often with a complex dendritic

structure. During the solidification of a multi-component alloy, a mushy layer forms as
a result of a morphological instability (Mullins & Sekerka 1964) of the solidification
front and undergoes a further instability if the buoyancy of the rejected components
gives rise to an unstable density gradient in the mush. If the mush Rayleigh number

Rm =
ρ0gβ�CΠ∗

V ν
(1.1)

is larger than a critical value Rc, then the system undergoes a transition to convection
(Worster 1992). The interaction of the convective fluid motions with the thermal field
leads to solidification and dissolution of the mushy layer and can eventually lead
to the formation of chimneys (Schulze & Worster 1999; Chung & Worster 2002).
Chimneys affect the structure of the final solidified material as well as redistribute
solute around the melt. As such, the processes which produce the chimneys are an
important area of study in both metallurgy and geophysics.

The study of mushy-layer convection has evolved from formulations of the
equations governing solidification and transport through the mush (Hills, Loper
& Roberts 1983; Fowler 1985), for a review of mushy-layer convection and chimney
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formation, see Worster (1997). The mechanisms for chimney growth are well
understood as a result of upflow within the mush. The initial stages of chimney
formation have been understood in terms of the bifurcation to convection (Amberg
& Homsy 1993; Anderson & Worster 1995) and the further development from these
weakly nonlinear solutions has been studied through various numerical approaches,
charting the progress of the nonlinear convection until a liquid inclusion forms
(Schulze & Worster 1999), to the development of chimneys (Chung & Worster 2002;
Schulze & Worster 2005). In analytical treatments of mushy-layer convection, it has
been common to make certain simplifications to render the analysis tractable and
to allow elucidation of the physical mechanisms at play during the formation of
chimneys (Amberg & Homsy 1993; Anderson & Worster 1995, 1996; Riahi 2002;
Guba & Worster 2006). These assumptions are commonly that the mush–liquid
interface is rigid and impermeable (Amberg & Homsy 1993; Anderson & Worster
1995) or rigid, but with a constant-pressure boundary condition (Chung & Chen
2000).

In weakly nonlinear analyses, a simplification often made is that the mush–liquid
interface does not deform and is impermeable – the rigid-lid approximation. These
two assumptions lead to very simple results for the structure of convection at onset
and allow calculations to be performed that determine the nature of the bifurcation
to convection. However, a detailed analytical study of these assumptions has not been
undertaken.

In this paper, the equations governing mushy-layer convection in steady directional
solidification with a deformable and permeable liquid–mush interface are studied
to assess the effects of the rigid-lid assumption, employed in all previous analyses,
and hence determine quantitative descriptions of the differences for comparison with
experiments.

In § 2, we review the equations that govern mushy-layer convection. Throughout
this study, we use the near-eutectic approximation and the limit of large far-field
temperature. The modes of convection when the thermal buoyancy in the liquid is
large and small are explored in § 3. In § 4 we sketch the weakly nonlinear analysis
and discuss the finite-amplitude solutions obtained. A concluding summary is given
in § 5 where we compare our results to experimental findings on the planforms of
mushy-layer convection.

2. Equations
The equations used to describe mushy-layer convection are well established in

the literature (e.g. Fowler 1985; Worster 1992; Amberg & Homsy 1993; Anderson
& Worster 1995) and are presented here for completeness. Figure 1 outlines the
situation: during directional solidification of a binary alloy, the temperature T and
composition C of the liquid obey advection–diffusion equations in a frame fixed in
the laboratory as the fluid is pulled down at speed V . The composition C is the
composition of the less dense component of the alloy. The fluid velocity u obeys the
Navier–Stokes equation in the liquid and Darcy’s equation in the mush. Conservation
of solute applies in the mush and it is assumed that the fluid in the mush is in local
thermodynamic equilibrium with the solid, so that the temperature and composition
are constrained by the liquidus relation T = TL(C) (Worster 1997). We assume that
the thermophysical properties of the solid and liquid phases in the mush are the same,
so that average properties of the mush are the same as for the individual solid and
liquid phases.
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z

Figure 1. A sketch of the system. A binary alloy is pulled at speed V towards a cooled
region. The temperature of the fluid as z → ∞ is T∞ and its far-field composition is C0. At a
temperature T = T ∗, the fluid becomes completely solid and a partially solidified mush region
extends over T ∗ < T < Ti , where Ti is the temperature at the mush–liquid interface

The mush is described by a solid fraction φ and a permeability Π(χ), where
χ =1 − φ is the liquid fraction. The composition of the solid in the mush is Cs and
we assume infinite back diffusion in the solid so that the lever rule can be applied.
Remaining quantities that describe the system are the pressure p, the diffusivities of
temperature κ and of composition D, the dynamic viscosity µ, the latent heat of fusion
per kilogram L and the specific heat Cp . The density is ρ(T , C) and a reference density
is ρ0. The Boussinesq approximation is made so that density variations are retained
only in the buoyancy term in the Navier–Stokes equation. Gravity g = (0, 0, −g)
points downwards, in the direction in which the sample is being pulled.

2.1. Non-dimensionalization

The non-dimensionalized equations for an ideal mushy layer with an overlying liquid
layer are (from Worster 1992)

∂θ

∂t
− ∂θ

∂z
+ u · ∇θ = ∇2θ, (2.1)

∂Θ

∂t
− ∂Θ

∂z
+ u · ∇Θ =

1

Le
∇2Θ, (2.2)

1

σ

(
∂ u
∂t

− ∂ u
∂z

+ u · ∇u
)

= RT θ z − RCΘ z − H∇p + ∇2u, (2.3)

in the liquid and

∂θ

∂t
− ∂θ

∂z
+ u · ∇θ = ∇2θ + S

(
∂φ

∂t
− ∂φ

∂z

)
, (2.4)(

∂

∂t
− ∂

∂z

)
[(C − Θ)(1 − φ)] + u · ∇Θ =

1

Le
∇2Θ, (2.5)

θ = Θ, (2.6)

u = −Π(χ)(∇p + Rmθ z), (2.7)

in the mush. The non-dimensional temperature and composition are defined by

θ =
T − TL(C0)

�T
, Θ =

C0 − C

�C
, (2.8)
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and non-dimensional fluid or Darcy velocity u = (u, v). Dimensional lengths have
been scaled with κ/V , time with κ/V 2, velocities with V and pressure with κµ/Π(0).
The temperature scale is �T = TL(C0)−Te and the composition scale is �C = Ce −C0,
related by �T = − m�C, where m is the slope of the liquidus, Te is the eutectic
temperature and Ce is the eutectic composition. By virtue of the liquidus relationship,
the equation of state in the mush becomes

ρ = ρ0(1 + βθ�C), (2.9)

where a new expansion coefficient is defined as β = β∗ + α∗m. The coefficient β takes
into account the effects on density of temperature and composition, which are slaved
in the mush by virtue of the liquidus relation. We can measure the importance of one
of the factors over the other by considering the parameter A = − α∗m/β . The size of
A determines whether the thermal buoyancy in the liquid is large enough to confine
convective motion in the mushy layer.

The non-dimensional parameters that appear in (2.1)–(2.7) are the Lewis
number Le = κ/D, Prandtl number σ = ν/κ , thermal Rayleigh number RT = ρ0α

∗

�Tgκ2/V 3µ which can also be written RT = RmHA, solutal Rayleigh number
RC = ρ0β

∗�Cgκ2/V 3µ = RmH(1 + A), inverse Darcy number H = κ2/V 2Π(0),
mush Rayleigh number Rm = gρ0β�CΠ(0)/V ν, Stefan number S = L/Cp�T and
compositional number C = C0/�C. We take T → T∞ as z → ∞, which gives another
non-dimensional parameter θ∞ = [T∞ − TL(C0)]/�T .

2.2. Boundary conditions

To complete the specification of the problem, we must specify appropriate boundary
conditions for the equations. The equations for θ are second order and so require two
boundary conditions, together with continuity conditions across any interfaces,

θ → θ∞ as z → ∞, (2.10)

θ = −1 at z = 0, (2.11)

[θ]+− = 0 at z = h, (2.12)

[n · ∇θ]+− = 0 at z = h. (2.13)

Similarly, for the concentration Θ , the equations are second order and require two
boundary conditions. In the mush, the liquidus relationship Θ = θ implies that the
composition in the liquid is determined by the temperature θ . In the liquid, we require
two boundary conditions for Θ , one of which is that it tends to its far-field value
as z → ∞, the other is extension of the liquidus relationship to the liquid side of the
mush–liquid interface,

Θ → 0 as z → ∞, (2.14)

θ = Θ at z = h+. (2.15)

The condition of marginal stability, proposed in Worster (1986), determines the
unknown interface location h,

n · ∇θ = n · ∇Θ on the liquid side. (2.16)

The highest derivative of the solid fraction φ implies that we require one boundary
condition to determine φ in the mushy layer. Conservation of solute leads us to
deduce that φ =0 at the mush–liquid interface whenever flow is from the liquid into
the mush (Schulze & Worster 1999).
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The boundary conditions are modified when Le → ∞, which is a singular
perturbation of the equations. In that case, the condition of marginal stability is
dropped and the interface location is determined by the liquidus constraint (2.15).

Mechanical boundary conditions, on the fluid velocity, are

u → 0 as z → ∞, (2.17)

[u · n]+− = 0 at z = h, (2.18)

u − (u · n)n = 0 at z = h+, (2.19)

u · n = 0 at z = 0, (2.20)

[p]+− = 0 at z = h. (2.21)

These boundary conditions express mass continuity, no-slip on the liquid side of the
mush–liquid interface, zero mass flow across the mush–solid interface and continuity
of pressure across the mush–liquid interface.

The steady solution to (2.1)–(2.7), subject to these boundary conditions, and its
stability to disturbances are characterized by the set of non-dimensional parameters
(Le, S, C, θ∞, A, H, σ, Rm). The basic structure of the steady solution is of a
horizontally uniform mushy layer, with an unstable density stratification in the
mush and possibly in a compositional boundary layer in the liquid at the mush–liquid
interface (e.g. Worster 1992). The thickness d of this boundary layer depends on
Le and d → 0 as Le → ∞. The density contrast in the liquid is then a result of the
stabilizing thermal field. In practice, the Lewis number Le is often very large and so
we set Le → ∞ for simplicity. In this paper, we are interested in the effects of the
parameters H and A on the stability of the steady state in the limit of large θ∞.

3. Limits
It has been shown (Amberg & Homsy 1993) that in the limit of large far-field

temperature, the mushy layer is much thinner than the scale set by the pulling speed
and thermal diffusion, κ/V . The non-dimensional mushy-layer depth in this case is
given to leading order as

h = δ ∼ 1

θ∞
� 1. (3.1)

This result motivates a further rescaling of the variables. Following Amberg & Homsy
(1993) and Anderson & Worster (1995), we remove any large effects of compositional
changes on the solid fraction by assuming the compositional number is large C = C̄/δ

and that therefore the solid fraction is φ ∼ O(δ), from (2.5). Similarly, we can retain
the effects of latent heat by scaling the Stefan number S = S̄/δ. We scale all lengths
with the leading-order mush depth δ and time with δ2.

3.1. Steady-state and disturbance equations

The steady state can be found straightforwardly from (2.1)–(2.5). It can be shown
(e.g. Worster 1992) that in the limit of Le → ∞, the temperature field in the liquid is

θB = θ∞
(
1 − e−(z−1)δ

)
, (3.2)

where the mush–liquid interface now lies at z = 1 at leading order. For values of z

less than O(δ−1), an appropriate expansion is

θB = (z − 1) + O(δ). (3.3)
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In the mush, the steady conductive state is given by (e.g. Amberg & Homsy 1993;
Anderson & Worster 1995)

θB = θB0 + δθB1 + · · · = (z − 1) − δ 1
2
Ω(z2 − z) + · · · , (3.4)

φB = δφB0 + δ2φB1 = −δ
z − 1

C̄
+ δ2

(
− (z − 1)2

C̄2
+

Ω

2C̄
(z2 − z)

)
+ · · · , (3.5)

where higher-order terms in δ can be easily calculated. The constant Ω = 1 + S̄/C̄

combines the effects of latent heat and composition.
The governing equations are expanded to derive equations for small disturbances

to the basic state. We seek, for the moment, the onset of steady convection and so
set the complex growth rate of normal modes to be zero. We examine two cases, one
in which A is effectively zero, and the other in which A is non-zero and plays a
role in determining the critical Rayleigh number. We are primarily interested in rolls
and so study only the two-dimensional disturbances in which there is no variation in
the y-direction; this will be relaxed to study hexagonal patterns. We take the inverse
Darcy number H to be large, which is a good approximation in many practical
circumstances.

Make a double expansion in small amplitude ε and δ for the disturbances

θ = θB + ε(θ00 + δθ01 + · · ·) + ε2(θ10 + δθ11 + · · ·)
+ ε3(θ20 + δθ21 + · · ·) + o(ε3), (3.6)

Θ = ΘB + ε(Θ00 + δΘ01 + · · ·) + ε2(Θ10 + δΘ11 + · · ·)
+ ε3(Θ20 + δΘ21 + · · ·) + o(ε3), (3.7)

φ = φB + ε(φ00 + δφ01 + · · ·) + ε2(φ10 + δφ11 + · · ·)

+ ε3

(
1

δ
φ2(−1) + φ20 + · · ·

)
+ o(ε3), (3.8)

δw = ε(w00 + δw01 + · · ·) + ε2(w10 + δw11 + · · ·)
+ ε3(w20 + δw21 + · · ·) + o(ε3), (3.9)

δu = ε(u00 + δu01 + · · ·) + ε2(u10 + δu11 + · · ·)
+ ε3(u20 + δu21 + · · ·) + o(ε3), (3.10)

δRm = R2 + εR1 + ε2R2 + · · · , (3.11)

h = hB + ε(h00 + δh10 + · · ·) + ε2(h10 + δh11 + · · ·)
+ ε3(h20 + δh21 + · · ·) + o(ε3). (3.12)

3.2. Expansion of equations

As a result of expansions (3.6)–(3.12) and using (3.3)–(3.5) for the basic state, the
governing equations at O(ε1δ0) become

S̄
∂φ00

∂z
+ w00 = ∇2θ00, (3.13)

−C̄
∂φ00

∂z
+ w00 = 0, (3.14)

∇2w00 + R2∇2
Hθ00 = 0, (3.15)
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in the mush, and

w00 = ∇2θ00, (3.16)

∇4w00 + HAR2δ2∇2
Hθ00 +

δ

σ

∂

∂z
∇2w00 = 0, (3.17)

in the liquid, where we have retained some terms involving δ to deduce the conditions
on the other parameters. The boundary conditions at this order are

θ00 → 0 as z → ∞, (3.18)

θ00 = 0 at z = 0, (3.19)

[θ00]
+
− = 0 at z = 1, (3.20)[

∂θ00

∂z

]+

−
= 0 at z = 1, (3.21)

h00 + θ00(1
+) = 0, (3.22)

and

w00 → 0 as z → ∞, (3.23)

[w00]
+
− = 0 at z = 1, (3.24)

u00 = 0 at z = 1+, (3.25)

w00 = 0 at z = 0, (3.26)

∂w00

∂z
(1−) = − 1

Hδ2

(
∂∇2w00

∂z
+

δ

σ

∂2w00

∂z2

)
(1+), (3.27)

where the last of these represents continuity of pressure across the mush–liquid
interface. Finally, the boundary condition on φ is

φ00 = 0 at z = 1. (3.28)

Higher-order expansions in ε are required in order to study the weakly nonlinear
development of instabilities. The equations and boundary conditions at O(ε2) and
O(ε3) are given in the Appendix.

3.3. Solution at O(ε)

Using (3.13)–(3.17) and further setting

θ00 = eikx θ̂ , φ00 = eikxφ̂, w00 = eikxŵ, u00 =
1

ik
eikxŵ′, h00 = eikxĥ

(3.29)

so that for the liquid region at O(ε1δ0) the disturbance equations become, with
Dz = d/ dz,

D2
z θ̂ − k2θ̂ − ŵDzθB0 = 0, (3.30)(

D2
z − k2

)2
ŵ − δ2k2AHR2θ̂ +

δ

σ

(
D3

z − k2Dz

)
ŵ = 0. (3.31)

If σ is O(1) and AH is o(δ−1), then (3.30) and (3.31) simplify further. In the mush
at O(ε1δ0),

D2
z θ̂ − k2θ̂ + S̄Dzφ̂ − ŵ = 0, (3.32)

−C̄Dzφ̂ + ŵ = 0, (3.33)(
D2

z − k2
)
ŵ = R2k2θ̂ , (3.34)
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where it has been assumed that Π(χ) ≡ 1 in Darcy’s equation so that there are no
effects of porosity-dependent permeability.

Boundary conditions are θ̂ (0) = ŵ(0) = 0, ŵ′(1+) = 0 (no slip at liquid–mush
interface), ŵ(∞) = 0 and θ(∞) = 0. The quantities θ̂ and ŵ are continuous at z =1.
Continuity of pressure at the interface gives the following condition on ŵ

Dzŵ(1−) = − 1

Hδ2

(
D3

z − k2Dz +
δ

σ
D2

z

)
ŵ(1+); (3.35)

we also have the following boundary condition from the continuity of thermal flux

Dzθ̂ (1+) = Dzθ̂(1−). (3.36)

Finally, the condition on the solid fraction leads to the boundary condition

φ̂ = 0 at z = 1, (3.37)

and the interface location is determined by (3.22) so

ĥ = −θ̂ (1). (3.38)

This set of equations and boundary conditions describe the onset of convection. We
can explore the structure of the convecting modes at onset in different limits of the
parameters A and H.

3.4. Stabilizing thermal buoyancy is zero: A =0

In the case A =0 and σ =O(1), the disturbance equations in the liquid region, to
leading order in δ, are

D2
z θ̂ − k2θ̂ = ŵ, (3.39)(

D2
z − k2

)2
ŵ = 0, (3.40)

and in the mushy region, eliminating the solid fraction φ̂ from (3.32) and (3.33),

D2
z θ̂ − k2θ̂ = Ωŵ, (3.41)

D2
zŵ − k2ŵ = R2k2θ̂ . (3.42)

Boundary conditions are θ̂ (0) = ŵ(0) = 0, ŵ′(1+) = 0, ŵ(∞) = 0 and θ̂(∞) = 0. The
quantities θ̂ , θ̂ ′ and ŵ are continuous at z = 1. Application of the condition of
continuity of pressure gives ŵ′(1−) = 0 as long as H−1 is O(δ3). The solution for ŵ

in the liquid region is

ŵ = a0e
k(z−1) + b0e

−k(z−1) + a1(z − 1)ek(z−1) + b1(z − 1)e−k(z−1), (3.43)

where a0, a1, b0 and b1 are integration constants. Upon application of the boundary
conditions,

ŵ = W1(1 + k(z − 1))e−k(z−1). (3.44)

for z � 1, where W1 is an integration constant. Similarly, from (3.39) and the remaining
boundary condition at infinity, the temperature θ̂ is

θ̂ = T1e
−k(z−1) − W1

4k
(z − 1)(3 + k(z − 1))e−k(z−1). (3.45)

for z � 1, where T1 is an integration constant. Continuity of ŵ, θ̂ and θ̂ ′ across the
interface leaves us with an eigenvalue problem for R and for the quantities in the
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Figure 2. Plot of scaled critical Rayleigh number R against disturbance wavenumber k for
Ω = 2 (from C = 1 and S = 1), Hδ2 = 105 and σ = 2. The value of H is adjusted so as to
maintain the validity of w′(1−) = 0 as an approximation to boundary condition (3.35). The
error is order δ, as expected.

mushy region, with the following boundary conditions

θ̂ (0) = 0, ŵ(0) = 0, ŵ′(1) = 0, θ̂ ′(1) + kθ̂ (1) +
3

4k
ŵ(1) = 0. (3.46)

The solution to (3.41) and (3.42) with boundary conditions (3.46) is

ŵ = A sinh(mrz) + B sin(miz), (3.47)

θ̂ =

√
Ω

Rk
[A sinh(mrz) − B sin(miz)], (3.48)

for 0 � z � 1, where m2
r = Rk

√
Ω + k2, m2

i = Rk
√

Ω − k2 and A and B are constants of
integration. Using the boundary conditions, we derive a condition on the following
determinant for the existence of non-trivial solutions∣∣∣∣∣∣∣

√
Ω(mr coshmr + k sinhmr ) +

3R

4
sinhmr mr coshmr

−
√

Ω(mi cosmi + k sinmi) +
3R

4
sinmi mi cos mi

∣∣∣∣∣∣∣ = 0. (3.49)

When the determinant of the matrix is zero the scaled Rayleigh number R is at the
marginal stability boundary. Marginal stability curves, derived from the determinant
conditions and from full numerical calculations based on Worster (1992) and Chen,
Lu & Chang (1994), are shown in figure 2. The figure shows good agreement between
the numerical solutions and the asymptotic solution for large θ∞ (and hence small
δ). For each of the values of θ∞ shown, the value of H varies so as to keep Hδ2

constant. If this is not the case, then boundary condition (3.35) has an increasing
effect on the results as θ∞ increases. Figure 3 shows the streamlines for the minimum
R in the marginal stability curve in figure 2. The figure shows that there is significant
flow in the liquid as well as the mush. The streamlines in the mush are very similar to
Ψ ∼ sin(kx) sin(πz/2) and a possible simplification of the boundary conditions in the
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0
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z
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Figure 3. The form of the streamlines for Ω = 2, H = 105, σ = 2, A =0 and θ∞ =10. The flow
extends into the liquid. As expected, in this case the rigid-lid assumption fails to capture the
form of the streamlines, the critical Rayleigh number and wavenumber. The interface shape
is also shown (dotted), the magnitude of the deflection is determined by the amplitude of the
convection and cannot be determined by linear theory.

case of small A would appear to be θ̂ ′ = 0 and ŵ′ = 0 at z = 1, leading to half-rolls
as shown.

If the Prandtl number σ is not O(1) but is instead O(δ), so that Σ = σ/δ is O(1),
the result does not change substantially. The solution in the liquid becomes

ŵ = Wσ

(k∗e−k(z−1) − ke−k∗(z−1))

k∗ − k
, (3.50)

θ̂ = Tσ e−k(z−1) −
Wσk

(
e−k∗z − e−kz

)
(k∗ − k)(k∗2 − k2)

− Wσk∗ze−k(z−1)

2k(k∗ − k)
, (3.51)

where k∗ = (2Σ)−1 + (k2 + (4Σ2)−1)1/2 and Tσ and Wσ are constants of integration.
The solution in the liquid changes one of the boundary conditions in (3.46) to

θ̂ ′(1) + kθ̂ (1) +
2k∗ + k

2k(k∗ + k)
ŵ(1) = 0, (3.52)

in the limit as Σ → ∞, or equivalently k∗ → k, the solutions already obtained for the
case when σ is O(1) appear.

3.5. Stabilizing buoyancy is large: A = O(1)

In the case where the fluid has large stabilizing buoyancy, the lengthscale of decay
of the convective motion in the liquid becomes much smaller than the depth of the
mush. We can simplify the governing equations to take this into account. Define a
new constant Ω∗ = HAδ2 and assume that Ω∗ � 1. Then, the governing equations
in the liquid become, to a first approximation

D4
zŵ = R2k2Ω∗θ̂ , (3.53)

D2
z θ̂ = ŵ, (3.54)

and in the mush they remain (3.41) and (3.42). The boundary conditions are ŵ = θ̂ = 0
at z = 0, ŵ is continuous at z =1, w → 0 and θ → 0 as z → ∞, θ̂ and θ̂ ′ are continuous
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at z = 1 and finally, continuity of pressure becomes

Dzŵ|mush = − A
Ω∗ D3

zŵ|liquid . (3.55)

The boundary conditions on φ̂ and ĥ are the same as the case when A =0. In the
liquid, the solution is

ŵ = AAe−λ(z−1) + e−λ(z−1)/2

(
BA cos

[√
3λ

2
(z − 1)

]
+ CA sin

[√
3λ

2
(z − 1)

])
, (3.56)

θ̂ =
AA

λ2
e−λ(z−1) − 1

2λ2
e−λ(z−1)/2

(
(BA − CA

√
3) cos

[√
3λ

2
(z − 1)

]

+ (CA + BA
√

3) sin

[√
3λ

2
(z − 1)

])
, (3.57)

where AA, BA and CA are constants of integration. In the mush,

ŵ = DA sinh(mrz) + EA sin(miz), (3.58)

where λ= (R2k2Ω∗)1/6, m2
r = Rk

√
Ω + k2, m2

i = Rk
√

Ω − k2 and DA and EA are

constants of integration. The temperature θ̂ is found using (3.41). Application of
ŵ′(1+) = 0 gives C = (2A + B)/

√
3. The continuity conditions across the mush–liquid

interface lead once again to a linear system and for non-trivial solutions∣∣∣∣∣∣∣∣∣

1 1 − sinhmr − sinmi

Aλ3/Ω∗ −Aλ3/Ω∗ −mr coshmr −mi cosmi

2R/λ2 0 −
√

Ω sinhmr/k
√

Ω sinmi/k

2R/λ R/λ
√

Ωmr coshmr/k −
√

Ωmi cos mi/k

∣∣∣∣∣∣∣∣∣
= 0. (3.59)

The marginal stability curves derived from both the asymptotics and numerical
solutions, for A = 1, H =106, Ω = 2 and θ∞ = 10 are shown in figure 4. Also shown
is the marginal stability curve under the assumption of a rigid-lid at which ŵ = 0 and
θ̂ =0. This approximation is often employed in weakly nonlinear analyses of mushy-
layer convection, as discussed in § 1. Although it renders the analysis much simpler in
many circumstances, it is clear that it does not capture the full behaviour at the onset
of convection. The streamlines in figure 5 are those calculated from the asymptotic
solution and show that the convection is largely confined to the mush. Note that
with a rigid impermeable lid, complete rolls are the form of the solution in the mush,
whereas here they are partial rolls. This parameter regime corresponds to the case
in which the boundary condition at the mush–liquid interface can be approximated
as a constant-pressure boundary condition. Chung & Chen (2000) have performed
the linear and weakly non-linear analysis of this case using the simplification of
constant pressure applied at z =1 when the mush–liquid interface is not deformable.
They approximate the boundary conditions for the linear problem as ŵ′ =0 and θ̂ =0
at z = 1. Figure 4 shows the results of Chung & Chen (2000) compared with our
analysis and compared with numerical results using the parameters relevant to the
experiments of Tait, Jahrling & Jaupart (1992), given in Chen et al. (1994). Both the
simplified boundary conditions used by Chung & Chen (2000) and our analysis give
good agreement with the numerical results, and as δ is decreased our analysis captures
the behaviour increasingly well with decreasing δ. It can be seen from figure 4 that
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Figure 4. (a) The marginal stability curves for Ω = 2, σ = 2, A =1 and H = 106. The curves
are derived from the asymptotic analysis presented here and from numerical integration of
the full equations, using the numerical methods of Worster (1992) and Chen et al. (1994).
The results in the case of a rigid-lid are shown for comparison. (b) Marginal stability curves
using the various models for C = 12.3, S = 3.2, H = 3.5 × 106, σ =10, Le−1 = 0, A = 0.65
and θ∞ = 0.5, 3. The results of Chung & Chen (2000) and the present analysis compare well
with the full numerical calculations. The rigid-lid calculation is also shown. The parameters
represent experiments by Tait et al. (1992).

the inclusion of a deformable interface leads to a destabilization of the mushy layer
with respect to the results of Chung & Chen (2000) and the rigid-lid assumption.

Figure 6 shows a comparison between the structure of the eigenfunction ŵ(z)
obtained numerically using the method of Worster (1992) and Chen et al. (1994) and
the asymptotic analysis presented here. The agreement is very good and we expect
errors of order δ.

4. Weakly nonlinear analysis
In this section, we confirm the assertion by Anderson & Worster (1996), that

an oscillatory instability can occur as a result of compositional convection and
solidification in the mush, even when the deformability of the mush–liquid interface
and the hydrodynamics of the liquid are considered. We perform a weakly nonlinear
analysis of the full two-layer model of convection in the same limits as the marginal
stability calculation described above. The analysis is extremely complicated and we
present an abbreviated version to outline the major steps in the calculation. We
restrict our study to the case where A = 0, though the approach taken can be used
to study cases where A �= 0. In general, the problem is defined by a linear operator
L and boundary conditions Bn acting upon variables vn, where n refers to the order.
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Figure 5. The form of the streamlines for Ω = 2, H = 106, σ = 2, A = 1 and θ∞ = 10. The
flow is confined by the thermal buoyancy in the liquid region. The interface deflection (dotted)
is shown, though its amplitude cannot be determined by linear theory.
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Figure 6. A comparison between the numerical and asymptotic profiles of vertical velocity
component. The far-field temperature is θ∞ =10, the errors are small (we expect relative errors
of order δ). The scale for the velocity is arbitrary since these are calculations from linear
stability. The mush–liquid interface lies at z = 1 (short dashed line).

The solution to the sequence of problems

Lv1 = 0, B1(v1) = 0, (4.1)

Lv2 = f1(v1), B2(v2) = b1(v1), (4.2)

Lv3 = f2(v1, v2), B3(v3) = b2(v1, v2), (4.3)
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plus the compatibility condition at O(ε3),∫
D

v
†
1Lv3 dV = J (v1, v2), (4.4)

produces an amplitude equation for the unknown amplitude A(τ ) of v1 as a function of
the slow time variable τ = ε2t . The function J represents boundary terms from the non-
homogenous boundary conditions B3. In general, ignoring slow spatial modulations,
the equation has the form

τ̄
dA

dτ
= R2A − λA|A|2, (4.5)

where the amplitude A is such that

w = A(τ ) cos(kx)w̄(z), (4.6)

and where w̄ is the solution to the linear stability problem at the onset of convection
with the additional condition w̄(1) = 1.

In order to execute this solution procedure, we must find the adjoint operator
and boundary conditions. The adjoint problem in our case is give by the following
equations, in the mush (

D2
z − k2

)
w̃ = Ωθ̃, (4.7)(

D2
z − k2

)
θ̃ = R2k2w̃, (4.8)

and in the liquid (
D2

z − k2
)
θ̃ = 0, (4.9)(

D2
z − k2

)2
w̃ = θ̃ , (4.10)

with adjoint boundary conditions θ̃ (0) = 0, w̃(0) = 0, w̃ → 0 and θ̃ → 0 as z → ∞,
θ̃(1+) − θ̃ (1−) = θ̃ ′(1+) = θ̃ ′(1−) = 0, w̃(1+) = 0, w̃′(1+) = 0 and w̃′′′(1+) = w̃(1−). The
solution of the adjoint problem in the liquid is

θ̃ = Tae
−k(z−1), (4.11)

w̃ =
Ta

8k2
(z − 1)2e−k(z−1), (4.12)

and in the mush

θ̃ = Aa sinh(mrz) + Ba sin(miz), (4.13)

w̃ =

√
Ω

Rk
(Aa sinh(mrz) − Ba sin(miz)), (4.14)

where mr and mi have the same definitions as in § 3. The constants are linearly related
through application of boundary conditions, and for a non-trivial solution we derive
the same condition for marginal stability as that in § 3. The solution to the adjoint
problem is shown in figure 7. Notice that w̃ is near zero in the liquid so that using
the orthogonality condition (4.4) annihilates contributions from the liquid.

4.1. Results

Equation (4.5) contains two constants, τ̄ and λ, that are calculated in the weakly
nonlinear analysis. The constant τ̄ can be calculated from linearized theory where
complex growth rates are allowed. As discussed in Anderson & Worster (1995), the
fact that τ̄ = 0 for some choices of S̄ and C̄ indicates the presence of an oscillatory
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Figure 7. The adjoint solution, w̃(z) and θ̃ (z), for S̄ =1, C̄ = 1 and σ = 2, with A = 0.
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Figure 8. The location in S-C space where the coefficient of the time-dependent term changes
sign, indicating the presence of an oscillatory instability (Anderson & Worster 1996). It also
shows the boundary between the regions of parameter space in which up- or down-hexagons
are stable, determined by the sign of b in (4.19). For the rigid-lid calculations, down-hexagons
are preferred within the enclosed region; for the present analysis, down-hexagons are preferred
to the left of the dashed line.

instability. There, τ̄ = 0 when

2S̄

(S̄ + C̄)2
= 1. (4.15)

Our analysis for the coupled two-layer problem reveals the presence of a similar
oscillatory instability. Figure 8 shows the location of the τ̄ =0 curve in S̄-C̄ parameter
space. It has the same qualitative behaviour as the result of Anderson & Worster
(1995), which is also plotted for comparison. The Landau constant λ is found to
be approximately Λ/R2, where Λ lies between about 46 and 52. As a result of our
neglect of the effects of porosity variations by setting Π(χ) = 1, the bifurcation is
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Figure 9. The solid fraction and streamlines for the case when δ = 0.25, ε = 0.25, S = 1, C = 1
and σ = 1 so that Ω = 2. The contours of φ are shown in intervals of 0.05 starting at φ = 0.
The amplitude of the convection is large enough to have driven the solid fraction below zero
in some parts of the mush.

always supercritical, λ> 0. The size of λ determines the amplitude as a function of
the degree of supercriticality.

The finite-amplitude solutions, derived as a result of this analysis, show many
common features with the full numerical solutions found by Schulze & Worster
(1999). Where there is upflow, as a result of convection, the interface deflects upwards
and the solid fraction is lowered. The point of minimum solid fraction is where
the upflow in the linear solution is greatest, which from figure 6 is near the mush–
liquid interface. In Amberg & Homsy (1993) and Anderson & Worster (1995), the
maximum upflow, and therefore the birth of a chimney occurs deep in the mush, as a
result of the impermeable mush–liquid interface. The streamlines and contours of the
solid fraction in figure 9 show some qualitative agreement with the steady nonlinear
solutions found by Schulze & Worster (1999), in the recirculating region the solid
fraction has been driven below zero. In these finite-amplitude solutions, the chimney
is born and grows from near the mush–liquid interface, unlike the solutions in Schulze
& Worster (1999), but in agreement with the small C simulations of Chung & Chen
(2000). Strictly speaking, limits of small C are not accessible in our analysis as we
have written C =C/δ with C = O(1) as δ → 0. Chimneys are born and grow from the
top of the mush because the greatest upflow is generated near the top of the mush
in all parameter regimes under our assumptions that the mush interface is permeable
and deformable.

4.2. Hexagonal patterns with A =0

The stability of hexagonal patterns can be studied by standard methods (Amberg &
Homsy 1993; Anderson & Worster 1995; Chung & Chen 2000). We write all variables
in terms of an unknown amplitude A(τ ) so that, for example, the vertical velocity
takes the form

w = A(τ )w̄(z)
[
eikx + eik(−x+

√
3y)/2 + eik(−x−

√
3y)/2

]
+ c.c. (4.16)
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Figure 10. Sketch of the likely bifurcation structure in mushy-layer convection (from
Anderson & Worster 1995). Whether up-hexagons or down-hexagons are stable depends
on the sign of b. In the case shown here b > 0 and up-hexagons are stable. In the case
where b < 0 down-hexagons are stable. The vertical axis represents the amplitude A and the
horizontal axis the scaled Raleigh number R1, the units are arbitrary.

When studying hexagonal planforms, the relevant expansion of the Rayleigh number
and the time scale in terms of the small-amplitude parameter ε becomes

δRm = R2 + εR1 + · · · (4.17)

t = ετ. (4.18)

The solution proceeds as usual and at O(ε2) the compatibility condition yields the
following amplitude equation

τ̄
dA

dτ
= R1A + bĀ2 + · · · . (4.19)

At R1 = 0, the unstable branch of the hexagonal solutions intersects the A= 0 solution,
which becomes unstable. Whether the up-hexagons or down-hexagons are stable or
not is determined by the sign of b (figure 10). Our calculations show that to the left of
the dashed line in figure 8, down-hexagons are the preferred form of the solution, in
agreement with the experimental findings of Tait et al. (1992) (in which C = 12.3 and
S =3.2, predicting down-hexagons), although note that in those experiments A �= 0.

5. Conclusions
In this paper, we have seen that the limit θ∞ → ∞ (correspondingly δ → 0) allows

us to examine the structure of mushy-layer convection at onset in a straightforward
way. We have relaxed the assumption of a rigid impermeable mush–liquid interface
and found asymptotic solutions to the governing equations. We have determined
the critical Rayleigh number and wavenumber for the case where the confining
thermal buoyancy is negligible, A = 0 and found that in this case the streamlines
from convection penetrate through the mush–liquid interface and into the liquid
layer above. In this case, the nonlinear development of the mushy layer leads to the
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birth of a chimney much closer to the surface than in studies in which the rigid-
lid approximation is used. We have also found solutions for a case when thermal
buoyancy in the liquid is not negligible. In these cases, the thermal buoyancy acts
to confine the convective motions in the mushy layer, and the results of the linear
stability analysis are much closer to those derived from the rigid-lid results. A
comparison of the linear stability results of Chung & Chen (2000) (in which the
impermeability of the mush–liquid interface is relaxed, but the rigidity is maintained)
shows that the inclusion of deformation in the mush–liquid interface leads to a further
destabilization of the mushy layer relative to the case in which a constant-pressure
boundary condition is used.

We have performed a weakly nonlinear analysis of cases when A = 0 and found, in
agreement with Chung & Chen (2000) that the chimney is born near the top of the
mush. This is because the greatest upflow is predicted near the top of the mush when
the rigid-lid assumption is abandoned. The analysis of hexagonal patterns predicts
the boundary in parameter space at which up- and down-hexagons swap stability.

Although the rigid-lid assumption leads to a great simplification in the nonlinear
analysis of convection, it may be possible to improve on the predictions made in such
studies by using the asymptotic results presented here. It is hoped that this would lead
to improved comparisons between experiment and theory or as a test of numerical
schemes designed to model convection on mushy layers.

We are grateful to an AFOSR MEANS grant for their generous support.

Appendix. Equations and boundary conditions at O(ε2) and O(ε3)

The equations at order O(ε2δ0) are

S̄
∂φ10

∂z
+ u00

∂θ00

∂x
+ w00

∂θ00

∂z
+ w10 = ∇2θ10, (A 1)

−C̄
∂φ10

∂z
+ u00

∂θ00

∂x
+ w00

∂θ00

∂z
+ w10 = 0, (A 2)

∇2w10 + R2 ∂2θ10

∂x2
= 0, (A 3)

in the mush, and

w10 + u00

∂θ00

∂x
+ w00

∂θ00

∂z
= ∇2θ10, (A 4)

∇4w10 + HAR2δ2 ∂2θ10

∂x2
+

δ

σ

∂

∂z
∇2w10 = − 1

σ

∂

∂x

(
w00∇2u00 − u00∇2w00

)
, (A 5)

in the liquid. The thermal boundary conditions are

θ10 → 0 as z → ∞, (A 6)

θ10 = 0 at z = 0, (A 7)

θ10(1
+) = θ10(1

−), (A 8)[
∂θ10

∂z
+ h00

∂2θ00

∂z2

]+

−
= 0, (A 9)

h10 +
∂θ00

∂z
h00 + θ10 = 0 at z = 1+, (A 10)
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and the fluid-dynamical boundary conditions are

w10 → 0 as z → ∞, (A 11)

w10(1
+) +

∂w00

∂z
(1+)h00 = w10(1

−) +
∂w00

∂z
(1−)h00, (A 12)

u10 + w00

dh00

dx
+

∂u00

∂z
h00 = 0 at z = 1+, (A 13)

u10 + w00

dh00

dx
+

∂u00

∂z
h00 = 0 at z = 1−, (A 14)

w10 = 0 at z = 0, (A 15)

and finally, the boundary condition on the solid fraction is

φ10(1) = −h00

∂φ00

∂z
(1). (A 16)

The equations at O(ε3δ−1) are

∂φ2(−1)

∂z
=

∂φ00

∂τ
, (A 17)

and at O(ε3δ0), we have

Ω
∂θ00

∂τ
+

S̄

C̄
φ2(−1) + Ωw20 + Ω

(
u10

∂θ00

∂x
+ w10

∂θ00

∂z
+ u00

∂θ10

∂x
+ w00

∂θ10

∂z

)
= ∇2θ20,

(A 18)

∇2w20 + R2 ∂2θ20

∂x2
+ R2

∂2θ00

∂x2
= 0, (A 19)

and in the liquid the equations are

∂θ00

∂τ
+ w20 + u10

∂θ00

∂x
+ w10

∂θ00

∂z
+ u00

∂θ10

∂x
+ w00

∂θ10

∂z
= ∇2θ20, (A 20)

1

σ

(
∂∇2w00

∂τ
− u00∇2w10 + w00∇2u10 + w10∇2u00 − u10∇2w00

)
= −∇4w20. (A 21)

The appropriate thermal boundary conditions at this order are

θ20 → ∞ as z → ∞, (A 22)

θ20 = 0 at z = 0, (A 23)

[θ20]
+
− = 1

2
h2

00[θ
′′
00]

+
−, (A 24)[

∂θ20

∂z

]+

−
= −

[
h00

∂2θ10

∂z2
+

h2
00

2

∂3θ00

∂z3
+

∂2θ00

∂z2
h10

]+

−
, (A 25)

h20 = −θ20 − ∂θ10

∂z
h00 − ∂θ00

∂z
h10 − ∂2θ00

∂z2
h2

00 at z = 1+, (A 26)

and the fluid-dynamical boundary conditions are

w20 → ∞ as z → ∞, (A 27)

[w20]
+
− =

[
−1

2

∂2w00

∂z2
h2

00 +
dh00

dx
u10 +

dh00

dx

∂u00

∂z
h00 − h00

∂w10

∂z

]+

−
, (A 28)

u20 = −∂u00

∂z
h10 − h2

00

2

∂2u00

∂z2
− ∂u10

∂z
h00 − w00

dh10

dx
−

(
w10 +

∂w00

∂z
h00

)
dh00

dx
,

(A 29)

w20 = 0 at z = 0. (A 30)



352 S. M. Roper, S. H. Davis and P. W. Voorhees

Finally, the boundary condition for the solid fraction φ2(−1) is

φ2(−1)(1
−) = 0. (A 31)
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