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Aim To explore the effects of hyperbaric oxygen precondi-
tioning (HBOP) on the permeability of blood-brain barrier 
(BBB) and expression of tight junction proteins under hy-
poxic conditions in vitro.

Methods A BBB in vitro model was constructed using the 
hCMEC/D3 cell line and used when its trans-endothelial 
electrical resistance (TEER) reached 80-120 Ω · cm2 (tested 
by Millicell-Electrical Resistance System). The cells were 
randomly divided into the control group cultured under 
normal conditions, the group cultured under hypoxic con-
ditions (2%O2) for 24 h (hypoxia group), and the group 
first subjected to HBOP for 2 h and then to hypoxia (HBOP 
group). Occludin and ZO-1 expression were analyzed by 
immunofluorescence assay.

Results Normal hCMEC/D3 was spindle-shaped and 
tightly integrated. TEER was significantly reduced in the 
hypoxia (P = 0.001) and HBOP group (P = 0.014) compared 
to control group, with a greater decrease in the hypoxia 
group. Occludin membranous expression was significant-
ly decreased in the hypoxia group (P = 0.001) compared to 
the control group, but there was no change in the HBOP 
group. ZO-1 membranous expression was significantly de-
creased (P = 0.002) and cytoplasmic expression was sig-
nificantly increased (P = 0.001) in the hypoxia group com-
pared to the control group, although overall expression 
levels did not change. In the HBOP group, there was no 
significant change in ZO-1 expression compared to the 
control group.

Conclusion Hyperbaric oxygen preconditioning protect-
ed the integrity of BBB in an in vitro model through modu-
lation of occludin and ZO-1 expression under hypoxic con-
ditions.
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Ischemic tolerance is an endogenous protective mecha-
nism that refers to the ability of a sublethal stimulus to in-
duce tolerance to a subsequent lethal ischemic injury. It 
was first demonstrated in neuronal cells of the gerbil hip-
pocampus (1), after which it has aroused a considerable 
interest as a possible therapeutic modality for ischemic 
brain diseases. However, to expose patients to brief pe-
riods of ischemia is both impractical and unsafe. Chemi-
cal preconditioning substances that can induce ischemic 
tolerance, such as endotoxins, cytokines, metabolic in-
hibitors, potassium, chloride, and neurotoxin 3-nitro-pro-
pionic acid (1-5) have also been investigated but were 
found to have limited clinical application due to toxicity 
and side effects.

A variety of experimental models of cerebral ischemia have 
found that hyperbaric oxygen preconditioning (HBOP) in-
duces ischemic tolerance and attenuates cerebral injury 
(6-17). Its protective effect is also visible in other condi-
tions leading to oxidative stress, with final anti-apoptotic 
result, as well as modulation of neutrophin and immune 
systems (6-17).

The blood-brain barrier (BBB), a highly selective perme-
ability barrier, consists of tight junctions (TJ) between 
capillary endothelial cells, the basal lamina, pericytes, 
and astrocyte end-feet (18). It plays an important role in 
maintaining cerebral homeostasis by restricting molecu-
lar movement from the cerebral capillaries to the brain 
tissue. BBB breakdown can result in a vasogenic edema, 
hemorrhage, and neuronal cell death, all of which can 
contribute to the pathophysiology of cerebral ischemic 
diseases (19). TJs between cerebral endothelial cells are 
formed by complex interactions of cytoskeletal proteins 
and tight junction proteins (TJPs), including claudins, 
occludin, zonula occludens (ZO), and cingulin (20). TJPs 
increase endothelial electrical resistance and decrease 
paracellular permeability (21). Changes in their expres-
sion can lead to the loss of BBB integrity and BBB break-
down (22).

HBOP has been associated with reduced brain edema, de-
creased infarct volume, and improved neurological func-
tion (6-17), but it is not clear whether it directly affects the 
BBB, particularly TJPs expression. This should be clarified in 
order to find new therapeutic strategies to attenuate BBB 
permeability in cerebral ischemic disorders. Therefore, the 
aim of this study was to examine the HBOP effect on hy-

poxia-induced BBB breakdown in vitro and the changes 
of occludin and ZO-1 expression.

Materials and methods

Materials

Ascorbic acid was purchased from Sigma (St Louis, MO, 
USA); chemically defined lipid concentrate from Invitrogen 
(Carlsbad, CA, USA); endothelial growth basal medium-2 
(EBM-2) from Lonza (Walkersville, MD, USA); human basic 
fibroblast growth factor (bFGF) from Cell Signaling Tech-
nology (Danvers, MA, USA); hydrocortisone from Fisher Sci-
entific (Pittsburg, PA, USA); fetal bovine serum (FBS) from 
Hyclone (Logan, UT, USA); penicillin/streptomycin from 
Cellgro Mediatech, Inc. (Manassas, VA, USA); type I collagen 
from R&D System (Minneapolis, MN, USA); TritonX-100 and 
bovine serum albumin (BSA) both from Sigma-Aldrich (St 
Louis, MO, USA); primary antibodies for occludin and ZO-1 
(both diluted 1:100; Abcam Cambridge, MA, USA); fluoro-
phore-conjugated secondary antibody from Proteintech 
Group (diluted 1:200; Chicago, IL, USA); and 4’,6-diamidino-
2-phenylindole from Sigma-Aldrich.

Experimental design

In vitro BBB cultures were given random numbers using Ex-
cel software and were divided into three groups: control 
group; hypoxia group, cultured in an anaerobic chamber 
(Thermo Forma Scientific, Hudson, NH, USA) filled with an 
anoxic gas mixture (2% O2, 5% CO2, and 93% N2) at 37°C 
for 24 h; and HBOP group, subjected to hyperbaric oxygen 
conditioning for 2 hours before culturing in an anaerobic 
chamber. Trans-endothelial electrical resistance (TEER) was 
measured using Millicell-Electrical Resistance System (ERS, 
Millipore, Billerica, MA, USA). Occludin and ZO-1 expression 
was analyzed using immunofluorescence assay.

In vitro BBB model

The hCMEC/D3 cell line (EMD Millipore, Temecula, CA, USA, 
catalog number SCC066) is derived from microvascular 
cells of human brain tissue and is a reliable in vitro model 
for understanding molecular and cellular regulation of hu-
man BBB integrity (23-25). The cells were cultured in EBM-2 
with 5% FBS supplemented with penicillin/streptomycin, 
hydrocortisone (1.4 μM), ascorbic acid (5.0 μg/mL), chemi-
cally defined lipid concentrate (1.0%), 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES) (10.0 mM), and 
bFGF (1.0 ng/mL), and maintained at 37°C, 5% CO

2, and 
95% relative humidity. They were seeded at a density of 
2 × 105 cells/well onto Transwell inserts (0.4 μm pore size, 
24 mm diameter; Corning, NY, USA), coated with type I col-
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lagen. The cell culture medium was changed every 3 days 
until the cell monolayer became confluent. The formation 
of cell monolayer and verification of TJs was evaluated by 
measuring TEER values, which ranged from 80-120 Ω · cm2.

Hyperbaric oxygen preconditioning (HBOP)

HBOP was performed in a temperature and humidity con-
trolled hyperbaric incubator (OxyCure 3000, OxyHeal® 
Health Group, National City, CA, USA). The pressure dura-
tion was 280 kPa-60 min, which is frequently used in an-
imal and cell studies (26). The compression and decom-
pression were both carried out n 5 min. The chamber was 
flushed and compressed with pure 100% oxygen. All the 
pressures described are absolute pressures.

TEER measurement

TEER, a key BBB characteristic, has been extensively used to 
measure TJ function resistance of the endothelial cells in BBB 
Transwell models using an epithelial voltohmmeter (27,28). 
TEER was measured when the cells formed a confluent 
monolayer using Millicell-ERS equipment at 37°C and a heat-
ing plate to avoid temperature fluctuation. Background elec-
trical resistance including filter and medium was subtracted 
from each reading. TEER values were calculated as Ω · cm2 by 
multiplying the surface area of the Transwell insert.

Immunofluorescence assays

Expression and distribution of occludin and ZO-1 in hC-
MEC/D3 cells was analyzed by immunofluorescence assay. 
The cells from three groups were fixed with 4% paraform-
aldehyde for 20 min and permeabilized with 0.1% TritonX-
100 for 20 min. They were blocked in 5% BSA for 2 h at 
room temperature and incubated at 4°C overnight with 
appropriate primary antibodies for occludin and ZO-1. 
The cells were rinsed three times with PBS and incubated 
with fluorophore-conjugated secondary antibody for 2 h 
at room temperature in darkness. The nucleus was stained 
with DAPI for 1 min. The samples were observed and pho-
tographed with an immunofluorescence microscope 
(BX51, Olympus, Tokyo, Japan). Finally, the images were 
quantified using the image Pro Plus Version 6.0 software 
(Media Cybernetics, Inc., Rockville, MD, USA).

Statistical analysis

Data are presented as mean ± standard deviation. Multiple 
comparison of group means was performed by Tukey hon-

estly significant difference test with Tamhane T2 used for 
post hoc comparison. Statistical analysis was performed 
using SPSS 13.0 (SPSS Inc., Chicago, IL, USA). P-values lower 
than 0.05 were considered significant.

Results

BBB model establishment

The hCMEC/D3 cells attained confluence after 3-5 days. 
They showed elongated, tightly packed, contact inhibited 
morphology (Figure 1), with a TEER value of 107.17 ± 10.41 
Ω · cm2. This indicated that BBB model in vitro was success-
fully established and suitable for use.

Effect of HBOP on TEER of BBB in vitro under hypoxic 
conditions

TEER value significantly decreased in the hypoxia group 
compared to the control group (50.02 ± 6.87 Ω · cm2 vs 
107.17 ± 10.41 Ω · cm2, P ≤ 0.001). In HBOP group, it signifi-
cantly increased (83.81 ± 8.22 Ω · cm2) compared to the 
hypoxia group (P = 0.001), but was still significantly lower 
than in the control group (P = 0.014) (Figure 2). These re-
sults indicate that HBOP can prevent the effects of hypoxia 
on BBB permeability.

Effect of HBOP on TJPs in vitro under hypoxic conditions

In the control group, occludin showed continuous mem-
branous expression and very low cytoplasmic expression. 

Figure 1. Phase contrast microscopy of hCMEC/D3 (200 × ). 
The cells were cultured in endothelial growth medium-2 and 
attained confluence after 3-5 days.
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In the hypoxia group, continuous membranous expression 
was significantly decreased compared to the control group, 
and in the HBOP group it was significantly increased com-
pared to the hypoxia group. Relative mean optical density of 
occludin was significantly lower in the hypoxia group than 
in the control group (0.80 ± 0.10 vs 1.38 ± 0.11, P = 0.001), and 
in the HBOP group it was significantly higher than in the hy-
poxia group (1.32 ± 0.08, P = 0.008). There was no significant 
difference between the HBOP and control group.

In the control group, ZO-1 mainly showed membranous 
expression and very low cytoplasmic expression, which 
gradually increased in the hypoxia group. Interestingly, 
there was no significant difference in the expression and 
distribution of ZO-1 between the HBOP (1.43 ± 0.06) and 
control group (1.45 ± 0.10), demonstrated by immuno-
fluorescence (Figure 3). Relative mean optical density of 
ZO-1 in the hypoxia group (1.40 ± 0.07) was comparable 
to the control group (1.44 ± 0.10), indicating there was no 
change in the overall ZO-1 expression levels. However, 
ZO-1 membranous expression was significantly decreased 
(0.32 ± 0.04, P = 0.002) and cytoplasmic expression was in-
creased (1.15 ± 0.13, P = 0.001) in the hypoxia compared to 
the control group (1.42 ± 0.08, 0.10 ± 0.03).

Discussion

The present study found that HBOP ameliorated the ef-
fect of hypoxic damage on the BBB, which was prob-

ably associated with TJPs expression. HBOP has been 

shown to reduce BBB permeability in several animal mod-
els of ischemia (6,12-16). In the present study, TEER value 
decreased after hypoxia, but the decrease was mitigated 
by HBOP before hypoxia induction. These results suggest-
ed that HBOP can protect the BBB from breakdown after 
hypoxia, consistent with results in animal models (6-17).

Changes in TJPs expression and distribution are closely as-
sociated with changes in BBB permeability (18). Opening 
of TJS is regulated by complicated TJPs, such as transmem-
brane proteins, members of the peripheral membrane pro-
tein family, and adhesion molecules (29), while occludin is 
responsible for their sealing. Disruption of occludin expres-
sion alone is enough to cause functional changes in TJs 
(30,31). ZO-1 serves as a bridge between transmembrane 
proteins and skeleton proteins, which is important for the 
stability and function of TJPs (32,33). In addition, the loss of 
the permeability barrier function in the early phase of hy-
poxia-ischemia involves endothelial TJ dysfunction, which 
is associated with relocation and up-regulation of occludin 
and ZO-1 (34,35). Previous research yielded conflicting re-
sults on the effects of hypoxia on TJPs expression. Several 
studies showed that hypoxia decreased occludin and ZO-1 
expression in cultured endothelial cells (36-39). However, 
other studies observed no significant changes in protein 
expression of occludin and ZO-1 in bovine bone marrow 
endothelial cells under hypoxia condition (35,40) or at 6 h 
exposure to hypoxia (41). Some researchers found reduced 
occludin expression but unchanged ZO-1 expression in an 
in vivo model of prolonged tissue hypoxia (42). TJPs expres-
sion may be affected by several factors, including the ex-
perimental setting (in vitro vs in vivo), culturing conditions, 
exposure time, cell type, or test methods. In the present 
study, occludin and ZO-1 exhibited continuous membra-
nous expression under normal conditions and a discon-
tinuous expression after hypoxia. Notably, cytoplasmic 
expression of ZO-1 increased after hypoxia, but that of oc-
cludin did not change. Mean optical density measurement 
showed that hypoxia decreased occludin expression, but 
did not affect the overall ZO-1 expression. In other words, 
ZO-1 expression was transferred from the membrane to 
the cytoplasm. HBOP before hypoxia reversed the decrease 
in occludin expression and prevented ZO-1 relocation. We 
believe that this might explain TEER increase in the HBOP 
group compared to hypoxia group. These results suggest 
the potential of HBOP to protect the BBB integrity, but they 
still have to be validated in vivo.

In conclusion, our study demonstrates that HBOP can pro-
tect the integrity of BBB in vitro model compromised by 

Figure 2. Trans-endothelial electrical resistance (TEER) value 
in different groups. *vs control group, P = 0.014; **vs control 
group P ≤ 0.001; ##vs hypoxia group, P = 0.001. HBOP – hyper-
baric oxygen preconditioning.
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hypoxia by modulating occludin and ZO-1 expression. Fur-
ther studies are needed to investigate the effect of HBOP 
on other TJPs and elucidate specific molecular mecha-
nisms involved in these processes.
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