ECONOMIC EVALUATION OF INVESTMENT PROJECT IN THE AREA OF SHEET METAL PROCESSING

Received - Primljeno: 2016-10-05
Accepted - Prihvaćeno: 2016-11-28
Preliminary Note - Prethodno priopćenje

Abstract

The article is oriented on the process modelling in selected company. The aim of the process modelling is a possibility to prevent the formation of future risks as a consequence of a wrong decision concerning a capital project. The analysis of actual state in society with the focus on the means of processing the lamination using computer numeric control technology is also a part of article. Based on the analysis mentioned above, the selection and the definition of the capital project have already been carried out. Final section evaluates the capital project using methodology of economic indicators by means of economic indicators of effectiveness and brings a decision whether to accept or refuse given investment.

Key words: economics, net present value, internal rate of return, payback period, profitability index

INTRODUCTION

There is a wide range of methods that deals with evaluation of investment projects. These methods are able to clearly assess the profitability of investments, if it is necessary. The aim of this article is to evaluate the effectiveness of a particular investment project. This project represents an investment purchase of a new high-pressure water jet. This paper is focused on the area of sheet metal processing using computer numeric control technology, specifically laser cutting and water jet cutting.

METHODOLOGY

In the process of evaluation the investment it is necessary to define criterion according to which the investment will be assessed. The basic and most frequently used aspect for classification of specific methods of evaluating investments include time factor. There are two methods that take into account time value of money: Static methods - these methods do not take into account time factor and its impact on the value of money [1, 2].

They are used in cases where the economic life of investment period is short and the discount rate derived from the capital structure of company is low.

The higher is the discount rate, the more marked is the difference between the future and the present value of money. These methods are used for initial preliminary calculations [1]. The most used indicators are: average annual return, average payback period and percentage yield.

[^0]Dynamic methods - These methods take into account time factor and a risk factor. Both of these factors are taken into account by a discount rate. They are used mostly in the case of assessment the longer-term investment, because there is no greater distortion of cash flow and capital expenditure due to time factor [1, 2].

The most used indicators are: net present value, internal rate of return and profitability index [3].

The following stage of paper deals with the analysis of current state of selected company, evaluation and selection methods of processing sheet metals by computer numeric control technology.

EXPERIMENTAL WORK

The main objective of company is the enhancement of company capital in the field of mechanical engineering with the available human resources with application of modern business and technological processes [2].

The priority activity of production program in selected company represents sheet metal processing using CNC technology [2].

Figure 1 Display of laser beam technology

Figure 2 Display of water jet cutting
Two methods of laser beam, is shown in Figure 1 and water jet cutting, is shown in Figure 2, can be used in similar applications. Results from realis, when comparing two similar technologies of indexing material technology, more progressive is the technology of cutting water, because it is more easily and cheaper. Company management decided that for the further expansion of production it is necessary to purchase a new high-pressure water jet, model SMART - JET that should be purchased through a loan. To buy a new highpressure water jet equipment company needs a $€$ 240000 loan. The reason why company decided to think about buying a new high-pressure water jet is continually expanding its orders. Company expects that income form investment should reach $€ 910000$, if machine lifetime is 6 years. After the lifetime of high-pressure water jet it will be sold at depreciated price. It is calculated to the value of $€ 24000$. At present, company should invest $€ 240000$ in the expectation that during six years the investment will return in the amount of $€$ 934000 . Company will realize the project and investment in case that the present value of the expected yield $€ 934000$ is higher than investment of $€ 240000$. On

Table 1 Indicators of NPV [$€$]

Indicator	$1^{\text {st }}$ year	$2^{\text {nd }}$ year	$3^{\text {rd }}$ year
Sales growth	125000	140000	170000
Cost growth	22000	25000	31000
Depreciation	40000	40000	40000
Gross profit	63000	75000	99000
Income tax	11970	14250	18810
After tax profit	51030	60750	80190
Cash income	91030	100750	120190
Discount (10\%)	0,9091	0,8264	0,7513
Discounted cash income (DCI)	82755	83260	90299
Indicator	$4^{\text {th }}$ year	$5^{\text {th }}$ year	$6^{\text {th }}$ year
Sales growth	195000	150000	130000
Cost growth	37000	31000	27000
Depreciation	40000	40000	40000
Gross profit	118000	79000	63000
Income tax	22420	15010	11970
After tax profit	95580	63990	51030
Cash income	135580	103990	91030
Discount (10 \%)	0,6830	0,6209	0,5645
DCl	92601	64567	51386

the base of defined economic and financial indicators, company will decide whether the investment is acceptable or the investments must be rejected.

RESULTS AND DISCUSSION

Net present value (NPV) [3]:
For calculation of net present value, it is needed to know following indicators:

- Amortization
$240000 €$ / 6 years $=40000 €$ attributes to one year
- Gross profit

GP = Sales growth - the growth of expenses - amortization

- Income tax

Calculated as 19 \% of gross profit

- After-tax profit (net profit)

After-tax profit $=$ Gross profit - Income tax

- Cash flow (after- tax profit + depreciation)
- Discount for $\mathrm{i}=10$ \% $(0,1)$
- Discounted cash flow (DCF)

NPV $=\sum D C F-C E$ (Capital Expenditure)
NPV $=464868-240000$
NPV = $224868 €$
Above mentioned results indicate that the NPV is greater than $0(224868>0)$. On the base of NPV indicator the investment should be made because it guarantees required rate of return and increases the value of company.
The internal rate of return (IRR) [4]:
When calculating IRR, it is needed to start from the results listed in Table 1. The required return on investment for the company is 10%. IRR is calculated using following steps:

Any interest rate that discounts the expected cash flows for each year of life of machine will be chosen.

The sum of the discounted cash flows is compared with capital expenditures.

If discounted cash flow will be higher than the capital expenditures for the machine, it is needed to choose another, higher interest rate and the whole calculation will be repeated at a given interest rate. And when the discounted cash flow will be lower than capital expenditure, the calculation with an even lower interest rate will be repeated. The sum of discounted cash income at an interest rate of 50 \% is € 189839 (Table 2), which is less than capital expenditure on machinery ($€ 240000$), the same calculation will be repeated with an even low-

Table 2 View of discounted cash income [$\boldsymbol{\epsilon}$] at $\mathbf{5 0} \%$ interest rate

Indicator	Discount (50 \%)	Discounted cash income
$1^{\text {tt }}$ year	0,667	60690
$2^{\text {nd }}$ year	0,445	44773
$3^{\text {rd }}$ year	0,296	35612
$4^{\text {th }}$ year	0,198	26777
$5^{\text {th }}$ year	0,132	13695
$6^{\text {th }}$ year	0,088	7992

er interest rate. When counting the net present value, the values calculated at the rate of 10% will be used.

Calculation of lower and higher Net present value
($N P V_{1}$), $\left(N P V_{h}\right)$ [3]:
Net present value lower $N P V_{1}$
NPV $=\sum D C F-C E$
NPV = 464 868-240000
NPV = 224868 €
Net present value higher $N P V_{h}$
NPV $=\sum D C F-C E$
NPV $=189539-240000$
NPV $=-50461 €$

Calculation of discount:
When calculating an interest rate 50%, the discount is calculated as follows:

$$
\begin{equation*}
\frac{1}{(1+0,5)^{n}} \tag{3}
\end{equation*}
$$

n - durability life
Calculation of internal rate of return (IRR):
Using interpolation, the internal rate of return (IRR) will be calculated.

$$
\begin{aligned}
& I R R=0,1+\frac{224868}{224868-(-50461)} x(0,5-0,1) \\
& I R R=0,1+\frac{224868}{275392} x(0,4) \\
& I R R=0,4267=42,67 \%
\end{aligned}
$$

Required rate of return on investment is defined by company. The calculated IRR is $42,67 \%$, and therefore is valid that the IRR is greater than the required rate of return on investment i ($42,67 \%>10 \%$). It means, that investment should be made, because it ensures required rate of return and increases the value of company.

The modified internal rate of return $\left(\mathrm{IRR}_{\mathrm{m}}\right)$ [4]:
The modified IRR calculation requires the following steps [4, 5]:

- The calculation of terminal value of project
- Calculation of modified internal rate of return

When calculating the modified IRR, data listed in Table 3 are used.

Table 3 Reinvested cash flow of the terminal value of project

Indicator	Coeffi- cient	Cash flow $[€]$	Reinvested cash flow $[€]$
$1^{\text {st }}$ year	1,61	91030	146605
$2^{\text {nd }}$ year	1,46	100750	147508
$3^{\text {rd }}$ year	1,33	120190	159973
$4^{\text {th }}$ year	1,21	135580	164052
$5^{\text {th }}$ year	1,1	103990	114389
$6^{\text {th }}$ year	1,0	91030	91030

Coefficient

Coefficient is calculated by using the equation:
$(1+0,1)^{n-t}$, where
n - durability life,
t - individual years of durability life

Terminal value of project $=\sum 823557 €$
The calculation of modified internal rate of return

$$
\begin{aligned}
& I R R_{m}=\sqrt[6]{\frac{823557}{240000}}-1 \\
& I R R_{\mathrm{m}}=0,3281=32,81 \%
\end{aligned}
$$

If the IRR exceeds the required return, the modified IRR is within the limits of required return ($\mathrm{i}=10 \%$) and IRR.

Payback period:
The procedure for calculating the payback period of investment project:

Identify annual after-tax profit and depreciation.
Calculation of total cash flow [5]:
Total cash flow $=$ depreciation + after-tax profit
Calculation of cumulative cash flow (CF):
is set by mutual summation of individual cash flows in particular year (Table 4).

Table 4 Calculation of cumulative CF

Indicator	Cash Flow $[€]$	Cumulative CF $[€]$
$1^{\text {st }}$ year	91030	91030
$2^{\text {nd }}$ year	100750	191780
$3^{\text {rd }}$ year	120190	311970
$4^{\text {th }}$ year	135580	447550
$5^{\text {th }}$ year	103990	551540
$6^{\text {th }}$ year	91030	642570

Determination of the payback period of investment project [6, 7]:

$$
\begin{equation*}
P B P=\frac{(C A P E X)-\text { cumulative } C F}{C F}+t \tag{4}
\end{equation*}
$$

Where:
CAPEX - capital expenditure,
CF - cash flow
t - the year in which CF is the closest to the cost of acquisition, but does not exceed it

$$
P B P=\frac{(240000)-191780}{120190}+2=2,4 \text { year }
$$

Investment of $€ 240000$ will return to the company, so the payback period of the investment project is 2,4 year (Figure 3).

Figure 3 Illustration of payback period

Profitability Index:
When calculating the profitability index, the data from Table 5 are used. Also the cash flow, discount (10 $\%$) and discounted cash flow is taking into account.

Calculation of Profitability Index:
$P I=\frac{464868}{240000}$
$P I=1,94$
Table 5 The calculation of depreciation and profit after tax to determine payback period [ϵ]

Indicator	Gross profit	Income tax	After-tax profit
$1^{\text {st }}$ year	63000	11970	51030
$2^{\text {nd }}$ year	75000	14250	60750
$3^{\text {rd }}$ year	99000	18810	80190
$4^{\text {th }}$ year	118000	22420	95580
$5^{\text {th }}$ year	79000	15010	63990
$6^{\text {th }}$ year	63000	11970	51030

Gross profit = sales growth - cost growth - depreciation (calculation is based on data in Table 1)

Income tax $=19 \%$ of gross profit
After tax profit = gross profit - income tax
Calculation shows that the profitability index is 1,94 , and it means that profitability index is greater than 1 (1.94> 1). Company should make an investment (purchase of a new high-pressure water jet), because it ensures the required rate of return and increases the value of company.

CONCLUSIONS

Invested project advantageous for high-pressure water jet (Model SMART Board - JET). The investment was evaluated by using static and dynamic methods of evaluation of investment, specifically: net present value of the
investment, internal rate of return, modified internal rate of return, payback period and profitability index.

The results show that the investment is profitable and the company is recommended to make the investment because it guarantees required rate of return, increasing the value of company and there is a presumption that the investment will be economically profitable and successful.

Acknowledgement

This article was created by implementation of the grant project VEGA 1/0708/16 Development of a new research methods for simulation, assessment, evaluation and quantification of advanced methods of production.

REFERENCES

[1] J. F Weston, D. H. Woods, Theory of Business Finance, Belmont, Wadsworth, (1967), pp. 240-268.
[2] M. Novák, Process modeling in selected company as a possible tool of prediction the future risk,Košice, (2010), pp. 58-79.
[3] M. H. Weingartner, The ExcessPresent Value Index - A Theoretical Basis and Critique. Journal of Accounting Research 1 (1963) 2, 213-224.
[4] C.E. Chang, R.W. Owens, Modifying the internal rate of return method for real estate investment selection, Real Estate Review 29 (1999) 3, 36-41.
[5] H. R. Parker, Discounted Cash Flow in Historical Perspective. Journal of Accounting Research, 6 (1968) 1, pp. 58-71.
[6] M.Synek, Business Economics, Prague, (2002), pp. 150325.
[7] M. Gort, The Planning of Investment: A Study of Capital Budgeting in the Electric Power Industry. Journal of Business 24 (1951) 2, 79-95.

Note: The translator responsible for English language is Andrea Petriková, Technical University of Košice, Košice, Slovakia

[^0]: P. Trebuňa, A. Petriková, M. Pekarčíková, M. Petrik, R. Popovič, Department of Industrial Engineering and Management, Faculty of Mechanical Engineering in Košice, Slovakia

