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The paper presents a new closed-form expression for the fractional Fourier transform of generalized Triangular
and Welch window functions. Fractional Fourier Transform (FrFT) is a parameterized transform having an ad-
justable transform parameter which makes it more flexible and superior over ordinary Fourier transform in several
applications. It is an important tool used in signal processing for spectral analysis. The analysis of generalized
Triangular and Welch window functions in fractional Fourier domain establishes a direct relationship between their
FrFTs and fractional angle. Based on the mathematical model obtained, it is observed that adjustable spectral
parameters of these functions can be obtained by modifying the fractional angle. The various values of spectral
parameters such as half main-lobe width, side lobe fall-off rate and maximum side-lobe level with change in order
of fractional Fourier transform are also obtained for these functions.

Key words: Fractional Fourier transform, Generalized triangular function, Spectral analysis, Welch window, Win-
dow function

Spektralna analiza poopćene trokutaste i Welchove prozorske funkcije korištenjem frakcijske Fourierove
transformacije. U radu je prikazan novi izraz za zatvoreni oblik frakcijske Fourierove transformacije poopćene
trokutaste i Welchove prozorske funkcije. Frakcijska Fourierova transformacija (FrFT) parametrizirana je transfor-
macija s podesivim parametrom transformacije koja je u odre�enim primjenama fleksibilnija i superiornija u odnosu
na uobičajenu Fourierovu transformaciju. Ističe se kao važan alat u obradi signala i spektralnoj analizi. Analiza
poopćene trokutaste i Welchove prozorske funkcije u području frkacijske Fourierove transformacije uspostavlja
izravni odnos izme�u FrFT-a i frakcijskog kuta. Koristeći dobiveni matematički model, uočeno je da se podesivi
spektralni parametri ovih funkcija mogu izvesti mijenjanjem frakcijskog kuta. Različite vrijednosti spektralnih
parametara, kao što su polovica širine spektralnog vrha, stopa snižavanja amplituda viših harmonika ili najveća am-
plituda viših harmonika, odnosno njihova ovisnost u odnosu na red frakcijske Fourierove transformacije, tako�er
se mogu odrediti upotrebom ovih funkcija.

Ključne riječi: Frakcijska Fourierova transformacija, poopćena trokutasta funkcija, spektralna analiza, Welchov
prozor, prozorska funkcija

1 INTRODUCTION

Windows are weighting functions that attenuate signals
at their discontinuities. The window functions are applied
to the time-domain signals and the process of multiplying
the signal with the smoothly ending window function is
called windowing technique. Windowing is done to make
an infinitely long function finite in length so that frequency
content of a signal of interest can be measured. As a re-
sult of this, the truncated signal exhibits different spec-
tral characteristics from the original continuous-time sig-
nal. Frequency domain characteristics of several window
functions are analyzed to determine their suitability for a
specific application and to reduce the spectral leakage that
results because of selecting a finite time interval signal.

Window functions are real, non-zero and time limited func-
tions. They peak in the middle frequencies and decrease to
zero at the edges in order to reduce the effects of the dis-
continuities that results because of finite duration. They
are frequently used in various areas of signal processing
and communications such as speech processing, digital fil-
ter design, and spectrum estimation. No existing window
function is best in all aspects [16].

Thus, it is needed to select an appropriate window func-
tion according to the requirement of a particular applica-
tion on the basis of the performance features [4], such as
the attenuation at the maximum height of a side lobe, gen-
erally the first side-lobe (the side-lobe level), the rate at
which peak of the side-lobes decrease in magnitude (side-
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lobe fall-off rate) and the main-lobe width of (width of
main-lobe at -3dB below main-lobe peak). The narrower
the main-lobe width, the better will be the frequency reso-
lution; and the lower the side lobe level, the better will be
the amplitude accuracy or noise suppression. The narrow
main-lobe width and reduced side-lobe level are conflict-
ing requirements. When the main lobe width decreases,
the remaining energy spreads out to side-lobes thereby in-
creasing spectral leakage. Thus, the problem lies in de-
ciding which window function is the best to apply on the
signal being studied in order to estimate the spectral char-
acteristics of a finite duration signal.

There are numerous standard window functions that
can be chosen for the prevention of spectral leakage in the
signal and to provide the specified side-lobe level [7, 10].
But the reduction of side-lobe leakage due to the applied
window function introduces leakage from the expansion
of main-lobe in ordinary frequency domain. This reduces
spectral resolution and also some gain is lost because of
main-lobe spreading. Thus, we need to increase the length
of the selected window function to improve spectral reso-
lution. Applying fractional Fourier transform to the win-
dow function, one can improve spectral resolution with no
need of changing the length of the window function [9,
15]. Therefore, computational time and design time can be
saved.

This paper presents a new mathematical model for ob-
taining the FrFT of generalized Triangular and Welch win-
dow functions. Based on which, it is found that these
functions can be used as an adjustable windows in frac-
tional Fourier domain for doing the signal spectral anal-
ysis. By changing the value of fractional order parame-
ter, the spectral parameters such as Half Main-Lobe Width
(HMLW), Maximum Side-Lobe Level (MSLL) and Side-
Lobe Fall-Off Rate (SLFOR) of the resulting windows can
be controlled. Therefore, trade-off problem between the
frequency resolution and spectral leakage can be easily
solved. The variations in spectral parameters of these win-
dow functions are studied for different values of fractional
order parameter. A plot of spectrum of Welch window
function is shown below in Fig. 1 to define these spectral
parameters.

1. Half Main-Lobe Width (HMLW): It is the frequency
at which the Main lobe drops to the peak ripple value
of the side lobes.

2. Maximum Side-Lobe Level (MSLL): It is the largest
side lobe level in decibels relative to the main lobe
peak gain.

3. Side-Lobe Fall-Off Rate (SLFOR): It is the asymp-
totic decay rate of side-lobe level in decibels per
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Fig. 1. Frequency Response (Log Magnitude Plot) of Welch
window to define spectral parameters

decade/octave of frequency of the peaks of the side
lobes.

It is proposed in the work that by adjusting fractional
order parameter to different values, main-lobe width can
be minimized and side-lobe fall-off rate can be raised to
maximum. Thus, a choice can be made between detection
and resolution. Detection means detecting a desired signal
in the presence of noise. Resolution refers to the ability of
distinguishing narrowband spectral components.

2 FRACTIONAL FOURIER TRANSFORM

FrFT is the generalization of ordinary Fourier trans-
form (FT) that depends on a parameter α and can be in-
terpreted as a rotation by an angle α in the time-frequency
plane [2, 11, 12]. It is represented by Rα and α=aπ/2,
where α is the angle of rotation and a is the fractional or-
der parameter. The time domain and frequency domain are
the special cases of the FrFT domain with α being 2nπ and
2nπ + π/2, respectively, where n is an integer. It can also
be viewed as a fractional power of the Fourier operator. It
is more affluent in theory, more stretchy in applications,
and implementation cost is same as that of computing FT
[13, 14].

The continuous fractional Fourier transform (CFrFT) [2,
12] of a signal x(t) represented along time axis denoted by
t, with rotation angle α is computed as:

Fα[x(t)] = Xα(u) =

∫ ∞

−∞
x(t)Kα(t, u)dt, (1)

where the transform kernel Kα(t, u) of the FrFT is given
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by:

Kα(t, u) =





√
1−j cotα

2π
exp

{
j t

2+u2

2
cotα− jut cscα

}
,

if α is not a multiple of π,
δ(t− u), if α is a multiple of 2π,
δ(t+ u), if α+ π is a multiple of 2π,

(2)
with

Cα =

√
1− j cotα

2π
, p =

1

2
cotα and q = cscα. (3)

Here δ(t) denotes Dirac-delta distribution. The Fourier
transform is a special case of FrFT for α = π

2 .
The FrFT is a unified time-frequency transform, which

reveals the characteristics of a signal gradually changing
from time domain to frequency domain with the frac-
tional order α changing from 0 to 1. Fractional Fourier
Transform (FrFT) is a parameterized transform with an
adjustable transform parameter. It has an extra degree of
freedom and can achieve better performance over ordi-
nary Fourier transform. FrFT has become a very efficient
mathematical tool in the various applications like harmonic
analysis, signal synthesis, time-frequency analysis, digi-
tal watermarking, image encryption, modulation and mul-
tiplexing in communications, etc. FrFT holds all the prop-
erties of Fourier transform and therefore, has tremendous
potential for improvement in areas where FT has been used
[3, 5, 8]. The development of fast algorithms for compu-
tation of FrFT has made application of FrFT functional in
real-time digital signal processing.

3 DERIVATION OF FRFT OF GENERALIZED
TRIANGULAR FUNCTION

The generalized Triangular function denoted by x(t)
for any scaling parameter L 6= 0, is defined as:

x(t) =





1− t
L 0 ≤ t ≤ L

1 + t
L − L ≤ t ≤ 0

0 otherwise



 . (4)

For parameter value, L = 1, x(t) is equivalent to Triangu-
lar window.

The FrFT Xα(u) of generalized Triangular function
x(t) is computed as follows: Substituting x(t) in (1) re-
sults:

Xα(u) = Cα exp
(
jpu2

)

×
(∫ 0

−L

(
1 +

t

L

)
exp

(
jpt2 − jqut

)
dt+

∫ L

0

(
1− t

L

)
exp

(
jpt2 − jqut

)
dt

)
. (5)

Changing t by −t in the first integral, gives:

Xα(u) = Cα exp
(
jpu2

)
×

×
(∫ L

0

(
1− t

L

)
exp

(
jpt2 + jqut

)
dt+

∫ L

0

(
1− t

L

)
exp

(
jpt2 − jqut

)
dt

)
. (6)

Equation (6) can be rewritten as:

Xα(u) = Cα exp
(
jpu2

)
(I1 + I2) , (7)

where

I1 =

∫ L

0

(1− t

L
) exp(jpt2 + jqut)dt, (8)

I2 =

∫ L

0

(1− t

L
) exp(jpt2 − jqut)dt. (9)

Solving for I1 separately, the integral can be written as:

I1 =

∫ L

0

1 exp(jpt2 + jqut)dt

︸ ︷︷ ︸
I11

− 1

L

∫ L

0

t exp
(
jpt2 + jqut

)
dt

︸ ︷︷ ︸
I12

(10)

Now, first solving for I12 =
∫ L
0
t exp(jpt2+ jqut)dt,

the integral can be rewritten as:

I12 =
1

2jp

∫ L

0

(2jpt+ jqu− jqu) exp(jpt2 + jqut)dt,

(11a)

or

I12 =
1

2jp

∫ L

0

(2jpt+ jqu) exp(jpt2 + jqut)dt

− 1

2jp

∫ L

0

(jqu) exp(jpt2 + jqut)dt

=
1

2jp

∫ L

0

d

dt
{exp(jpt2 + jqut)}

− qu

2p

∫ L

0

exp(jpt2 + jqut)dt. (11b)

Simplifying,

I12 =
1

2jp

∣∣exp(jpt2 + jqut)
∣∣L
0

− qu

2p

∫ L

0

exp
(
jpt2 + jqut

)
dt

︸ ︷︷ ︸
I11

AUTOMATIKA 57(2016) 1, 221–229 223



Spectral Analysis of Generalized Triangular and Welch Window Functions using Fractional Fourier Transform P. Mohindru, R. Khanna, S. S. Bhatia

=
1

2jp

(
exp

(
jpL2 + jquL

)
− 1
)
− qu

2p
I11. (11c)

Now, solving the integral I11=
∫ L
0
exp(jpt2 + jqut)dt,

the following expression results [1]:

I11 =

√
π

2
√
jp

exp

(−jq2u2
4p

)
(12)

×
(
Erfi

[√
j
(qu+ 2pL

2
√
p

]
− Erfi

[√
j
qu

2
√
p

])
,

where Erfi(z) is imaginary error function of z, which is
defined in the whole complex z-plane.

By using (11c) and (12), solving for (10), one gets:

I1 =

√
π

2
√
jp

(
1 +

qu

2pL

)
exp

(−jq2u2
4p

)

×
(
Erfi

[√
j
(qu+ 2pL)

2
√
p

]
− Erfi

[√
j
qu

2
√
p

])

− 1

2jpL

(
exp

(
jpL2 + jquL

)
− 1
)
. (13)

By using Erfi(z) = −jErf(jz) and simplifying
(13), one gets:

I1 =

√
j

2Lp3/2
exp

(−jq2u2
4p

){√
π (2pL+ qu)

×
(
−Erf

[
j3/2

(qu+ 2pL)

2
√
p

]
+ Erf

[
j3/2

qu

2
√
p

])

+
√
jp

(
exp

(jq2u2
4p

)
− exp

(j (qu+ 2pL)
2

4p

))}
.

(14)

Similarly I2 can be computed by replacing qu by −qu
in equation (14), i.e.,

I2 =

√
j

2Lp3/2
exp

(−jq2u2
4p

){√
π (2pL− qu)

×
(
−Erf

[
j3/2

(−qu+ 2pL)

2
√
p

]
+ Erf

[
−j3/2 qu

2
√
p

])

+
√
jp

(
exp

(jq2u2
4p

)
− exp

(j (−qu+ 2pL)
2

4p

))}
.

(15)

Solving for equation (7) by using (3), (14) and (15),

one gets:

Xα(u) = A




B




2 exp(ju2 csc 2α)−
exp( j(cotαL+cscαu)2

2 cotα )−
exp( j(cotαL−cscαu)

2

2 cotα )


+

C

(
Erf [(−1)3/4√cscαu]−
Erf [(−1)3/4 cotαL+cscαu√

2 cotα
]

)
+

D

(
Erf [(−1)3/4√cscαu]−
Erf [(−1)3/4 cotαL−cscαu√

2 cotα
]

)




,

(16)
where

A =

√
1− j cotα
π cot3 α

1

L

(
1

4
+
j

4

)
exp(

ju2 tanα

2
), (17)

B = (−
√
2−

√
2j)
√
cotα, (18)

C = (cotαL+ cscαu)
√
2π, (19)

D = (cotαL− cscαu)
√
2π. (20)

From equation (16) to (20), it can be seen that FrFT of
generalized Triangular function is directly dependent on
the fractional angle α.

4 DERIVATION OF FRFT OF WELCH WINDOW

The Welch window function denoted by x(t), is defined
as:

x(t) =

{
1− t2 − 1 ≤ t ≤ 1
0 elsewhere

}
(21)

The FrFT Xα(u) of Welch window is computed as fol-
lows: Substituting x(t) in (1) results:

Xα(u) = Cα exp
(
jpu2

)
(22)

×
(∫ 1

−1

(
1− t2

)
exp

(
jpt2 − jqut

)
dt

)
.

Equation (22) can be rewritten as:

Xα(u) = Cα exp
(
jpu2

)(∫ 1

−1
exp

(
jpt2 − jqut

)
dt

︸ ︷︷ ︸
I3

−
∫ 1

−1
t2 exp

(
jpt2 − jqut

)
dt

︸ ︷︷ ︸
I4

)
. (23)

First solving for I4 separately, the integral can be writ-
ten as:

I4 =

∫ 1

−1
t exp(−jqut)︸ ︷︷ ︸

u

· t exp(jpt2)dt︸ ︷︷ ︸
dv

. (24)

224 AUTOMATIKA 57(2016) 1, 221–229



Spectral Analysis of Generalized Triangular and Welch Window Functions using Fractional Fourier Transform P. Mohindru, R. Khanna, S. S. Bhatia

Let u = t exp (−jqut) and v = t exp
(
jpt2

)
dt, which

gives: du = −jqut exp (−jqut) dt + exp (−jqut) dt and
v = 1

2jp exp
(
jpt2

)
. Now, solving equation (24) via inte-

grating by parts, one gets:

I4 =

∣∣∣∣
t

2jp
exp(jpt2 − jqut)

∣∣∣∣
1

−1

+
1

2jp

∫ 1

−1
(jqut− 1) exp(jpt2 − jqut)dt

︸ ︷︷ ︸
I5

=
1

2jp
(exp (jp− jqu) + exp (jp+ jqu)) +

1

2jp
I5.

(25)

Similarly solving for I5, the integral can be written as:

I5 = jqu

∫ 1

−1
t exp(jpt2 − jqut)dt

︸ ︷︷ ︸
I6

−
∫ 1

−1
exp(jpt2 − jqut)dt

︸ ︷︷ ︸
I3

. (26)

Solving (26) for I6 in a similar manner as solving for
I12 using (11a):

I6 =
1

2jp

∣∣exp(jpt2 − jqut)
∣∣1
−1

+
qu

2p

∫ 1

−1
exp(jpt2 − jqut)dt

︸ ︷︷ ︸
I3

=
1

2jp
(exp (jp− jqu)− exp (jp+ jqu)) +

qu

2p
I3.

(27)

By using (26) and (27), solving for I5, one gets:

I5 =
qu

2p
(exp (jp− jqu)− exp (jp+ jqu))

+

(
jq2u2

2p
− 1

)
I3. (28)

By using (25) and (28), solving forI4, one gets:

I4 =
1

2jp
(exp (jp− jqu) + exp (jp+ jqu))

+
qu

4jp2
(exp (jp− jqu)− exp (jp+ jqu))

+
1

2jp

(
jq2u2

2p
− 1

)
I3. (29)

Now, solving the integral
∫ 1

−1 exp(jpt
2 − jqut)dt the fol-

lowing expression results [1]:

I3 =

√
π

2
√
jp

exp

(−jq2u2
4p

)(
Erfi

[√
j
(−qu+ 2p)

2
√
p

]

+ Erfi

[√
j
(qu+ 2p)

2
√
p

])
. (30)

By using (29) and (30), solving for (22) and rearrang-
ing, one gets:

Xα(u) = Cα
exp(jpu2 − jq2u2/4p)

8j3/2p5/2

{
exp

[
jp− jqu

+ (jq2u2/4p)
]√

jp
[
− 2qu+ 2qu exp (2jqu)

− 4p− 4p exp (2jqu)
]
+
√
π(4jp2 − jq2u2

+ 2p)

(
Erfi

[√
j
(−qu+ 2p)

2
√
p

]

+ Erfi

[√
j
(qu+ 2p)

2
√
p

])}
. (31)

Putting values of Cα, p and q using (3) in (31) and sim-
plifying, one gets:

Xα(u) = A1

{
exp(

j

2
cotα(u− 1)2)

[
− 2u cscα

+ 2u cscα exp(2ju cscα)− 2 cotα

− 2 cotα exp(2ju cscα)
]

+B1

(
Erf

[
(−1)3/4 (cotα− u cscα)√

2 cotα

]

+ Erfi

[
(−1)3/4 (cotα+ u cscα)√

2 cotα

])}
,

(32)

where

A1 =
1

4j3/2

√
1− j cotα
π cot3 α

, (33)

B1 =
√
π
(
2j cot2 α+ ju2 csc2 α− cotα

)
. (34)

From equation (32) to (34), it can be seen that FrFT of
Welch window function is directly dependent on the frac-
tional angle α.

5 RESULTS AND DISCUSSIONS

The plot of Triangular function for −0.5 ≤ t ≤ 0.5
is shown in Fig. 2. The plot of Welch window as a func-
tion of time is shown in Fig. 3. The magnitude of FrFT

AUTOMATIKA 57(2016) 1, 221–229 225



Spectral Analysis of Generalized Triangular and Welch Window Functions using Fractional Fourier Transform P. Mohindru, R. Khanna, S. S. Bhatia

0.4 0.2 0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0

Time sec

A
m
pl
itu
de

Fig. 2. The Triangular window function in time-domain
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Fig. 3. The Welch window in time-domain

of these functions i.e. |Xα(u)| in dB is plotted versus fre-
quency u (cycles/sec). Figure 4 shows the plot for calculat-
ing MSLL for generalized Triangular function by varying
scaling parameter L to different values keeping fractional
order a = 0.5. Figures 5 illustrate the plot for calculat-
ing MSLL for Triangular function by varying fractional
order parameter to different values keeping scaling param-
eter L = 0.5. Figure 7 shows the MSLL plot for Welch
window for different values of fractional order. The plots
for calculating SLFOR for these functions are also shown
in Fig. 6 and 8. The continuum of fractional Fourier trans-
form of Triangular and Welch window functions to sinc as
the fractional order is varied from 0 to 1 are also shown in
Fig. 9 and Fig. 10 respectively.

The values of MSLL, HMLW and SLFOR for Trian-
gular function (scaling parameter L = 0.5) and Welch
window function are tabulated in Table 1 and Table 2 re-
spectively for various values of fractional order parame-
ter a. It is observed from the Figs. and Tables that spec-
tral parameters of Triangular function and Welch window
depend upon the value of fractional order parameter a in
time-frequency plane. Main-lobe width of both the func-
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Fig. 4. MSLL plot for generalized Triangular function
(fractional order a = 0.5) for values of scaling parame-
ter L = 0.5, 0.7 and 1
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Fig. 5. MSLL plot for Triangular function (scaling param-
eter L = 0.5) for fractional orders a = 0.2, 0.5 and 1

tions increases regularly with increase in fractional order a.
SLFOR for Triangular function shows variation between
-8.9 dB/octave to -11 dB/octave with change in order pa-
rameter a. MSLL is also reduced with increase in frac-
tional order a, e.g. MSLL for a = 0.7 is – 25.8 db com-
pared to is -27.8 db for a = 1. If the value of parameter L
is taken to be equal to 1, Fig. 11 shows the spectral param-
eters of triangular window at fractional order a = 1.

From Table 2, the SLFOR for Welch window shows
variation between -7.8 dB/octave to -9.52 dB/octave with
change in order parameter a. MSLL is reduced with in-
crease in fractional order a, e.g. MSLL for a = 0.7 is –
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Fig. 6. SLFOR plot for Triangular function (scaling pa-
rameter L = 0.5) for fractional orders a = 0.2, 0.5 and 1
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Fig. 7. MSLL plot for Welch window for fractional orders
a = 0.2, 0.5 and 1

21.19 db compared to is -22.5 db for a = 1.

Thus, an optimal domain can be selected in order to
make a compromise between increase in main-lobe width
and side-lobe level reduction.

6 APPLICATION OF FRFT IN TUNING WIDTH
OF THE TRANSITION-BAND

The transition bandwidth of window-based FIR filters
is proportional to the window main-lobe width, which in
turn is inversely proportional to the length of the window
function [15]. The transition width can be directly re-
duced by increasing the window length but at the cost of
increased computations. This paper presents an alternate

For a = 0.2
For a = 0.5

For a = 1
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Fig. 8. SLFOR plot for Welch window for fractional orders
a = 0.2, 0.5 and 1
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Fig. 9. The continuum of FrFT function for different values
of fractional order a

methodology to tune the transition width using FrFT. A
triangular window based low-pass FIR filter with cut-off
frequency = 0.5π and length N = 64 is simulated.

The above Fig. 12 shows the variability in frequency
response of the filter with change in value of fractional or-
der parameter. As the fractional order a is reduced from 1
to 0, the transition width of window based FIR filter can be
made narrow.

7 CONCLUSION

The mathematical analysis for obtaining the fractional
Fourier transform of Triangular function and Welch win-
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Fig. 10. The continuum of fractional Fourier transform of
Welch window for different values of fractional order a

Table 1. Characteristics of Triangular function (scaling
parameter L = 0.5) for different values of fractional order
parameter a

Fractional
Order α

MSLL
(dB)

HMLW SLFOR
(dB/octave)

0.2 -24.1 3.4 -11
0.3 -24.4 5.21 -10.8
0.4 -24.9 6.11 -10.6
0.5 -25 7.02 -10.0
0.6 -25.5 7.92 -9.9
0.7 -25.8 8.83 -9.53
0.8 -26.3 9.73 -9.35
0.9 -26.8 10.2 -9.2
1 -27.8 10.6 -8.9

Table 2. Characteristics of Welch window for different val-
ues of fractional order parameter a

Fractional
Order α

MSLL
(dB)

HMLW SLFOR
(dB/octave)

0.2 -18.7 1.59 -9.52
0.3 -20.12 1.93 -9.47
0.4 -20.72 2.01 -9.08
0.5 -20.99 2.94 -8.99
0.6 -21.05 3.39 -8.57
0.7 -21.19 3.68 -8.43
0.8 -21.96 3.84 -8.13
0.9 -22.17 3.96 -7.92
1 -22.5 4.301 -7.8

dow is presented in the paper. The different spectral pa-
rameters of these window functions are obtained by chang-
ing fractional order to different values. A good window
can achieve low side-lobe levels with minimum increase in

1 2 5 10 20 50 100

150
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Frequency

dB
M
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ni
tu
de

Fig. 11. SLFOR for Triangular window (L = 1) at frac-
tional order a = 1. The value of MSLL is -26.6 dB and
SLFOR is -12 dB/octave

Fig. 12. The magnitude response of Triangular window
based low-pass FIR filter for fractional order a = 0.05,
0.45 & 1

main-lobe width. For Triangular and Welch window func-
tion, the side-lobe reduces but at the expense of HMLW.
The analysis reveals that as the fractional order is reduced,
main-lobe width can be minimized and SLFOR can be
raised to maximum. Thus, it can be concluded that FrFT of
Triangular function and Welch window varies directly with
the change in fractional angle a. The new derived model
for FrFT of these functions clearly shows that and a trade-
off can be made between increase in main-lobe width and
reduced side-lobe level which best suites the desired appli-
cation. Triangular function and Welch window can be used
as adjustable windows in the fractional Fourier domain for
estimating the spectrum of a signal so that a choice can be
made between amplitude accuracy and spectral resolution.
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