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The aim of this article was to assess the impact of previous plastic deformation on the kinetics of transformations of 
four selected steels. The research was conducted with use of the universal plastometer GLEEBLE 3800, when Con-
tinuous Cooling Transformation (CCT) and Deformation Continuous Cooling Transformation (DCCT) diagrams of 
selected steels were constructed on the basis of dilatometric tests. The research confirmed that the strain acceler-
ates the particularly the transformations controlled by diffusion. Bainitic transformation was accelerated in three of 
the four steels. In the case of martensitic transformation the effect of the previous deformation was relatively small, 
but with clearly discernible trend.
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INTRODUCTION

Thermo-mechanical treatment of steels is not possi-
ble without knowledge of the kinetics of phase transfor-
mations. It is for the modes of cooling most often de-
scribed by the transformation diagrams of Time Tem-
perature Transformation (TTT) or Continuous Cooling 
Transformation (CCT). Their validity is determined by 
the chemical composition and by conditions of austeni-
tisation of the given steel. The kinetics of transforma-
tions is moreover influenced also by previous plastic 
deformation, as it was stated in many previous papers 
[1-5]. The effect of plastic deformation on the kinetics 
of transformation during continuous cooling is then il-
lustrated by Deformation Continuous Cooling Transfor-
mation (DCCT) diagrams [1-5].

It is generally assumed that input strain accelerates 
particularly the transformations controlled by diffusion 
only (ferrite and pearlite). In the case of bainitic trans-
formation the influence of the strain is ambiguous. In 
the case of martensitic transformation a slightly deac-
celerating effect is assumed [1,3,6-8].

This paper is focused on research of the influence of 
strain on the kinetics of transformations during cooling 
of selected steels with a wide range of chemical compo-
sition. Dilatometric tests conducted on the universal 
plastometer Gleeble 3800, installed at the Regional Ma-
terials Science and Technology Centre (RMSTC), at the 
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VŠB - Technical University of Ostrava (VŠB - TU Os-
trava) were used for construction of the CCT and DCCT 
diagrams [5].

EXPERIMENTAL PROCEDURE

Four steels were selected for the purposes of experi-
ment, specifically: A - 20MnCrS5, B 32CrB4, C - 51CrV4 
and D - IH class Rail Steel. Chemical composition of 
these steels in accordance with the standards is given in 
Table 1.

Two types of samples were manufactured from the 
selected steels. The first type of the samples were sam-
ples of special design with the diameter of 10 mm and 
total length of 84 mm with hollow head parts and re-
duced central part of the sample with the diameter of 5 
mm and the length of 5 mm. For dilatometric tests with 
influence of strain cylindrical samples of the type SICO 
with the diameter of 10 mm and the length of the heated 
part of 10 mm were selected [5]. 

Table 1  Chemical composition of selected steels / wt. % 

[9-12]

Steel 
grade A B C D

C 0,17 -0,22 0,30 -0,34 0,47 -0,55 0,74 -0,84
Mn 1,10 -1,40 0,60 -0,90 0,70 -1,10 0,75 -1,25
Cr 1,00 -1,30 0,90 -1,20 0,90 -1,20 max. 0,30
Si max. 0,40 max. 0,30 max. 0,40 0,10 -0,60
V - - 0,10 -0,25 max. 0,010
Ni - - - max. 0,25

Mo - - - max. 0,06
S 0,02 -0,04 max. 0,025 max. 0,035 max. 0,020
P max. 0,035 max. 0,025 max. 0,025 max. 0,020

Norm EN 10084-1998 EN 10263-4 EN 10083-3 -
[9] [10] [11] [12]
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The samples were austenitised by electric resistance 
heating during 120 s at the temperatures of steels A, B, 
C = 850 °C, rail steel D = 860 °C. In the case of tests 
without previous deformation a cooling followed to the 
temperature of 25 °C at constant rates chosen in such a 
range, which enabled coverage of the whole spectre of 
running transformations. In the case of sample 
influenced by previous real compression strain of the 
magnitude of 0,35 and strain rate of 1 s-1, the samples 
were cooled at constant rates only after the deformation 
itself.

All the tested samples were then subjected to metal-
lographic analyses and measurements of hardness 
HV30.

DISCUSSION OF RESULTS

The CCT and DCCT diagrams were constructed on 
the basis of analysis of dilatometric curves during cool-
ing conducted at selected cooling rates. These diagrams 
were then interlaid into one special comparative dia-
gram, which enabled much easier evaluation of influ-
ence of the previous deformation on the kinetics of 
phase transformations for the given steel [5]. 

First of all the influence of deformation on the kinet-
ics of phase transformations in the steel A – 20MnCrS5 
was evaluated [9]. Special comparative diagram for this 
steel is shown in Figure 1.

It can be seen in Figure 1 that the input strain in the 
steel 20MnCrS5 significantly accelerates both ferritic and 
pearlitic transformation, which are fully controlled by dif-
fusion [2], and also bainitic transformation. The curves of 
the relevant transformations are therefore shifted to the 
left towards shorter times. In the case of martensitic trans-
formation the temperature of the start of this transforma-
tion was also slightly increased as a result of deformation, 
particularly in the cases of slower cooling rates.

The steel B - 32CrB4 [10] was the next tested steel. The 
comparative diagram for this steel is shown in Figure 2.

In this case too it was confirmed that previous defor-
mation accelerated both the transformations controlled 
by diffusion (ferritic and pearlitic), but also the bainitic 
transformation – see Figure 2. In this case, however, the 

curve of the start of martensitic transformation was as a 
result of deformation shifted towards lower tempera-
tures, which confirms the propositions that a dense dis-
location network is created as a result of deformation, 
which hinders the progress of the phase interface, and in 
spite of large number of nuclei the portion of the new 
phase is usually smaller then in the case of transforma-
tion  of non-deformed austenite, particularly in the case 
of higher cooling rates [3, 7].

This fact is confirmed also by the comparative dia-
gram of the spring steel C – 51CrV4 [11], which is 
shown in Figure 3.

As it can be seen in Figure 3, in this case too the 
pearlitic transformation was accelerated. 

Figure 1  Effect of deformation in the CCT diagram for the 
steel A - 20MnCrS5

Figure 2  Effect of deformation in the CCT diagram for the 
steel B – 32CrB4

Figure 3  Effect of deformation in the CCT diagram for the 
steel C – 51CrV4

Figure 4  Effect of deformation in the CCT diagram for the 
steel D – IH class Rail Steel
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on chemical composition of the steel [2]. What con-
cerns the influence of deformation on martensitic trans-
formation, in this case it is possible to assume, that par-
ticularly the cooling rate plays the crucial role in this 
case [3]. In case of higher cooling rates the temperature 
of the start of martensitic transformation decreases, 
while in case of slower cooling rates the temperature of 
the start of martensitic transformation becomes equal to 
that of non-deformed samples, or it is even slightly 
higher. In case of the steel IH class Rail Steel the previ-
ous transformation did not cause any acceleration of 
pearlitic transformation, since too long time between 
deformation and pearlitic transformation caused a 
coarsening of the original austenitic grains.
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SUMMARY

In the steels 20MnCrS5, 32CrB4, 51CrV4 the fact, 
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Figure 5  Effect of deformation on the martensite start 
temperature of selected steels

Figure 6  Influence of the cooling rate on the hardness HV30 
of selected steels.



360

R. KAWULOK et al.: TRANSFORMATION KINETICS OF SELECTED STEEL GRADES AFTER PLASTIC DEFORMATION

 METALURGIJA 55 (2016) 3, 357-360

[6] S. J. Lee, Y. K. Lee, Effect of Austenite Grain Size on Mar-
tensitic Transformation of a Low Alloy Steel, Materials 
Science Forum 475-479 (2005), 3169-3172.

 DOI: 10.4028 /MSF.475-479.3169
[7] h. z. Wang, P. Yang, W. M. Mao, F. Y. Lu, Effect of hot 

deformation of austenite on martensitic transformation in 
high manganese steel, Journal of Alloys and Compounds 
558 (2013), s. 26-33. 

 DOI: 10.1016/j.jallcom.2012.12.032
[8] L. X. Du, H. L. Yi, H. Ding, X. H. Liu, G. D. Wang, Effects 

of Deformation on Bainite Transformation During Conti-
nuous Cooling of Low Carbon Steels, Journal of Iron and 
Steel Research 13 (2006) 2, 37-39.

 DOI: 10.1016/S1006-706X(06)60041-1

[9] ČSN EN 10084-1998, Case hardening steels - Technical deli-
very conditions, Czech Standards Institute, Praha 2000, 40 p.

[10] ČSN EN 10263-4, Steel rod, bars and wire for cold hea-
ding and cold extrusion – Part 4: Technical delivery condi-
tions for steels for quenching and tempering, Czech Stan-
dards Institute, Praha 2005, 28 p.

[11] ČSN EN 10083-3, Steels for heat treatment – Part 3: Tech-
nical delivery terms for alloyed steels, Czech Standards 
Institute, Praha 2003, 28 p.

[12] IH class Rail Steel, Internal documentation of Třinecké 
Železárny, a.s., Třinec 2014.

Note:  Translator responsible for English language is B. Škandera, 
Frýdek-Místek, Czech Repub lic


