FINITE p-GROUPS ALL OF WHOSE MAXIMAL SUBGROUPS, EXCEPT ONE, HAVE ITS DERIVED SUBGROUP OF ORDER $\leq p$

Zvonimir Janko
University of Heidelberg, Germany

Abstract

Let G be a finite p-group which has exactly one maximal subgroup H such that $\left|H^{\prime}\right|>p$. Then we have $\mathrm{d}(G)=2, p=2, H^{\prime}$ is a four-group, G^{\prime} is abelian of order 8 and type $(4,2), G$ is of class 3 and the structure of G is completely determined. This solves the problem Nr. 1800 stated by Y. Berkovich in [3].

We consider here only finite p-groups and our notation is standard (see [1]). If G is a p-group all of whose maximal subgroups have its derived subgroups of order $\leq p$, then such groups G are characterized in [3, §137]. But there is no way to determine completely the structure of such p-groups.

It is quite surprising that we can determine completely (in terms of generators and relations) the title groups, where exactly one maximal subgroup has the commutator subgroup of order $>p$. We shall prove our main theorem (Theorem 8) starting with some partial results about the title groups. However, Propositions 4 and 6 are also of independent interest.

Proposition 1. Let G be a title p-group. Then we have $\mathrm{d}(G) \leq 3$, $\operatorname{cl}(G) \leq 3, p^{2} \leq\left|G^{\prime}\right| \leq p^{3}$ and G^{\prime} is abelian of exponent $\leq p^{2}$. Also, G has at most one abelian maximal subgroup.

Proof. Let H be the unique maximal subgroup of G with $\left|H^{\prime}\right|>p$. This gives $\left|G^{\prime}\right| \geq p^{2}$. Let $K \neq L$ be maximal subgroups of G which are both distinct from H. We have $\left|K^{\prime}\right| \leq p,\left|L^{\prime}\right| \leq p$ and so $K^{\prime} L^{\prime} \leq \mathrm{Z}(G)$ and $\left|K^{\prime} L^{\prime}\right| \leq p^{2}$. By a result of A. Mann ([1, Exercise 1.69]), we get $\left|G^{\prime}:\left(K^{\prime} L^{\prime}\right)\right| \leq p$. This implies that $\left|G^{\prime}\right| \leq p^{3}, G^{\prime}$ is abelian and G is of class ≤ 3. Since $K^{\prime} L^{\prime}$ is elementary

[^0]abelian, we also get $\exp \left(G^{\prime}\right) \leq p^{2}$. If G would have more than one abelian maximal subgroup, then (by the above argument) $\left|G^{\prime}\right| \leq p$, a contradiction. Hence G has at most one abelian maximal subgroup.

Note that each nonabelian p-group X has exactly 0,1 or $p+1$ abelian maximal subgroups and in the last case $\left|X^{\prime}\right|=p$ (Exercise 1.6(a) in [1]). Suppose that $\mathrm{d}(G) \geq 4$. Then G has at least $1+p+p^{2}+p^{3}$ distinct maximal subgroups and so the set \mathcal{S} of maximal subgroups of G with the commutator group of order p has at least $p+p^{2}+p^{3}-1$ elements. Since G^{\prime} has at most $p^{2}+p+1$ pairwise distinct subgroups of order p (and the maximum is achieved if $G^{\prime} \cong \mathrm{E}_{p^{3}}$), it follows that there are $K \neq L \in \mathcal{S}$ such that $K^{\prime}=L^{\prime}$. By the above argument (using a result of A. Mann), we get $\left|G^{\prime}\right|=p^{2}$ and so G^{\prime} has at most $p+1$ pairwise distinct subgroups of order p (where the maximum is achieved if $G^{\prime} \cong \mathrm{E}_{p^{2}}$). If $M \in \mathcal{S}$, then considering G / M^{\prime}, we see that there are at most $p+1$ elements $N \in \mathcal{S}$ such that $N^{\prime}=M^{\prime}$. This gives

$$
p+p^{2}+p^{3}-1 \leq(p+1)^{2}, \text { and so } p^{3}-p \leq 2 \text { or } p\left(p^{2}-1\right) \leq 2
$$

a contradiction. Our proposition is proved.
Proposition 2. Let G be a title p-group. Then the subgroup:

$$
\left.H_{0}=\left\langle M^{\prime}\right| M \text { is any maximal subgroup of } \mathrm{G} \text { with }\left|M^{\prime}\right| \leq p\right\rangle
$$

is noncyclic and so H_{0} is elementary abelian of order p^{2} or p^{3} and $H_{0} \leq \mathrm{Z}(G)$.
Proof. Suppose that H_{0} is cyclic. Then we have $\left|H_{0}\right|=p$ and so $\left|G^{\prime}\right|=$ p^{2} because (by [1, Exercise 1.69]) $\left|G^{\prime}: H_{0}\right| \leq p$ and Proposition 1 implies that $\left|G^{\prime}\right| \geq p^{2}$. This gives that $H^{\prime}=G^{\prime}$, where H is the unique maximal subgroup of G with $\left|H^{\prime}\right|>p$. Consider the nonabelian factor group G / H_{0}. In this case G / H_{0} has exactly one nonabelian maximal subgroup H / H_{0}. Since $\mathrm{d}\left(G / H_{0}\right)=2$ or 3 , the last statement would imply that the nonabelian p group G / H_{0} would have exactly p or $p+p^{2}$ abelian maximal subgroups, a contradiction (by [1, Exercise 1.6(a)]).

Proposition 3. Let G be a title p-group. Then we have $\mathrm{d}(G)=2$.
Proof. Assume that $\mathrm{d}(G)=3$ and we use the notation from Proposition 2.

First suppose that $H_{0}=G^{\prime}$ so that G is of class 2 with an elementary abelian commutator subgroup. For any $x, y \in G$, we get $\left[x^{p}, y\right]=[x, y]^{p}=1$ and this implies that $\mho_{1}(G) \leq \mathrm{Z}(G)$. It follows $\Phi(G)=\mho_{1}(G) G^{\prime} \leq \mathrm{Z}(G)$ and $G / \Phi(G) \cong \mathrm{E}_{p^{3}}$. Let X be any maximal subgroup of G so that $X / \Phi(G) \cong \mathrm{E}_{p^{2}}$ and all $p+1$ maximal subgroups of X which contain $\Phi(G)$ are abelian. This implies $\left|X^{\prime}\right| \leq p$. But then each maximal subgroup of G has its derived subgroup of order $\leq p$, contrary to our assumption.

Now assume $H_{0} \neq G^{\prime}$. In this case $H_{0} \cong \mathrm{E}_{p^{2}}, H_{0} \leq \mathrm{Z}(G)$ and $\left|G^{\prime}\right|=p^{3}$. There are exactly $p+p^{2}$ maximal subgroups M_{i} of G such that $\left|M_{i}^{\prime}\right| \leq p$,
$i=1,2, \ldots, p+p^{2}$. Since H_{0} has exactly $p+1$ subgroups of order p, it follows that there exist the indices $i \neq j \in\left\{1,2, \ldots, p+p^{2}\right\}$ such that $M_{i}^{\prime}=M_{j}^{\prime}$ is of order p. Again by [1, Exercise 1.69] we have $\left|G^{\prime}:\left(M_{i}^{\prime} M_{j}^{\prime}\right)\right| \leq p$ and this gives $\left|G^{\prime}\right| \leq p^{2}$, a contradiction. Our proposition is proved.

Proposition 4. Let G be a two-generator p-group, $p>2$, with $G^{\prime} \cong \mathrm{C}_{p^{2}}$. Then each maximal subgroup of G is nonabelian.

Proof. Assume that G has an abelian maximal subgroup M so that $|M / \Phi(G)|=p$. Take an element $a \in M \backslash \Phi(G)$ and an element $b \in G \backslash M$ so that we have $G=\langle a, b\rangle$ and $G^{\prime}=\langle[a, b]\rangle$. Since G^{\prime} is cyclic, [1, Theorem 7.1(c)] implies that G is regular. We have $b^{p} \in \Phi(G)<M$ and so $\left[a, b^{p}\right]=1$. Hence

$$
\left(a^{-1} b^{-p} a\right) b^{p}=\left(\left(b^{-1}\right)^{a}\right)^{p} b^{p}=1 \text { and so }\left(b^{a}\right)^{p}=b^{p}
$$

By [1, Theorem $7.2(\mathrm{a})$] (about regular p-groups), the last relation gives $\left(\left(b^{-1}\right)^{a} b\right)^{p}=1$ or equivalently $[a, b]^{p}=1$, a contradiction.

Remark 5. The assumption $p>2$ in Proposition 4 is essential. This shows a 2-group of maximal class and order 16.

Proposition 6. Let G be a two-generator p-group, $p>2$, with $G^{\prime} \cong \mathrm{E}_{p^{2}}$. Then G has an abelian maximal subgroup.

Proof. By [3, Proposition 137.4], each proper subgroup of G has its derived subgroup of order at most p. Then we may apply [3, Proposition 137.5] and so for each $x, y \in G$, we get $\left[x^{p}, y\right]=[x, y]^{p}=1$. This gives that $\mho_{1}(G) \leq \mathrm{Z}(G)$ and therefore we obtain that $\Phi(G)=\mho_{1}(G) G^{\prime}$ is abelian. Let M be a maximal subgroup of G which centralizes G^{\prime}. We have $|M: \Phi(G)|=p$ and M centralizes $\mho_{1}(G)$ and G^{\prime} so that $\Phi(G) \leq \mathrm{Z}(M)$. This implies that M is abelian and we are done.

Remark 7. The assumption $p>2$ in Proposition 5 is essential. Let G ba a faithful and splitting extension of an elementary abelian group of order 8 by a cyclic group of order 4 . Then we have $\mathrm{d}(G)=2$ and $G^{\prime} \cong \mathrm{E}_{4}$ but G has no abelian maximal subgroup.

Proposition 8. Let G be a title p-group and $\Gamma_{1}=\left\{H_{1}, H_{2}, \ldots, H_{p}, H\right\}$ be the set of all maximal subgroups of G, where $\left|H^{\prime}\right|>p$. Then G^{\prime} is abelian of order $p^{3}, H^{\prime} \cong \mathrm{E}_{p^{2}}, H^{\prime} \leq \mathrm{Z}(G)$ and $H_{1}^{\prime}, H_{2}^{\prime}, \ldots, H_{p}^{\prime}$ are pairwise distinct subgroups of order p contained in H^{\prime}. If $G=\langle x, y\rangle$ for some $x, y \in G$, then $[x, y] \in G^{\prime} \backslash H^{\prime}$ and $[x, y] \notin \mathrm{Z}(G)$ so that G is of class 3. Finally, G / H^{\prime} is nonmetacyclic minimal nonabelian and so if $a \in G \backslash G^{\prime}$ is such that $a^{p} \in G^{\prime}$, then $a^{p} \in H^{\prime}$.

Proof. Let H_{0} be the subgroup of G^{\prime} as defined in Proposition 2. Then $H_{0} \leq \mathrm{Z}(G)$ and H_{0} is elementary abelian of order p^{2} or p^{3}. Suppose for a moment that $H_{0}=G^{\prime}$. We have $G=\langle x, y\rangle$ for some $x, y \in G$ and $[x, y] \in H_{0}$
so that $G /\langle[x, y]\rangle$ is abelian and $G^{\prime}=\langle[x, y]\rangle$ is of order p, a contradiction. It follows that $H_{0} \neq G^{\prime}$ which gives that $H_{0} \cong \mathrm{E}_{p^{2}},\left|G^{\prime}: H_{0}\right|=p$ and G^{\prime} is abelian of order p^{3}. Since $\mathrm{d}\left(G / H_{0}\right)=2$ and $\left|G^{\prime} / H_{0}\right|=p$, it follows that G / H_{0} is minimal nonabelian (see [2, Lemma 65.2(a)]). In particular, we have $H^{\prime} \leq H_{0}$ which together with $\left|H^{\prime}\right|>p$ implies $H^{\prime}=H_{0} \cong \mathrm{E}_{p^{2}}$. If G / H^{\prime} is metacyclic, then a result of N. Blackburn (see [1, Lemma 44.1] and [1, Corollary 44.6]) gives that G is also metacyclic. This is a contradiction because G^{\prime} is noncyclic. Hence G / H^{\prime} is nonmetacyclic minimal nonabelian so that [2, Lemma 65.1] gives that G^{\prime} / H^{\prime} is a maximal cyclic subgroup of G / H^{\prime}. Thus for each element $a \in G \backslash G^{\prime}$ such that $a^{p} \in G^{\prime}$, we get $a^{p} \in H^{\prime}$.

We have $G=\langle x, y\rangle$ for some $x, y \in G$. It is clear that $\langle[x, y]\rangle$ is not normal in G. Indeed, if $\langle[x, y]\rangle \unlhd G$, then $G /\langle[x, y]\rangle$ is abelian and so $\langle[x, y]\rangle=G^{\prime}$ is of order $\leq p^{2}$ (noting that $\left.\exp \left(G^{\prime}\right) \leq p^{2}\right)$, a contradiction. We have proved that $\langle[x, y]\rangle$ is not normal in G. In particular, $[x, y] \notin \mathrm{Z}(G)$ and so $[x, y] \in G^{\prime} \backslash H^{\prime}$ and G is of class 3 .

If $\Gamma_{1}=\left\{H_{1}, H_{2}, \ldots, H_{p}, H\right\}$ is the set of all maximal subgroups of G, then we have $H_{i}^{\prime} \leq H_{0}=H^{\prime}$ for all $i=1,2, \ldots, p$. We claim that $H_{1}^{\prime}, H_{2}^{\prime}, \ldots, H_{p}^{\prime}$ are pairwise distinct subgroups of order p. Indeed, if $\left|H_{i}^{\prime} H_{j}^{\prime}\right| \leq p$ for some $i \neq j, i, j \in\{1,2, \ldots, p\}$, then a result of A. Mann (see [1, Exercise 1.69]) implies $\left|G^{\prime}:\left(H_{i}^{\prime} H_{j}^{\prime}\right)\right| \leq p$ and so $\left|G^{\prime}\right| \leq p^{2}$, a contradiction. Our proposition is proved.

Remark 9. If X is a two-generator p-group of class 2 , then it is well known that X^{\prime} is cyclic. Hence if G is any two-generator p-group, then $G^{\prime} / \mathrm{K}_{3}(G)$ is cyclic, where $\mathrm{K}_{3}(G)=\left[G^{\prime}, G\right]$.

Proposition 10. If G is a title p-group, then $p=2$.
Proof. Assume that $p>2$ and we use Proposition 6 together with the notation introduced there.

First suppose that G^{\prime} is not elementary abelian. Then we have $\mathrm{o}([x, y])=$ p^{2} and $\left\langle[x, y]^{p}\right\rangle$ is a subgroup of order p contained in H^{\prime}. Let $H_{i}^{\prime}, i \in$ $\{1,2, \ldots, p\}$, be such that $H_{i}^{\prime} \neq\left\langle[x, y]^{p}\right\rangle$ which gives $G^{\prime}=H_{i}^{\prime} \times\langle[x, y]\rangle$. We consider the factor group $\bar{G}=G / H_{i}^{\prime}$. Since $\mathrm{d}(\bar{G})=2, p>2$, and $\bar{G}^{\prime} \cong \mathrm{C}_{p^{2}}$, we may use Proposition 4 saying that each maximal subgroup of \bar{G} is nonabelian. But $\bar{H}_{i}=H_{i} / H_{i}^{\prime}$ is an abelian maximal subgroup of \bar{G}, a contradiction.

We have proved that G^{\prime} is elementary abelian of order p^{3}. Let $\left\{H_{1}^{\prime}, H_{2}^{\prime}, \ldots, H_{p}^{\prime}, K\right\}$ be the set of all $p+1$ subgroups of order p in H^{\prime} and consider the factor group G / K. All $p+1$ maximal subgroups of G / K are nonabelian, $\mathrm{d}(G / K)=2, p>2$, and $(G / K)^{\prime}=G^{\prime} / K \cong \mathrm{E}_{p^{2}}$. By Proposition $5, G / K$ possesses an abelian maximal subgroup, a contradiction. We have proved that we must have $p=2$.

Theorem 11. Let G be a p-group with exactly one maximal subgroup H such that $\left|H^{\prime}\right|>p$. Then we have $\mathrm{d}(G)=2, p=2$ and G^{\prime} is abelian of order 8
and type $(4,2)$. Also, $\left[G^{\prime}, G\right]=\Omega_{1}\left(G^{\prime}\right) \leq \mathrm{Z}(G), \Phi(G)=\mathrm{C}_{G}\left(G^{\prime}\right)$ is abelian and $\mho_{2}(G) \leq \mathrm{Z}(G)$. Let $\left\{H_{1}, H_{2}, H\right\}$ be the set of maximal subgroups of G. Then $H_{1}^{\prime}=\left\langle z_{1}\right\rangle$ and $H_{2}^{\prime}=\left\langle z_{2}\right\rangle$ are both of order $2,\left\langle z_{1}, z_{2}\right\rangle=\Omega_{1}\left(G^{\prime}\right)=H^{\prime} \cong \mathrm{E}_{4}$, $\mathrm{d}(H)=3$ and $\mho_{1}\left(G^{\prime}\right)=\left\langle z_{1} z_{2}\right\rangle$. Finally, H is the unique maximal subgroup of G which contains an element acting invertingly on G^{\prime}. We have the following two possibilities:
(i) $\mathrm{d}\left(H_{1}\right)=\mathrm{d}\left(H_{2}\right)=2$ in which case H_{1} and H_{2} are minimal nonabelian. In this case either H_{1} and H_{2} are both metacyclic and G is isomorphic to one of the groups of Theorem 100.3(a) and (b) in [3] or H_{1} and H_{2} are both nonmetacyclic and G is isomorphic to one of the groups of Theorem 100.3(c) in [3].
(ii) $\mathrm{d}\left(H_{1}\right)=\mathrm{d}\left(H_{2}\right)=3$ and the group G is given with:

$$
\begin{gathered}
G=\langle a, b|[a, b]=v, v^{4}=1,[v, a]=z_{1},[v, b]=z_{1}^{\epsilon} z_{2}, z_{1}^{2}=z_{2}^{2}=1, v^{2}=z_{1} z_{2}, \\
\left.\left[z_{1}, a\right]=\left[z_{1}, b\right]=\left[z_{2}, a\right]=\left[z_{2}, b\right]=1, a^{2^{m}}=z_{1}^{\alpha} z_{2}^{\beta}, b^{2^{n}}=z_{1}^{\gamma} z_{2}^{\delta}\right\rangle,
\end{gathered}
$$

where $m \geq 2, n \geq 2$, and $\alpha, \beta, \gamma, \delta, \epsilon \in\{0,1\}$. We have here $|G|=$ $2^{m+n+3} \geq 2^{7}, G^{\prime}=\left\langle v, z_{1}\right\rangle \cong \mathrm{C}_{4} \times \mathrm{C}_{2},\left[G^{\prime}, G\right]=\left\langle z_{1}, z_{2}\right\rangle=\Omega_{1}\left(G^{\prime}\right) \leq$ $\mathrm{Z}(G)$ and the Frattini subgroup $\Phi(G)=\left\langle G^{\prime}, a^{2}, b^{2}\right\rangle$ is abelian. Finally, if $\epsilon=0$, then $H=\Phi(G)\langle a b\rangle$ and if $\epsilon=1$, we have $H=\Phi(G)\langle b\rangle$.
Conversely, all groups stated in parts (i) and (ii) of this theorem are pgroups all of whose maximal subgroups, except one, have its derived subgroup of order $\leq p$.

Proof. We use Proposition 6 together with the notation introduced there. By Proposition 7, we have in addition $p=2$.

Let X be a maximal subgroup of G. By Schreier's inequality ([2, Theorem A.25.1]), we have

$$
\mathrm{d}(X) \leq 1+|G: X|(\mathrm{d}(G)-1)
$$

and so $\mathrm{d}(X) \leq 3$. Since $H^{\prime} \cong \mathrm{E}_{4}$ and $H^{\prime} \leq \mathrm{Z}(H)$, the maximal subgroup H cannot be two-generator (see Remark 3). It follows that we have $\mathrm{d}(H)=3$. Since G is a nonmetacyclic two-generator 2-group, we may use [3, Theorem 107.1] saying that such a group has an even number of two-generator maximal subgroups. It follows that we have either $\mathrm{d}\left(H_{1}\right)=\mathrm{d}\left(H_{2}\right)=2$ or $\mathrm{d}\left(H_{1}\right)=$ $\mathrm{d}\left(H_{2}\right)=3$.

Set $H_{1}^{\prime}=\left\langle z_{1}\right\rangle, H_{2}^{\prime}=\left\langle z_{2}\right\rangle$ so that we have $H^{\prime}=\left\langle z_{1}\right\rangle \times\left\langle z_{2}\right\rangle \cong \mathrm{E}_{4}$ and $\Phi(G)=H_{1} \cap H_{2}$. Since $(\Phi(G))^{\prime} \leq\left\langle z_{1}\right\rangle \cap\left\langle z_{2}\right\rangle=\{1\}$, it follows that $\Phi(G)$ is abelian and so $\Phi(G)$ is a maximal normal abelian subgroup of G (containing $\left.G^{\prime}\right)$. Take elements $h_{1} \in H_{1} \backslash \Phi(G)$ and $h_{2} \in H_{2} \backslash \Phi(G)$ so that we have $G=\left\langle h_{1}, h_{2}\right\rangle,\left[h_{1}, h_{2}\right]=v \in G^{\prime} \backslash H^{\prime}$ and o $(v) \leq 4$. If v commutes with both h_{1} and h_{2}, then we get $v \in \mathrm{Z}(G)$, a contradiction. Without loss of generality we may assume that $\left[v, h_{1}\right] \neq 1$ and so we get $\left[v, h_{1}\right]=z_{1}$.

Assume for a moment that $G^{\prime} \cong \mathrm{E}_{8}$ so that v is an involution. We compute

$$
\left[h_{1}^{2}, h_{2}\right]=\left[h_{1}, h_{2}\right]^{h_{1}}\left[h_{1}, h_{2}\right]=v^{h_{1}} v=\left(v z_{1}\right) v=v^{2} z_{1}=z_{1} .
$$

This is a contradiction since $h_{1}^{2} \in \Phi(G)$ and $\left\langle h_{1}^{2}, h_{2}\right\rangle \leq H_{2}$, where $H_{2}^{\prime}=\left\langle z_{2}\right\rangle$. We have proved that G^{\prime} is abelian of type $(4,2)$ and so o $(v)=4$ and $1 \neq v^{2} \in$ H^{\prime}.

We have $\mathrm{K}_{3}(G)=\left[G^{\prime}, G\right] \geq\left\langle z_{1}\right\rangle$. Since $\mathrm{d}(G)=2$, it follows by Remark 1 that $G^{\prime} / K_{3}(G)$ is cyclic. Suppose that $\left[v, h_{2}\right]=1$ so that in this case we have $\mathrm{K}_{3}(G)=\left\langle z_{1}\right\rangle$. We compute

$$
\left[h_{1}, h_{2}^{2}\right]=\left[h_{1}, h_{2}\right]\left[h_{1}, h_{2}\right]^{h_{2}}=v v^{h_{2}}=v^{2} \neq 1 .
$$

We have $\left\langle h_{1}, h_{2}^{2}\right\rangle \leq H_{1}$ and so $v^{2}=z_{1}$. But then we have $G^{\prime} / \mathrm{K}_{3}(G)=$ $G^{\prime} /\left\langle z_{1}\right\rangle \cong \mathrm{E}_{4}$, a contradiction. We have proved that $\left[v, h_{2}\right] \neq 1$ and so $\left[v, h_{2}\right]=z_{2}$. This gives

$$
\mathrm{K}_{3}(G)=\left\langle z_{1}, z_{2}\right\rangle=H^{\prime} \leq \mathrm{Z}(G)
$$

and G is of class 3.
We get

$$
\left[h_{1}^{2}, h_{2}\right]=\left[h_{1}, h_{2}\right]^{h_{1}}\left[h_{1}, h_{2}\right]=v^{h_{1}} v=\left(v z_{1}\right) v=v^{2} z_{1},
$$

and since $\left\langle h_{1}^{2}, h_{2}\right\rangle \leq H_{2}$, it follows that $v^{2} z_{1} \in\left\langle z_{2}\right\rangle$ and so $v^{2} \in\left\{z_{1}, z_{1} z_{2}\right\}$. Similarly, we get

$$
\left[h_{1}, h_{2}^{2}\right]=\left[h_{1}, h_{2}\right]\left[h_{1}, h_{2}\right]^{h_{2}}=v v^{h_{2}}=v\left(v z_{2}\right)=v^{2} z_{2}
$$

and since $\left\langle h_{1}, h_{2}^{2}\right\rangle \leq H_{1}$, it follows that $v^{2} z_{2} \in\left\langle z_{1}\right\rangle$ and so $v^{2} \in\left\{z_{2}, z_{1} z_{2}\right\}$. As a result, we get $v^{2}=z_{1} z_{2}$ and so $\mho_{1}\left(G^{\prime}\right)=\left\langle z_{1} z_{2}\right\rangle$. Note that $H=\Phi(G)\left\langle h_{1} h_{2}\right\rangle$ and

$$
v^{h_{1} h_{2}}=\left(v z_{1}\right)^{h_{2}}=v\left(z_{1} z_{2}\right)=v v^{2}=v^{3}=v^{-1}
$$

and so $h_{1} h_{2}$ acts invertingly on G^{\prime}. It follows that $\Phi(G)=\mathrm{C}_{G}\left(G^{\prime}\right)$ and H is the unique maximal subgroup of G which contains an element acting invertingly on G^{\prime}.

Let $x, y \in G$. Then $\left\langle x^{2}, y\right\rangle$ is contained in one of the maximal subgroups X_{i} of G, where X_{i}^{\prime} is elementary abelian of order ≤ 4 and $\operatorname{cl}\left(X_{i}\right)=2(i=$ $1,2,3)$. It follows

$$
\left[x^{4}, y\right]=\left[\left(x^{2}\right)^{2}, y\right]=\left[x^{2}, y\right]^{2}=1
$$

and so we get $\mho_{2}(G) \leq \mathrm{Z}(G)$.
Now suppose that $\mathrm{d}\left(H_{1}\right)=\mathrm{d}\left(H_{2}\right)=2$. In this case both H_{1} and H_{2} are minimal nonabelian (see [2, Lemma $65.2(\mathrm{a})]$) and H is neither abelian nor minimal nonabelian. Since $\mathrm{d}(G)=2$ and $H_{1}^{\prime} \neq H_{2}^{\prime}$ such 2 -groups are completely determined in [3, Theorem 100.3] which gives the groups quoted in part (i) of our theorem.

It remains to consider the case $\mathrm{d}\left(H_{1}\right)=\mathrm{d}\left(H_{2}\right)=3$. By [3, Theorem 107.2(a)], a nonmetacyclic two-generator 2-group G has the property that
every maximal subgroup of G is not generated by two elements if and only if G / G^{\prime} has no cyclic subgroup of index 2 . Thus G / G^{\prime} is abelian of type $\left(2^{m}, 2^{n}\right)$, where $m \geq 2, n \geq 2$ and so $|G|=\left|G^{\prime}\right| 2^{m+n}=2^{m+n+3} \geq 2^{7}$. There are normal subgroups A and B of G such that $G=A B, A \cap B=G^{\prime}$, $A / G^{\prime} \cong \mathrm{C}_{2^{m}}, B / G^{\prime} \cong \mathrm{C}_{2^{n}}, m \geq 2, n \geq 2$. Let $a \in A \backslash G^{\prime}, b \in B \backslash G^{\prime}$ be such that $\langle a\rangle$ covers A / G^{\prime} and $\langle b\rangle$ covers B / G^{\prime}. Since G / H^{\prime} is nonmetacyclic minimal nonabelian, we know that (see [2, Lemma 65.1]) G^{\prime} / H^{\prime} is a maximal cyclic subgroup of G / H^{\prime} and so we have $a^{2^{m}} \in H^{\prime}$ and $b^{2^{n}} \in H^{\prime}$. We have $G=\langle a, b\rangle$ and so $[a, b]=v$ is an element of order 4 contained in $G^{\prime} \backslash H^{\prime}$.

Maximal subgroups of G are $M_{1}=A\left\langle b^{2}\right\rangle, M_{2}=B\left\langle a^{2}\right\rangle$ and $M_{3}=$ $\Phi(G)\langle a b\rangle$, where $\Phi(G)=G^{\prime}\left\langle a^{2}\right\rangle\left\langle b^{2}\right\rangle$ is abelian. Since $\Phi(G)=\mathrm{C}_{G}\left(G^{\prime}\right)$ and $\Omega_{1}\left(G^{\prime}\right)=H^{\prime} \leq \mathrm{Z}(G)$, we see that $G / \Phi(G) \cong \mathrm{E}_{4}$ acts faithfully on G^{\prime} stabilizing the chain $G^{\prime}>H^{\prime}>\{1\}$. Interchanging A and B (if necessary), we may assume that $\left|M_{1}^{\prime}\right|=2$ and so we may set $v^{a}=v z_{1}$ which gives that $[v, a]=z_{1}$ and $M_{1}^{\prime}=\left\langle z_{1}\right\rangle$, where $z_{1} \in H^{\prime} \backslash\left\langle v^{2}\right\rangle$. Set $z_{2}=z_{1} v^{2}$ so that we have $v^{2}=z_{1} z_{2}$. Then we have two possibilities.
(1) We assume $v^{b}=v z_{1} z_{2}=v^{-1}$ or equivalently $[v, b]=z_{1} z_{2}$ so that the element b inverts each element in G^{\prime}. Since the maximal subgroup H is the unique maximal subgroup of G which contains an element acting invertingly on G^{\prime}, we have in this case $M_{2}=B\left\langle a^{2}\right\rangle=H$, where we should have $H^{\prime}=$ $\left\langle z_{1}, z_{2}\right\rangle$. Indeed, we have

$$
\left[a^{2}, b\right]=[a, b]^{a}[a, b]=v^{a} v=\left(v z_{1}\right) v=v^{2} z_{1}=\left(z_{1} z_{2}\right) z_{1}=z_{2}
$$

and so we get $H^{\prime}=\left\langle z_{1}, z_{2}\right\rangle$. In this case $M_{3}=\Phi(G)\langle a b\rangle$ has the property $M_{3}^{\prime}=\left\langle z_{2}\right\rangle$. Indeed, here we have

$$
\begin{aligned}
& {\left[a^{2}, a b\right]=\left[a^{2}, b\right]=z_{2},} \\
& {\left[a b, b^{2}\right]=\left[a, b^{2}\right]^{b}=\left([a, b][a, b]^{b}\right)^{b}=\left(v v^{b}\right)^{b}=\left(v v^{-1}\right)^{b}=1,}
\end{aligned}
$$

and

$$
v^{a b}=\left(v z_{1}\right)^{b}=\left(v z_{1} z_{2}\right) z_{1}=v z_{2} \text { and so }[v, a b]=z_{2} .
$$

(2) Now we suppose $v^{b}=v z_{2}$ or equivalently $[v, b]=z_{2}$. In this case we get $M_{2}^{\prime}=\left\langle z_{2}\right\rangle$ since

$$
\left[a^{2}, b\right]=[a, b]^{a}[a, b]=v^{a} v=\left(v z_{1}\right) v=v^{2} z_{1}=\left(z_{1} z_{2}\right) z_{1}=z_{2} .
$$

Also, we have here $M_{3}=H$ because

$$
v^{a b}=\left(v z_{1}\right)^{b}=\left(v z_{2}\right) z_{1}=v\left(z_{1} z_{2}\right)=v v^{2}=v^{3}=v^{-1}
$$

and so $a b$ acts invertingly on G^{\prime}. We have $[v, a b]=z_{1} z_{2}$ and

$$
\left[a^{2}, a b\right]=\left[a^{2}, b\right]=[a, b]^{a}[a, b]=v^{a} v=\left(v z_{1}\right) v=v^{2} z_{1}=\left(z_{1} z_{2}\right) z_{1}=z_{2}
$$

and so we have here $M_{3}^{\prime}=\left\langle z_{1}, z_{2}\right\rangle$.

In both cases (1) and (2), we may set $v^{b}=z_{1}^{\epsilon} z_{2}$, where in case (1) we have $\epsilon=1$ and in case (2) we have $\epsilon=0$. Thus, if $\epsilon=0$, then $H=\Phi(G)\langle a b\rangle$ and if $\epsilon=1$, we have $H=\Phi(G)\langle b\rangle$.

Also, we may set

$$
a^{2^{m}}=z_{1}^{\alpha} z_{2}^{\beta}, b^{2^{n}}=z_{1}^{\gamma} z_{2}^{\delta}
$$

where $\alpha, \beta, \gamma, \delta \in\{0,1\}$ since we know that $a^{2^{m}}, b^{2^{n}} \in H^{\prime}=\left\langle z_{1}, z_{2}\right\rangle$.
Conversely, by inspection of groups given in parts (i) and (ii) of our theorem, we see that all these groups have the title property. Our theorem is proved.

References

[1] Y. Berkovich, Groups of prime power order, Vol. 1, Walter de Gruyter, Berlin-New York, 2008.
[2] Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 2, Walter de Gruyter, Berlin-New York, 2008.
[3] Y. Berkovich and Z. Janko, Groups of prime power order, Vol. 3, Walter de Gruyter, Berlin-New York, 2011.

Z. Janko

Mathematical Institute
University of Heidelberg
69120 Heidelberg
Germany
E-mail: janko@mathi.uni-heidelberg.de
Received: 16.6.2011.
Revised: 2.10.2011.

[^0]: 2010 Mathematics Subject Classification. 20D15.
 Key words and phrases. Finite p-groups, minimal nonabelian p-groups, commutator subgroups, nilpotence class of p-groups, Frattini subgroups, generators and relations.

