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Abstract. In this paper, we consider the Diophantine equation

bk + (a+ b)k + · · ·+ (a (x− 1) + b)k =

= dl + (c+ d)l + · · ·+ (c (y − 1) + d)l ,

where a, b, c, d, k, l are given integers with gcd(a, b) = gcd(c, d) = 1, k 6= l.
We prove that, under some reasonable assumptions, the above equation
has only finitely many solutions.

1. Introduction and results

For a positive integer n ≥ 2, let

(1.1) Sk
a,b (n) = bk + (a+ b)

k
+ · · ·+ (a (n− 1) + b)

k
.

It is easy to see that the above power sum is related to the Bernoulli
polynomials Bk(x) in the following way:

(1.2)

Sk
a,b (n) =

ak

k + 1

([
Bk+1

(
n+

b

a

)
−Bk+1

]

−

[
Bk+1

(
b

a

)
−Bk+1

])
,

where the polynomials Bk(x) is defined by the generating series

t exp(tx)

exp(t)− 1
=

∞∑

k=0

Bk(x)
tk

k!
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and Bk+1 = Bk+1(0). For the properties of Bernoulli polynomials which will
be often used in this paper, sometimes without special reference, we refer to
[7, Chapters 1 and 2]. We can extend Sk

a,b for every real value x as

(1.3) Sk
a,b (x) =

ak

k + 1

(
Bk+1

(
x+

b

a

)
−Bk+1

(
b

a

))
.

We denote by C[x] the ring of polynomials in the variable x with complex
coefficients. A decomposition of a polynomial F (x) ∈ C[x] is an equality of
the following form

F (x) = G1(G2(x)) (G1(x), G2(x) ∈ C[x]),

which is nontrivial if

degG1(x) > 1 and degG2(x) > 1.

Two decompositions F (x) = G1(G2(x)) and F (x) = H1(H2(x)) are said
to be equivalent if there exists a linear polynomial ℓ(x) ∈ C[x] such that
G1(x) = H1(ℓ(x)) and H2(x) = ℓ(G2(x)). The polynomial F (x) is called
decomposable if it has at least one nontrivial decomposition; otherwise it is
said to be indecomposable.

In a recent paper, Bazsó, Pintér and Srivastava ([1]) proved the following
theorem about the decomposition of the polynomial Sk

a,b (x) defined above.

Theorem 1.1. The polynomial Sk
a,b (x) is indecomposable for even k. If

k = 2v − 1 is odd, then any nontrivial decomposition of Sk
a,b (x) is equivalent

to the following decomposition:

(1.4) Sk
a,b (x) = Ŝv

((
x+

b

a
−

1

2

)2
)
.

Proof. This is [1, Theorem 2].

Using Theorem 1.1 and the general finiteness criterion of Bilu and Tichy
([2]) for Diophantine equations of the form f(x) = g(y), we prove the following
result.

Theorem 1.2. For 2 ≤ k < l, the equation

(1.5) Sk
a,b(x) = Sl

c,d(y)

has only finitely many solutions in integers x and y.

Since the finiteness criterion from [2] is based on the ineffective theorem
of Siegel, our Theorem 1.2 is ineffective. We note that for a = c = 1, b = d = 0
our theorem gives the result of Bilu, Brindza, Kirschenhofer, Pintér and Tichy
([3]).

Combining a result of Brindza [5] with recent theorems by Rakaczki ([8])
and Pintér and Rakaczki ([6]), for k = 1 and 3 we obtain effective statements.
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Theorem 1.3. For k = 1 and l /∈ {1, 3, 5}, the equation

(1.6) S1
a,b(x) = Sl

c,d(y)

implies max(|x|, |y|) < C1, where C1 is an effectively computable constant

depending only on a, b, c, d and l.

In the exceptional cases l = 3, 5 one can give some values for a, b, c, d
such that the corresponding equations possess infinitely many solutions. For
example, if k = 1, a = 2, b = 1, l = 3 or l = 5, c = 1, d = 0 we have

x2 = 1 + 3 + · · ·+ 2x− 1 = 13 + 23 + · · ·+ (y − 1)3

or
x2 = 1 + 3 + · · ·+ 2x− 1 = 15 + 25 + · · ·+ (y − 1)5,

respectively. These equations have infinitely many integer solutions, see [9].

Theorem 1.4. For k = 3 and l /∈ {1, 3, 5}, the equation

(1.7) S3
a,b(x) = Sl

c,d(y)

implies max(|x|, |y|) < C2, where C2 is an effectively computable constant

depending only on a, b, c, d and l.

2. Auxiliary results

In this section, we collect some results needed to prove Theorem 1.2.
First, we recall the finiteness criterion of Bilu and Tichy ([2]). To do this, we
need to define five kinds of so-called standard pairs of polynomials.

Let α, β be nonzero rational numbers, µ, ν, q > 0 and ρ ≥ 0 be integers,
and let ν(x) ∈ Q[x] be a nonzero polynomial (which may be constant).

A standard pair of the first kind is (xq , αxρν(x)q) or switched, (αxρν(x)q ,
xq), where 0 ≤ ρ < q, gcd(ρ, q) = 1 and ρ+ deg ν(x) > 0.

A standard pair of the second kind is (x2, (αx2 + β)ν(x)2) or switched.
Denote byDµ(x, δ) the µ-th Dickson polynomial, defined by the functional

equation
Dµ(z + δ/z, δ) = zµ + (δ/z)µ

or by the explicit formula

Dµ(x, δ) =

⌊µ/2⌋∑

i=0

dµ,ix
µ−2i with dµ,i =

µ

µ− i

(
µ− i

i

)
(−δ)i.

A standard pair of the third kind is (Dµ(x, α
ν), Dν(x, α

µ)), where
gcd(µ, ν) = 1.

A standard pair of the fourth kind is

(α−µ/2Dµ(x, α),−β−ν/2Dν(x, β)),

where gcd(µ, ν) = 2.
A standard pair of the fifth kind is ((αx2 − 1)3, 3x4 − 4x3) or switched.
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The following theorem is the main result of [2].

Theorem 2.1. Let R(x), S(x) ∈ Q[x] be nonconstant polynomials such

that the equation R(x) = S(y) has infinitely many solutions in rational

integers x, y. Then R = ϕ ◦ f ◦ κ and S = ϕ ◦ g ◦ λ, where κ(x), λ(x) ∈ Q[x]
are linear polynomials, ϕ(x) ∈ Q[x], and (f(x), g(x)) is a standard pair.

The following lemmas are the main ingredients for the proofs of Theorems
1.3 and 1.4.

Lemma 2.2. For every b ∈ Q and rational integer k ≥ 3 with k /∈ {4, 6}
the polynomial Bk(x) + b has at least three zeros of odd muliplicities.

Proof. For b = 0 and odd values of k ≥ 3 this result is a consequence of
a theorem by Brillhart ([4, Corollary of Theorem 6]). For non-zero rational b
and odd k with k ≥ 3 and for even values of k ≥ 8 our lemma follows from
[6, Theorem] and [8, Theorem 2. 3], respectively.

Our next auxiliary result is an easy consequence of an effective theorem
concerning the S-integer solutions of so-called hyperelliptic equations.

Lemma 2.3. Let f(x) be a polynomial with rational coefficients and with

at least three zeros of odd multiplicities. Further, let u be a fixed positive

integer. If x and y are integer solutions of the equation

f
(x
u

)
= y2,

then we have max(|x|, |y|) < C3, where C3 is an effectively computable

constant depending only on u and the parameters of f .

Proof. This is a special case of the main result of [5].

Let c1, e1 ∈ Q∗ and c0, e0 ∈ Q.

Lemma 2.4. The polynomial Sk
a,b(c1x + c0) is not of the form e1x

q + e0
with q ≥ 3.

Lemma 2.5. The polynomial Sk
a,b(c1x+ c0) is not of the form

e1Dν(x, δ) + e0,

where Dν(x, δ) is the ν-th Dickson polynomial with ν > 4, δ ∈ Q∗.

Before proving the above lemmas, we introduce the following notation.
Put

Sk
a,b(c1x+ c0) = sk+1x

k+1 + skx
k + · · ·+ s0,

and

c′0 =
b

a
+ c0.
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We have

sk+1 =
akck+1

1

k + 1
,(2.8)

sk =
akck1
2

(2c′0 − 1),(2.9)

sk−1 =
akck−1

1

12
k(6c′20 − 6c′0 + 1), k ≥ 2,(2.10)

and for k ≥ 4,

(2.11) sk−3 =
akck−3

1

720
k(k − 1)(k − 2)(30c′40 − 60c′30 + 30c′20 − 1).

Proof of Lemma 2.4. Suppose that Sk
a,b(c1x+ c0) = e1x

q + e0, where

we have q = k+1 ≥ 3. It follows that sk−1 = 0, so 6c′20 − 6c′0 +1 = 0. Hence,
c′0 /∈ Q, which is a contradiction.

Proof of Lemma 2.5. Suppose that Sk
a,b(c1x + c0) = e1Dν(x, δ) + e0

with ν > 4. Then

sk+1 = e1,(2.12)

sk = 0,(2.13)

sk−1 = −e1νδ,(2.14)

sk−3 =
e1(ν − 3)νδ2

2
.(2.15)

From (2.8), (2.12) and (2.9), (2.13), respectively, it follows that

(2.16) e1 =
aν−1cν1

ν
and c′0 =

1

2
.

In view of (2.10), substituting (2.16) together with k = ν − 1 into (2.14), we
obtain

(2.17) −
aν−1cν−2

1 (ν − 1)

24
= −

aν−1cν1νδ

ν
,

which implies

(2.18) c21 =
ν − 1

24δ
.

Similarly, comparing the forms (2.11) and (2.15) of sk−3 with the substitutions
k = ν − 1 and (2.16), we obtain

(2.19)
7aν−1cν−4

1 (ν − 1)(ν − 2)(ν − 3)

5760
=

aν−1cν1(ν − 3)νδ2

2ν
,

which implies

(2.20) c41 =
7(ν − 1)(ν − 2)

2880 δ2
.
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After substituting (2.18) into (2.20), we obtain 7(ν − 2) = 5(ν − 1), which
implies ν = 9/2, a contradiction.

One can see that the condition ν > 4 is necessary. Indeed,

S2
2,1(x) =

4

3
x3 −

1

3
x =

4

3
D3

(
x,

1

12

)
,

and

S3
2,1(x) = 2x4 − x2 = 2D4

(
x,

1

8

)
−

1

16
.

3. Proofs of the Theorems

Proof of Theorem 1.3. Using (3), one can rewrite equation (6) as

cl

l + 1

(
Bl+1

(
y +

d

c

)
−Bl+1

(
d

c

))
=

1

2
ax2 +

(
b−

a

2

)
x

or

8acl

l + 1

(
Bl+1

(
y +

d

c

)
−Bl+1

(
d

c

))
= 4a2x2 + 8a

(
b−

a

2

)
x

= (2ax+ 2b− a)2 − (2b− a)2.

Then our result is a simple consequence of Lemmas 2.2 and 2.3.

Proof of Theorem 1.3. Following Theorem 1.1, we have

S3
a,b(x) =

a3

4

(
x+

b

a
−

1

2

)4

−
a3

8

(
x+

b

a
−

1

2

)2

+
a4 − 16a2b2 + 32ab3 − 16b4

64a
.

Using the above representation, we rewrite equation (7) as

64aSl
c,d(y) = (2ax+2b−a)4− 4a2(2ax+2b−a)2+a4− 16a2b2+32ab3− 16b4

or

64aSl
c,d(y) + 3a4 + 16a2b2 − 32ab3 − 16b4 = (X − 2a2)2,

where X = (2ax + 2b − a)2. As in the previous case, Lemmas 2.2 and 2.3
complete the proof.

Proof of Theorem 1.2. If the equation (5) has infinitely many integer
solutions, then by Theorem 2.1 it follows that Sk

a,b(a1x + a0) = ϕ(f(x)) and

Sl
c,d(b1x + b0) = ϕ(g(x)), where (f, g) is a standard pair over Q, a0, a1, b0, b1

are rationals with a1b1 6= 0 and ϕ(x) is a polynomial with rational coefficients.
Assume that h = degϕ > 1. Then Theorem 1.1 implies

0 < deg f, deg g ≤ 2,
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and since k < l, we have deg f = 1, deg g = 2. In particular, k + 1 = h
and l + 1 = 2h, so l = 2k + 1. Therefore, if l 6= k + 1, we then must have
h = degϕ = 1 and l = 2k + 1.

Condition k 6= 1 implies k ≥ 2 and since l = 2k + 1, it follows that l ≥ 5.
Since deg f = 1, there exist f1, f0 ∈ Q, f1 6= 0, such that Sk

a,b(f1x+f0) = ϕ(x),
so

Sk
a,b(f1g(x) + f0) = ϕ(g(x)) = Sl

c,d(b1x+ b0).

As g(x) is quadratic, by making the substitution x 7→ (x− b0)/b1, we obtain
that there are c2, c1, c0 ∈ Q, c2 6= 0, such that

Sk
a,b(c2x

2 + c1x+ c0) = Sl
c,d(x).

Since degSk
a,b(x) = k+ 1 ≥ 2 and c2 6= 0, we have a decomposition of Sl

c,d(x)

which is equivalent to S((x+b/a−1/2)2) for some S ∈ Q[x] with deg S = k+1,
according to Theorem 1.1. Therefore, there exists a linear polynomial l(x) in
C[x] such that

c2x
2 + c1x+ c0 = l((x+ b/a− 1/2)2)

and S(x) = Sk
a,b(l(x)). Hence, there are A,B ∈ C, A 6= 0, such that

c2x
2 + c1x+ c0 = A(x + b/a− 1/2)2 +B.

Clearly, this implies that A,B ∈ Q and

Sk
a,b

(
A(x+ b/a− 1/2)2 +B

)
= S2k+1

c,d (x).

By the linear substitution x 7→ x− b/a+ 1/2, we obtain

(3.21) Sk
a,b(Ax

2 +B) = S2k+1
c,d (x− b/a+ 1/2).

Thus, we have an equality of polynomials of degree 2k + 2 ≥ 6. We calculate
and compare coefficients of the first few highest monomials participating in
the above polynomials. The coefficients of the polynomial in the right–hand
side above are easily deduced by setting c1 = 1, c0 = −b/a + 1/2 in (2.8),
(2.9), (2.10) and (2.11). Therefore, if we denote

S2k+1
c,d (x− b/a+ 1/2) = r2k+2x

2k+2 + · · ·+ r1x+ r0,

and

c′0 =
d

c
−

b

a
+

1

2
,
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then the coefficients are:

r2k+2 =
c2k+1

2k + 2
,

r2k+1 =
c2k+1

2
(2c′0 − 1),

r2k =
c2k+1(2k + 1)

12
(6c′20 − 6c′0 + 1),

r2k−2 =
c2k+1(2k + 1)2k(2k − 1)

720
(30c′40 − 60c′30 + 30c′20 − 1).

On the other hand, the coefficients sk+1, sk, . . . s0 for the polynomial Sk
a,b(x)

can be found by setting c1 = 1, c0 = 0 in (2.8), (2.9), (2.10) and (2.11). Since

Sk
a,b(Ax

2 +B) =
k+1∑

m=0

sm

m∑

i=0

(
m

i

)
(Ax2)iBm−i,

it follows that if we put

Sk
a,b(Ax

2 +B) = t2k+2x
2k+2 + · · ·+ t1x+ t0,

then

t2k+2 =
akAk+1

k + 1
,

t2k+1 = 0,

t2k = akAkB +
akAk

2

(
2

(
b

a

)
− 1

)
,

t2k−1 = 0,

t2k−2 =
akk

2
Ak−1B2 +

akk

2
Ak−1B

(
2

(
b

a

)
− 1

)

+
akk

12
Ak−1

(
6

(
b

a

)2

− 6

(
b

a

)
+ 1

)
.

Now we compare the coefficients. Comparing the leading coefficients yields

(3.22)
akAk+1

k + 1
=

c2k+1

2k + 2
, so 2akAk+1 = c2k+1,

and
2c

a
=

c2k+2

ak+1Ak+1
.

Therefore,

k+1

√
2c

a
∈ Q.
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If a and c do not fulfill the above condition, we are through, otherwise we
proceed. Comparing the coefficients of index 2k + 1, we get

c2k+1

2
(2c′0 − 1) = 0,

so c′0 = 1/2, which implies
d

c
=

b

a
.

If the coefficients a, b, c and d do not satisfy the last property above, then
we eliminate the possibility degϕ > 1. Therefore, we proceed with the case
where a, b, c and d do satisfy this property. Comparing the next coefficients
and using (3.22), we obtain

(3.23)
b

a
−

1

2
= −

1

12
A(2k + 1)−B.

Comparing the coefficients of index 2k − 2 and using c′0 = 1/2, we get

akk

2
Ak−1B2 +

akk

2
Ak−1B

(
2

(
b

a

)
− 1

)

+
akk

12
Ak−1

(
6

(
b

a

)2

− 6

(
b

a

)
+ 1

)

=
7

8
·
c2k+1(2k + 1)2k(2k − 1)

720
.

By using also (3.22) and simplifying, we obtain

B2

2
+

B

2

(
2

(
b

a

)
− 1

)
+

1

12

(
6

(
b

a

)2

− 6

(
b

a

)
+ 1

)

=
7(4k2 − 1)A2

1440
.

By using also (3.23), the last relation above can be transformed into

B2

2
+B

(
−

1

12
A(2k + 1)−B

)
+

1

2

(
−

1

12
A(2k + 1)−B

)2

−
1

24

=
7A2(4k2 − 1)

1440
.

After simplification, we obtain

A2(k − 3)(−2k − 1) = 15.

For k ≥ 3, the expression in the left–hand side above is negative or zero,
which is a contradiction. If k = 2, then A2 = 3, which contradicts the fact
that A ∈ Q. Therefore there are no rational coefficients a, b, c, d, A and B
such that (3.21) is fulfilled, which implies that degϕ = 1.
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Now, we have

Sk
a,b(a1x+ a0) = e1f(x) + e0 and Sl

c,d(b1x+ b0) = e1g(x) + e0,

where 0 6= e1, e0 ∈ Q. Further, we have deg f = k + 1 and deg g = l+ 1.
In view of the assumptions on k and l, it follows that the standard pair

(f, g) cannot be of the second kind, and with the exception of the case (k, l) =
(3, 5), of the fifth kind either.

If it is of the first kind, then one of the polynomials Sk
a,b(a1x + a0) and

Sl
c,d(b1x + b0) is of the form e1x

q + e0 with q ≥ 3. This is impossible by
Lemma 2.4.

If (f, g) is a standard pair of the third or fourth kind, we then have
Sl
c,d(b1x + b0) = e1Dν(x, δ) + e0 with ν = l + 1 ≥ 5 and δ ∈ Q∗, which

contradicts Lemma 2.5 or k = 2, l = 3. In this case Theorem 1.4 gives an
effective finiteness result.

Now returning to the special case (k, l) = (3, 5), by using formula (2.10)
for k = 3 it is easy to see that S3

a,b(c1c+c0) = e1(3x
4−4x3)+e0 is impossible,

see the proof of Lemma 2.4.
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