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ON EXACTNESS OF THE COARSE SHAPE GROUP

SEQUENCE
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University of Split, Croatia

Abstract. The coarse shape groups are recently introduced. Given
a pointed pair (X,X0, x0) and a k ∈ N, the relative coarse shape group
π̌∗

k
(X,X0, x0) , having the standard relative shape group π̌k (X,X0, x0)

for its subgroup, is defined. They establish a functorial relations of the
topological, homotopy and (coarse) shape category to the category of
groups. Therefore, the coarse shape groups are new algebraic topological,
homotopy and (coarse) shape type invariants. For every pointed pair of

metric compacta (X,X0, x0) and for every k > 1, the boundary homo-
morphism ∂∗

k
: π̌∗

k
(X,X0, x0) → π̌∗

k−1 (X0, x0) = π̌∗

k−1 (X0, {x0} , x0) is

introduced which induces a natural transformation. The corresponding
sequence of the coarse shape groups is exact, although the shape sequence
generally failed to be exact. This exactness makes powerful tool for
computing coarse shape groups of some particular pointed pairs of metric
compacta.

1. Introduction

The coarse shape theory was recently founded by the author and N.
Uglešić ([2]). They have extended an abstract shape category by constructing
an abstract coarse shape category. The (pointed) coarse shape category
Sh∗ (Sh∗

⋆), having (pointed) topological spaces as objects and having the
(pointed) shape category Sh (Sh⋆) as a subcategory is constructed. In the
same way the pointed coarse shape category (of pairs) Sh∗

⋆ (Sh∗2
⋆ ) having

pointed topological spaces (pairs) for objects and having the pointed shape
category (of pairs) Sh⋆ (Sh2

⋆) for its subcategory is constructed. The coarse
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shape theory functorially generalizes the shape theory such that there exist
spaces (metrizable continua) having the same coarse shape type and different
shape types (see [1, 2]). However, the coarse shape preserves some important
topological or shape invariants (see [3,7]) as connectedness, movability, strong
movability, n-movability, shape dimension, triviality of shape, stability. There
are also several important algebraic coarse shape invariants and, consequently,
topological, homotopy and shape invariants. In [4], functors π̌∗

n : Sh∗
⋆ → Grp,

n ∈ N (Grp denotes the category of groups) and π̌∗
0 : Sh∗

⋆ → Set⋆ are
introduced. Here Set⋆ denotes the category of pointed sets and base point
preserving functions. Notice that we may consider every group as a pointed
set having neutral element o for a base point and every group homomorphism
as a base point preserving function. In this paper we consider with more
details functors π̌∗

n : Sh∗2
⋆ → Grp, n > 1, π̌∗

1 : Sh∗2
⋆ → Set⋆ which

assigns to every pointed pair (X,X0, x0) the n-th relative coarse shape group
π̌∗
n (X,X0, x0). Since every coarse shape group π̌∗

k (X, x0) can be considered
as the relative coarse shape group π̌∗

k (X, {x0} , x0), for k > 2, these groups
are more general. Furthermore, every shape group π̌n (X,X0, x0) can be
imbedded in π̌∗

n (X,X0, x0) as its subgroup (Theorem 4.8). Therefore, the
(relative) coarse shape groups provide better information on pointed (pairs
of) spaces than the (relative) shape groups do. For every pointed pair of
spaces (X,X0, x0), where X0 is normally embedded in X , and for every
k > 1, the boundary homomorphism ∂∗

k : π̌∗
k (X,X0, x0) → π̌∗

k−1 (X0, x0) is
introduced (Theorem 3.4). It induces natural transformation (Theorem 3.5).
Further, it is natural to consider the sequence of the coarse shape groups of a
pointed pair (X,X0, x0). We know that the most useful feature of the relative
homotopy groups πk (X,X0, x0) is that they fit into a long exact sequence.
Further, the well known fact is that, even for a pointed pair (X,X0, x0) of
metric compacta, the sequence of the shape groups (the shape sequence)
π̌k (X,X0, x0) generally failed to be exact. Nevertheless we proved that the
sequence of the coarse shape groups of a pointed pair of metric compacta
(X,X0, x0) is exact (Corollary 4.3). This makes powerful tool for calculating
coarse shape groups of some particular pointed pairs of metric compacta as
demonstrated by Examples 4.6 and 4.7. In Example 4.9 a pointed pair is
given such that the corresponding shape sequence is not exact although that
sequence is embedded in the exact sequence of the coarse shape groups.

2. Preliminaries

We recall some basic notions on the coarse shape category (see [2]). Let
X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be two inverse systems in some
category C. An S∗-morphism of inverse systems, (f, fn

µ ) : X → Y , consists of
an index function f : M → Λ, and of a set of C-morphisms fn

µ : Xf(µ) → Yµ,
n ∈ N, µ ∈ M, such that, for every related pair µ ≤ µ′ in M , there exists a
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λ ∈ Λ, λ > f(µ), f (µ′), and there exists an n ∈ N so that, for every n′ > n,

fn′

µ pf(µ)λ = qµµ′fn′

µ′ pf(µ′)λ.

If M = Λ and the index function is the identity 1Λ and, for every pair λ ≤ λ′,
there exists an n ∈ N such that, for every n′ ≥ n, fn′

λ pλλ′ = qλλ′fn′

λ′ , then the
S∗-morphism (1Λ, f

n
λ ) is said to be level.

An S∗-morphism (f, fn
µ ) : X → Y of inverse systems in C is said to

be equivalent to an S∗-morphism (f ′, f ′n
µ ) : X → Y , denoted by (f, fn

µ ) ∼
(f ′, f ′n

µ ), provided every µ ∈ M admits a λ ∈ Λ, λ > f(µ), f ′(µ), and an
n ∈ N, such that, for every n′ > n,

fn′

µ pf(µ)λ = f ′n′

µ pf ′(µ)λ.

The relation ∼ is an equivalence relation among S∗-morphisms of inverse
systems in C. The equivalence class [(f, fn

µ )] of an S∗-morphism (f, fn
µ ) : X →

Y is denoted by f∗.
The category pro∗-C has as objects all inverse systems X in C and as

morphisms all equivalence classes f∗ = [(f, fn
µ )] of S∗-morphisms (f, fn

µ ).
The composition in pro∗-C is well defined by putting g∗f∗ = h∗ ≡ [(h, hn

ν )],
where (h, hn

ν ) = (g, gnν )(f, f
n
µ ) = (fg, gnν f

n
g(ν)). For every inverse system X

in C, the identity morphism in pro∗-C is 1∗X = [(1Λ, 1Xλ
)], where 1Λ is the

identity function and 1nXλ
= 1Xλ

are the identity morphisms in C, for all n ∈ N

and λ ∈ Λ.
A functor J ≡ JC : pro-C → pro∗-C keeps objects fixed, i.e., J (X) = X ,

for every inverse system X in C, and to each morphism f = [(f, fµ)] ∈ pro-
C(X,Y ) it assigns a morphism J (f) = f∗ = [(f, fn

µ )] ∈ pro∗-C(X,Y ), which
is said to be induced by f , where fn

µ = fµ for all µ ∈M and n ∈ N. Since the
functor J is faithful, we may consider the category pro-C as a subcategory of
pro∗-C.

Let us consider any category pair (C,D) whereD is a full and pro-reflective
(i.e., dense) subcategory of C (see [5, I.2.2]). Let p : X → X and p′ : X → X ′

be D-expansions of the same objectX of C, and let q : Y → Y and q′ : Y → Y ′

beD-expansions of the same object Y of C (see [5, I.2.1]). Therefore there exist
two unique isomorphisms i : X → X ′ and j : Y → Y ′ in pro-D. Consequently,
i∗ ≡ J(i) : X → X ′ and j∗ ≡ J(j) : Y → Y ′ are isomorphisms in pro∗-D.
A morphism f∗ : X → Y is said to be pro∗-D equivalent to a morphism
f ′∗ : X ′ → Y ′, denoted by f∗ ∼ f ′∗, provided the following diagram in
pro∗-D commutes:

X
i∗−→ X ′

f∗ ↓ ↓ f ′∗

Y
j∗−→ Y ′

.

Hereby is defined an equivalence relation on the appropriate subclass of
morphisms of pro∗-D. The equivalence class of f∗ is denoted by 〈f∗〉.
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We define the (abstract) coarse shape category Sh∗

(C,D) for (C,D) as the

category whose objects are all the objects of C and whose morphisms F ∗ ∈
Sh∗

(C,D)(X,Y ) are all pro∗-D equivalence class 〈f∗〉 of morphisms f∗ : X → Y ,

with respect to any choice of a pair of D-expansions p : X → X , q : Y →
Y . The composition of an F ∗ : X → Y , F ∗ = 〈f∗〉 and a G∗ : Y → Z,
G∗ = 〈g∗〉, is defined by the representatives, i.e., G∗F ∗ : X → Z, G∗F ∗ =
〈g∗f∗〉. The identity coarse shape morphism on an object X , 1∗X : X → X ,
is the pro∗-D equivalence class 〈1∗X〉 of the identity morphism 1∗X in pro∗-D.
Since Sh∗

(C,D)(X,Y ) ≈ pro∗-D(X,Y ), one may say that pro∗-D is the realizing

category for the coarse shape category Sh∗

(C,D) in the same way as pro-D is for

the shape category Sh(C,D). The functor J of the “pro-categories” induces the
embedding functor J ≡ J(C,D) : Sh(C,D) → Sh∗

(C,D) of the “shape” categories

in such a manner that J keeps the objects fixed and to each shape morphism
F = 〈f〉 ∈ Sh(C,D) (X,Y ) represented by a morphism f of pro-D category
it assigns the coarse shape morphism F ∗ = 〈f∗〉 = J (F ) ∈ Sh∗

(C,D) (X,Y )

which is represented by the morphism f∗ = J (f) of pro∗-D induced by f.
In this paper C will be the pointed homotopy category HTop⋆ or the

pointed homotopy category of pairs HTop2⋆. Recall that objects of the
category HTop2⋆ are all the pointed pairs of topological spaces, (X,X0, x0),
x0 ∈ X0 ⊆ X and morphisms are all the homotopy classes [f ] of mappings
of pointed pairs, f : (X,X0, x0) → (Y, Y0, y0), i.e., mappings f : X → Y
satisfying f (X0) ⊆ Y0 and f (x0) = y0, (it is understood that a homotopy
passes through maps of the same form). Objects of the category HTop⋆ are
all the pointed spaces (X, x0) and morphisms are all the homotopy classes
[f ] of mappings of pointed spaces, f : (X, x0) → (Y, y0). In this paper
the homotopy class [f ] of a map f (briefly H-map), i.e., a morphism of
the category HTop⋆ or HTop2⋆, will be usually denoted by omitting the
brackets, unless we already have used this notation for some continuous
mapping. A reduction in the object classes to all pointed polyhedral pairs
and pointed polyhedra yields the full subcategories HPol2⋆ ⊆ HTop2⋆ and
HPol⋆ ⊆ HTop⋆ respectively. The well known fact is that HPol2⋆, and
HPol⋆ are pro-reflective subcategories of HTop2⋆ and HTop⋆ respectively
([5, Theorem I.4.7, Theorem I.4.8]). This means that, for every pointed
pair of topological spaces (X,X0, x0), there exists a HPol2⋆-expansion of
(X,X0, x0), i.e., an inverse system (X,X0, x0) = ((Xλ, X0λ, x0λ) , pλλ′ ,Λ)
in HPol2⋆ and a morphism p = [(pλ)] : (X,X0, x0) → (X,X0, x0) of pro-
HTop2⋆ satisfying some special properties (see [5, Theorem I.2.1]). Similarly,
for every pointed space (X, x0) there exists a HPol⋆-expansion of (X, x0), i.e.,
an inverse system (X, x0) = ((Xλ, x0λ) , pλλ′ ,Λ) in HPol⋆ and a morphism
p = [(pλ)] : (X, x0)→ (X, x0) of pro-HTop⋆ satisfying some special properties
(see [5, Theorem I.2.1]).
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The construction of the pointed coarse shape category of pairs Sh∗2
⋆ follows

now the general rule, i.e., it is the category Sh∗
(HTop2

⋆,HPol2⋆)
. Briefly, the

objects of Sh∗2
⋆ are all pointed pairs of topological spaces (X,X0, x0), while

a morphism set Sh∗2
⋆ ((X,X0, x0), (Y, Y0, y0)) consists of all the equivalence

classes F ∗ = 〈f∗〉 of morphisms f∗ =
[

(f, fn
µ )

]

: (X,X0, x0) → (Y, Y0, y0)

of pro∗-HPol2⋆ ranging all over the corresponding expansions. A morphism
f∗ is represented by an S∗-morphism (f, fn

µ ) : ((Xλ, X0λ, x0λ) , pλλ′ ,Λ) →
((Yµ, Y0µ, y0µ) , qµµ′ ,M), where fn

µ :
(

Xf(µ), X0f(µ), x0f(µ)

)

→ (Yµ, Y0µ, y0µ)

is a H-map, i.e., a morphism of HPol2⋆, for every µ ∈ M, n ∈ N. Therefore,
the category pro∗-HPol2⋆ is the realizing category for Sh∗2

⋆ , i.e.,

Sh∗2
⋆ ((X,X0, x0), (Y, Y0, y0)) ≈ pro∗-HPol2⋆((X,X0, x0), (Y, Y0, y0)),

and every coarse shape morphism F ∗ : (X,X0, x0)→ (Y, Y0, y0) is represented
by a diagram in pro∗-HTop2⋆

(X,X0, x0)
p← (X,X0, x0)

f∗ ↓
(Y, Y0, y0) ←

q
(Y, Y0, y0)

.

Similarly, one constructs the pointed coarse shape category

Sh∗
⋆ = Sh∗

(HTop⋆,HPol⋆)

of pointed topological spaces having the category pro∗-HPol⋆ for its realizing
category. The embedding functor J : Sh2

⋆ → Sh∗2
⋆ (J : Sh⋆ → Sh∗

⋆) relates
the pointed shape category (of pairs) with the corresponding coarse shape
category.

For a pointed topological pair (X,X0, x0), where the subspace X0 is
normally embedded in X (see [5, II. 3.3,I. 6.5]), there exists an HPol2⋆-
expansion

p = (pλ) : (X,X0, x0)→ (X,X0, x0) = ((Xλ, X0λ, x0λ) , pλλ′ ,Λ)

such that p : (X, x0)→ (X, x0) and

p|X0 = (pλ|X0 ) : (X0, x0)→ (X0, x0) =
(

(X0λ, x0λ) , pλλ′ |X0λ′
,Λ

)

are HPol⋆-expansions. We will say that this expansion is a normal HPol2⋆-
expansion (of a pointed pair). Therefore, if X0 and Y0 are normally
embedded in X and Y, respectively, then for every coarse shape morphism
F ∗ : (X,X0, x0)→ (Y, Y0, y0) in Sh∗2

⋆ which is represented by f∗ = [(f, fn
µ )] :

(X,X0, x0) → (Y, Y0, y0), there exists the restricted coarse shape morphism
F ∗|(X0,x0) : (X0, x0)→ (Y0, y0) in Sh∗

⋆ which is defined via the representative
f∗|(X0,x0) = [(f, fn

µ |X0f(µ)
)] : (X0, x0) → (Y0, y0), where p : (X,X0, x0) →

(X,X0, x0) and q : (Y, Y0, y0)→ (Y, Y0, y0) are normal HPol2⋆-expansions.
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Theorem 2.1. Every pointed pair of metric compacta (X,X0, x0) is the
limit of a ”countable” inverse system of pointed compact polyhedral pairs
and continuous bonding maps, i.e., there exists an inverse limit (pλ) :
(X,X0, x0) → ((Xλ, X0λ, x0λ) , pλλ′ ,Λ) satisfying cardΛ = ℵ0. Further,
p = ([pλ]) : (X,X0, x0) → ((Xλ, X0λ, x0λ) , [pλλ′ ] ,Λ) is the normal HPol2⋆-
expansion of (X,X0, x0).

Proof. According to [5, Theorems I.5.11. and I.5.10.] there exists an
inverse system ((Xλ, X0λ) , pλλ′ ,Λ) of pairs of compact polyhedra satisfying
cardΛ = ℵ0, and there exists a morphism (pλ) : (X,X0)→ ((Xλ, X0λ) , pλλ′ ,Λ)
of pro-cM2 (cM denotes the category having metric compacta for the
objects and having continuous mappings as the morphisms) which is the
inverse limit (in the category of pairs of metric compacta cM2) such that
(pλ) : X → (Xλ, pλλ′ ,Λ) and (pλ|X0) : X0 →

(

X0λ, pλλ′ |X0λ′
,Λ

)

are the
inverse limits (in the category cM). One can easily prove that

(pλ) : (X,X0, x0)→ ((Xλ, X0λ, x0λ) , pλλ′ ,Λ) ,

(pλ) : (X, x0)→ ((Xλ, x0λ) , pλλ′ ,Λ)

and

(pλ|X0) : X0 →
(

(X0λ, x0λ) , pλλ′ |X0λ′
,Λ

)

, pλ (x0) = x0λ, λ ∈ Λ,

are the inverse limits (in the category of the pointed pairs of metric compacta
cM2

⋆ and the category of the pointed metric compacta cM⋆ respectively).
Now, in order to prove the second assertion, one can argue as in the proof of [5,
Theorem I.5.13.] (nonpointed case). Namely, that proof allows straightforward
translation to the pointed case.

3. The boundary homomorphism of the coarse shape groups

We begin by recalling some notions concerning the (relative) homotopy
groups and the (relative) coarse shape groups introduced in [4].

Recall that, for every pointed pair of topological space (X,X0, x0) and
for every k ∈ N, elements of the relative k-dimensional homotopy group
πk (X,X0, x0) can be regarded as homotopy classes of maps

(

Dk, Sk−1, s0
)

→
(X,X0, x0), where Dk denotes the standard k-dimensional disk having the
(k-1)-dimensional sphere Sk−1 for its boundary. A group operation is defined
in πk (X,X0, x0) for k > 2 and we will use the additive notation for it. The
neutral element of πk (X,X0, x0), i.e., the homotopy class of the constant
map to x0, we will denote by o :

(

Dk, Sk−1, s0
)

→ (X,X0, x0). The trivial
homotopy group πk (X,X0, x0) = {o} we will denote by 0, same as any other
trivial group. For every k ∈ N\ {1} and for every pointed space (X, x0), the
k-th homotopy group πk (X, x0) is defined as πk (X, {x0} , x0) . Since we may
identify every map

(

Dk, Sk−1, s0
)

→ (X, {x0} , x0) with a map of the quotient

Dk/Sk−1 = Sk to X (the base point s0 = Sk−1/Sk−1 to x0), we can also view
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elements of πk (X, x0) as homotopy classes of maps
(

Sk, s0
)

→ (X, x0). Using
this approach to homotopy groups, the definition of πk (X, x0) is extended to
all k ∈ N0 and a group operation is defined in π1 (X, x0) as well.

For every k ∈ N and every pointed pair of spaces (X,X0, xx0), the k-th
relative coarse shape group of a pair (X,X0, x0) at a base point x0, denoted
by π̌∗

k (X,X0, x0), is defined. Its underlying set consists of all coarse shape
morphisms A∗ :

(

Dk, Sk−1, s0
)

→ (X,X0, x0) in the category Sh∗2
⋆ . For every

k > 2, a group operation + is given by formula

(3.1) A∗+B∗ = 〈a∗〉+ 〈b∗〉 = 〈a∗+b∗〉 = 〈[(anλ)] + [(bnλ)]〉 = 〈[(anλ + bnλ)]〉

where coarse shape morphisms A∗ and B∗ are represented by morphisms
a∗ = [(anλ)] and b∗ = [(bnλ)] :

(

Dk, Sk−1, s0
)

→ (X,X0, x0) in pro∗-HPol2⋆,
respectively, and

p : (X,X0, x0)→ (X,X0, x0) = ((Xλ, X0λ, x0λ) , pλλ′ ,Λ)

is an HPol2⋆-expansion of a pointed pair (X,X0, x0) . Notice that the sum anλ+
bnλ in (3.1) denotes theH-map which is the sum in the group πk (Xλ, X0λ, x0λ).
For every k ≥ 2, π̌∗

k (X,X0, x0) is a group (for k ≥ 3 an abelian group)
and π̌∗

1 (X,X0, x0) is a pointed set. The neutral element (base point) in
π̌∗
k (X,X0, x0) is a coarse shape morphism O∗ = 〈o∗〉, o∗ = [(onλ)] : (D

k, Sk−1,
s0) → (X,X0, x0), where onλ :

(

Dk, Sk−1, s0
)

→ (Xλ, X0λ, x0λ) denotes the
neutral element of πk (Xλ, X0λ, x0λ), λ ∈ Λ.

For every k ∈ N0 and every pointed space (X, x0) the k-th coarse shape
group π̌∗

k (X, x0) of a pointed space (X, x0) at a base point x0 is defined. For
k = 0 it is the pointed set Sh∗

⋆

((

S0, s0
)

, (X, x0)
)

and for every k > 1 it is a

group whose underlaying set is Sh∗
⋆

((

Sk, s0
)

, (X, x0)
)

and a group operation
+ is given by formula (3.1), where coarse shape morphisms A∗ and B∗ are
represented by morphisms a∗ = [(anλ)] and b∗ = [(bnλ)] :

(

Sk, s0
)

→ (X, x0) in
pro∗-HPol⋆, respectively, and

p : (X, x0)→ (X, x0) = ((Xλ, x0λ) , pλλ′ ,Λ)

is an HPol⋆-expansion of a pointed space (X, x0) . Hereby the sum anλ + bnλ in
(3.1) denotes the H-map which is the sum in the group πk (Xλ, x0λ) . Since,
an HPol2⋆-expansion of a pointed pair (X, {x0} , x0) is

p : (X, {x0} , x0)→ (X, x0, x0) = ((Xλ, {x0λ} , x0λ) , pλλ′ ,Λ) ,

and since every H-map
(

Dk, Sk−1, s0
)

→ (X, {x0} , x0) can be regarded as an

H-map
(

Sk, s0
)

→ (X, x0), we may identify the set Sh∗
⋆

((

Sk, s0
)

, (X, x0)
)

with the set Sh∗2
⋆

((

Dk, Sk−1, s0
)

, (X, {x0} , x0)
)

, for every k ∈ N. Therefore,
πk (X, x0) = πk (X, {x0} , x0) implies that one may consider the coarse shape
group π̌∗

k (X, x0) as the relative coarse shape group π̌∗
k (X, {x0} , x0) , for every

k > 2.
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In [4, Example 1], an explicit formula for the coarse shape group

π̌∗
k (P, p0) =

∏

n∈N

πk (P, p0) /
⊕

n∈N

πk (P, p0)

of a pointed polyhedron (P, p0), for every k ∈ N, is given. A proof similar to
the one given in [4] gives rise to the following generalization of that formula:

Proposition 3.1. Given a pointed polyhedral pair (P, P0, p0) and a k ∈
N\ {1}, the coarse shape group π̌∗

k (P, P0, p0) is the quotient group

(

∏

n∈N

Gn

)

/

(

⊕

n∈N

Gn

)

,

where Gn = πk (P, P0, p0), n ∈ N.

We may also establish the corresponding formula for the coarse shape
group π̌∗

0 (P, p0) as well as for the π̌∗
1 (P, P0, p0), where a group structure

is not defined. Namely, it holds that π̌∗
0 (P, p0) =

∏

n∈N

π0 (P, p0) / (∼)

and π̌∗
1 (P, P0, p0) =

∏

n∈N

π1 (P, P0, p0) / (∼), where ∼ denotes an equivalence

relation on the direct product of pointed sets
∏

n∈N

Gn given by the rule:

(g1, g2, ...) ∼ (g′1, g
′
2, ...) provided there exists an n0 ∈ N such that gn = g′n,

for every n > n0.
For every k ∈ N and for every coarse shape morphism F ∗ : (X,X0, x0)→

(Y, Y0, y0) of Sh∗2
⋆ , a homomorphism (a base point preserving function, for

k = 1)

π̌∗
k (F

∗) : π̌∗
k (X,X0, x0)→ π̌∗

k (Y, Y0, y0)

is defined by the following rule

(3.2) π̌∗
k (F

∗) (A∗) = F ∗A∗,

for every A∗ ∈ π̌∗
k (X,X0, x0). By following this rule, for every k ∈ N0, a

homomorphism (a base point preserving function) π̌∗
k (F

∗) : π̌∗
k (X, x0) →

π̌∗
k (Y, y0) is defined for every coarse shape morphism F ∗ : (X, x0) → (Y, y0)

of Sh∗
⋆.

Recall that, for every k ∈ N, and for every pointed topological pair
(X,X0, x0), there exists a homotopy boundary homomorphism (for k = 1
a base point preserving function) ∂k ≡ ∂k (X,X0, x0) : πk (X,X0, x0) →
πk−1 (X0, x0) defined by the restriction of mappings:

∂k (a) = a|
(

Sk−1, s0
)

:
(

Sk−1, s0
)

→ (X0, x0) ,

for all H-maps a :
(

Dk, Sk−1, s0
)

→ (X,X0, x).
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Further, letting i : (X0, x0)→ (X, x0) and j : (X, {x0} , x0)→ (X,X0, x0)
to be the homotopy classes of inclusions, the following sequence

(3.3)
· · · ∂k+1→ πk (X0, x0)

πk(i)→ πk (X, x0)
πk(j)→ πk (X,X0, x0)

∂k→ · · ·

· · · ∂1→ π0 (X0, x0)
π0(i)→ π0 (X, x0)

is exact. Recall, that a sequence

· · · → X ′ f ′

→ X
f→ X ′′ → · · ·

of group homomorphisms is said to be exact (semiexact) at term X provided
Im f ′ = ker f (Im f ′ ⊆ ker f). Exactness and semiexactness at X still make
sense if some of terms X ′, X , and X ′′ are pointed sets having no group
structures and f is a base point preserving function. In that case we consider
ker f as the preimage f−1 (o) of the base point (or neutral element) o. A
sequence of homomorphisms is exact if it is exact at each of its terms. A
sequence of homomorphisms is said to be a chain if it is semiexact at each of
its terms.

A useful reformulation of what is meant by exactness of the sequence (3.3)
at the term πk (X, x0) is given as follows.

Proposition 3.2. Let x0 ∈ X0 ⊆ X and let a :
(

Sk, s0
)

→ (X, x0) be an
H-map. The following assertions are equivalent:

(i) There exists an H-map b :
(

Sk, s0
)

→ (X0, x0) such that i ◦ b = a

(ii) If we view a as an H-map α :
(

Dk, Sk−1, s0
)

→ (X, {x0} , x0) , then

j◦α :
(

Dk, Sk−1, s0
)

→ (X,X0, x0) coincides with o :
(

Dk, Sk−1, s0
)

→
(X,X0, x0) .

Remark 3.3. One can easily establish an analogue characterization of
exactness of the sequence (3.3) at any other term.

For every pointed topological pair (X,X0, x0), where X0 is normally
embedded in X , and every k ∈ N, we are now able to define the boundary
homomorphism of the coarse shape groups

∂∗
k : π̌∗

k (X,X0, x0)→ π̌∗
k−1 (X0, x0)

given by restricting coarse shape morphismsA∗ :
(

Dk, Sk−1, s0
)

→ (X,X0, x0)

to
(

Sk−1, s0
)

, i.e.,

∂∗
k (A

∗) = A∗|(Sk−1,s0) :
(

Sk−1, s0
)

→ (X0, x0) ,

for every A∗ ∈ π̌∗
k (X,X0, x0) . Notice that if A

∗ is represented by a morphism
a∗ = [(anλ)] :

(

Dk, Sk−1, s0
)

→ (X,X0, x0) of pro∗-HPol2⋆, then ∂∗
k (A

∗) is

represented by the morphism a∗|(Sk−1,s0) =
[(

anλ|(Sk−1,s0)

)]

:
(

Sk−1, s0
)

→
(X0, x0) of pro

∗-HPol⋆, where

p : (X,X0, x0)→ (X,X0, x0) = ((Xλ, X0λ, x0λ) , pλλ′ ,Λ)
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is a normal HPol2⋆-expansion of a pointed pair (X,X0, x0). Since, a
n
λ|(Sk−1,s0)

= ∂k (a
n
λ) and ∂k ≡ ∂k (Xλ, X0λ, x0λ) : πk (Xλ, X0λ, x0λ) → πk−1 (X0λ, x0λ)

is a homomorphism, for all n ∈ N and λ ∈ Λ, it follows that, for all A∗, B∗ ∈
π̌∗
k (X,X0, x0), by (3.1),

∂∗
k (A

∗+B∗) = ∂∗
k (〈a∗〉+ 〈b∗〉) = ∂∗

k 〈a∗+b∗〉 = ∂∗
k 〈[(anλ)] + [(bnλ)]〉

= ∂∗
k 〈[(anλ + bnλ)]〉 =

〈[(

(anλ + bnλ) |(Sk−1,s0)

)]〉

= 〈[(∂k (anλ + bnλ))]〉
= 〈[(∂k (anλ) + ∂k (b

n
λ))]〉 = 〈[(∂k (anλ))]〉+ 〈[(∂k (bnλ))]〉

=
〈[(

anλ|(Sk−1,s0)

)]〉

+
〈[(

bnλ|(Sk−1,s0)

)]〉

=
〈

a∗|(Sk−1,s0)

〉

+
〈

b∗|(Sk−1,s0)

〉

= A∗|(Sk−1,s0) +B∗|(Sk−1,s0)

= ∂∗
k (A

∗) + ∂∗
k (B

∗) .

By that we have proven the following theorem:

Theorem 3.4. The boundary homomorphism of the coarse shape groups
∂∗
k is a group homomorphism (for k = 1, a base point preserving function).

Theorem 3.5. Let X0 be normally embedded in a space X and let Y0

be normally embedded in a space Y . If F ∗ : (X,X0, x0) → (Y, Y0, y0) is a
coarse shape morphism of Sh∗2

⋆ , then the following diagram in the Grp (Set⋆)
commutes for every k ∈ N:

(3.4)
π̌∗
k (X,X0, x0)

∂∗

k−→ π̌∗
k−1 (X0, x0)

↓ π̌∗
k (F

∗) ↓ π̌∗
k−1(F

∗|X0 )

π̌∗
k (Y, Y0, y0)

∂∗

k−→ π̌∗
k−1 (Y0, y0)

.

Proof. Let F ∗ be represented by f∗ =
[(

f, fn
µ

)]

: (X,X0, x0) →
(Y, Y0, y0). For every A∗ ∈ π̌∗

k (X,X0, x0),

A∗ = 〈[(anλ)]〉 :
(

Dk, Sk−1, s0
)

→ (X,X0, x0) ,

it holds that

∂∗
k (π̌

∗
k (F

∗) (A∗)) = ∂∗
k (F

∗A∗) = (F ∗A∗) |(Sk−1,s0) =
〈[(

fn
µ a

n
f(µ)|(Sk−1,s0)

)]〉

=
〈[(

fn
µ |X0 ◦ anf(µ)|(Sk−1,s0)

)]〉

=
〈[(

fn
µ |X0

)]〉

◦
〈[(

anf(µ)|(Sk−1,s0)

)]〉

= F ∗|X0 ◦A∗|(Sk−1,s0) = π̌∗
k−1 (F

∗|X0)
(

A∗|(Sk−1,s0)

)

= π̌∗
k−1 (F

∗|X0) (∂
∗
k (A

∗)) ,

which verifies commutativity of diagram (3.4).

The previous theorems imply that, for every k ∈ N, the boundary
homomorphism of the coarse shape groups induces a natural transformation
∂k : Uk  Vk of the functor Uk : HTop2⋆ → Grp to the functor Vk :
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HTop2⋆ → Grp, where Uk (X,X0, x0) = π̌∗
k (X,X0, x0) and Vk (X,X0, x0) =

π̌∗
k−1 (X0, x0), for every pointed pair (X,X0, x0) (for k = 1, instead of Grp

comes Set⋆)

4. The coarse shape group sequence of a pointed pair (X,X0, x0)

Let S denote the standard pointed shape functor S(HTop⋆,HPol⋆,) : HTop⋆
→ Sh⋆ to the pointed shape category Sh⋆ as well as the shape functor
S(HTop2

⋆,HPol2⋆)
: HTop2⋆ → Sh2

⋆ to the pointed shape category of pairs Sh2
⋆

(see [5, I.2.3, I.4.3]). Recall that, by general theory ([5, I.2.3]), for every H-
mapping f : (X,X0, x0) → (Y, Y0, y0) and every pair of HPol2⋆-expansions
p and q of (X,X0, x0) and (Y, Y0, y0) respectively, there exists a unique
morphism f : (X,X0, x0) → (Y, Y0, y0) of pro-HPol2⋆ such that fp = q ⌊f⌋
where ⌊f⌋ denotes the rudimentary embedding of f into pro-HTop2⋆. Then f
represents the shape morphism F ≡ S(f) : (X,X0, x0) → (Y, Y0, y0) of Sh2

⋆.
Analogously, for every H-mapping f : (X, x0) → (Y, y0) and every pair of
HPol⋆-expansions p and q of (X, x0) and (Y, y0) respectively, there exists a
unique morphism f : (X, x0) → (Y, y0) of pro-HPol⋆ such that fp = q ⌊f⌋.
Then f represents the shape morphism F ≡ S(f) : (X, x0)→ (Y, y0) of Sh⋆.

Let X0 be a subspace normally embedded in a space X and let p = (pλ) :
(X,X0, x0) → (X,X0, x0) = ((Xλ, X0λ, x0λ) , pλλ′ ,Λ) be a normal HPol2⋆-
expansion of the pointed pair (X,X0, x0). If ι : (X0, x0) → (X, x0) and
j : (X, {x0} , x0) → (X,X0, x0) are the homotopy classes of the inclusions,
then it is easy to prove that the coarse shape morphisms J (S (ι)) and J (S (j))
are represented by morphisms

(4.1) [(1Λ, ι
n
λ)] : (X0, x0)→ (X, x0)

and

(4.2) [(1Λ, j
n
λ )] : (X, x0, x0)→ (X,X0, x0)

of pro∗-HPol⋆ and pro∗-HPol2⋆ respectively. Here (1Λ, ι
n
λ) and (1Λ, j

n
λ ) denote

the level S∗-morphisms, where ιnλ = ιλ : (X0λ, x0λ)→ (Xλ, x0λ) and jnλ = jλ :
(Xλ, {x0λ} , x0λ)→ (Xλ, X0λ, x0λ) are the homotopy classes of the inclusions,
for all λ ∈ Λ and n ∈ N.

For every pointed pair (X,X0, x0) , where X0 is normally embedded in
X, one consider the following sequence:

(4.3)
· · ·

∂∗

k+1→ π̌∗
k (X0, x0)

Ǐ∗

k→ π̌∗
k (X, x0)

J̌∗

k→ π̌∗
k (X,X0, x0)

∂∗

k→ · · ·

· · · Ǐ
∗

1→ π̌∗
1 (X, x0)

J̌∗

1→ π̌∗
1 (X,X0, x0)

∂∗

1→ π̌∗
0 (X0, x0)

Ǐ∗

0→ π̌∗
0 (X, x0)

which is called the coarse shape group sequence of a pointed pair (X,X0, x0) ,
where Ǐ∗k = π̌∗

k (J (S (ι))) : π̌∗
k (X0, x0) → π̌∗

k (X, x0) and J̌∗
k = π̌∗

k (J (S (j))) :
π̌∗
k (X, {x0} , x0)→ π̌∗

k (X,X0, x0), for every k ∈ N0.
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Proposition 4.1. If a subspace X0 is normally embedded in a space X,
then the coarse shape group sequence of the pointed pair (X,X0, x0) is a chain.

Proof. Let

p = (pλ) : (X,X0, x0)→ (X,X0, x0) = ((Xλ, X0λ, x0λ) , pλλ′ ,Λ)

be a normal HPol2⋆-expansion of the pointed pair (X,X0, x0). We propose to
prove semiexactness of the sequence (4.3) at π̌∗

k (X, x0) . Let B∗ = 〈[(bnλ)]〉 :
(

Sk, s0
)

→ (X0, x0) be an arbitrary element of π̌∗
k (X0, x0). By (4.1), (4.2)

and (3.2) it follows that

J̌∗
k ◦ Ǐ∗k (B∗) = 〈[(1Λ, jnλ )]〉 ◦ 〈[(1Λ, ιnλ)]〉 ◦ 〈[(bnλ)]〉 = 〈[(jnλ ◦ ιnλ ◦ bnλ)]〉 .

By Proposition 3.2, this implies jni ◦ ιni ◦ bni = onλ, for all i, n ∈ N, where onλ :
(

Dk, Sk−1, s0
)

→ (Xλ, X0λ, x0λ) denotes the neutral element of πk(Xλ, X0λ,
x0λ). Now we infer that

J̌∗
k ◦ Ǐ∗k (B∗) = O∗ = 〈[(onλ)]〉 .

Therefore the composition J̌∗
k ◦ Ǐ∗k is the null homomorphism and consequently

Im Ǐ∗k ⊆ ker J̌∗
k .

Using Proposition 3.2 and Remark 3.3, and performing obvious changes
in the proof above one can analogously verify semiexactness of the sequence
(4.3) at any other term.

Theorem 4.2. Let X0 be a subspace normally embedded in a space X.
If the pointed pair (X,X0, x0) admits a countable normal HPol2⋆-expansion,
then the coarse shape group sequence of the pointed pair (X,X0, x0) is exact.

Proof. According to [6, Lemma 9], we may assume that (X,X0, x0)
admits a ”sequential” normal HPol2⋆-expansion p = (pλ) : (X,X0, x0) →
(X,X0, x0) = ((Xi, X0i, x0i) , pii+1,N). Let us prove the exactness of the
sequence (4.3) at π̌∗

k (X, x0) . Referring to Proposition 4.1, it is sufficient to
prove that

(4.4) ker J̌∗
k ⊆ Im Ǐ∗k .

Assume that J̌∗
k (A∗) = O∗ for an A∗ = 〈[(ani )]〉 ∈ π̌∗

k (X, x0). By (3.2) and
(4.2) it follows that

O∗ = 〈[(oni )]〉 = J̌∗
k (A∗) = 〈[(1N, jni )]〉 ◦ 〈[(ani )]〉 = 〈[(jni ◦ ani )]〉 .

Hence, for every i ∈ N, there is an ni ∈ N such that

(4.5) jni ◦ ani = oni ,

for every n > ni. Notice that, for all i, n ∈ N, ani :
(

Sk, s0
)

→ (Xi, x0i) can

be regarded as an H-map ani :
(

Dk, Sk−1, s0
)

→ (Xi, {x0i} , x0i) . Since (ani )
is an S∗-morphism, for every i ∈ N, there exists mi ∈ N such that

(4.6) anj = pjia
n
i ,
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for every n > mi and j ≤ i. By (4.5) and Proposition 3.2 we infer that, for
every i ∈ N and n > ni, there exists an H-map βn

i :
(

Sk, s0
)

→ (X0i, x0i)
satisfying

ιni β
n
i = ani .

In order to obtain a coarse shape morphism B∗ ∈ π̌∗
k (X0, x0) having property

(4.7) Ǐ∗k (B
∗) = A∗

we first construct a strictly increasing sequence (ki)i∈N0
in N0 such that k0 = 0

and ki > max {ni,mi} , for every i ∈ N. Now, for every n ∈ N, there exists a
unique i′ = i′ (n) ∈ N0 such that ki′ ≤ n < ki′+1. Letting, for all i, n ∈ N,

bni =

{

pii′ |X0i′
◦ βn

i′ , i′ = i′ (n) > i
o, i′ < i

we have defined an S∗-morphism (bni ) :
(

Sk, s0
)

→ (X0, x0). Indeed, for every
i ∈ N, and every n > ki, it holds bnj = pjib

n
i , for every j ≤ i. It remains to

verify (4.7) for B∗ = 〈[(bni )]〉. Since
Ǐ∗k (B

∗) = 〈[(1N, ιni )]〉 ◦ 〈[(bni )]〉 = 〈[(ιni ◦ bni )]〉 ,
it is sufficient to prove that (ιni ◦ bni ) ∼ (ani ) . Let i ∈ N and n > ki be given
and let i′ = i′ (n) ∈ N0 be an integer such that ki′ ≤ n < ki′+1. Since,
n > ki′ > max {mi′ , ni′}, by combining (4.5) and (4.6), we infer that

ιni ◦ bni = ιni ◦ pii′ |X0i′
◦ βn

i′ = pii′ ι
n
i′β

n
i′ = pii′a

n
i′ = ani ,

which yields (4.7) and, consequently, (4.4). Therefore, we have proved that
the sequence (4.3) is exact at π̌∗

k (X, x0).
One can easily recognize that this proof allows straightforward translation

to any other term.

Now, an immediate consequence of Theorem 2.1 and Theorem 4.2 is the
following fact, which does not hold for shape groups.

Corollary 4.3. Given a closed subspace X0 of a metric compact X
and an x0 ∈ X0, then the coarse shape group sequence of the pointed pair
(X,X0, x0) is exact.

Exactness of the sequence of the coarse shape groups is very useful
property for computing coarse shape groups of some particular pointed pairs
of metric compacta as demonstrated by the following corollaries which easily
follow from Corollary 4.3.

Corollary 4.4. Let (X,X0, x0) be a pointed pair of metric compacta
such that π̌∗

k (X0, x0) = 0 = π̌∗
k−1 (X0, x0), for some k ∈ N. If k > 1, then

J̌∗
k : π̌∗

k (X, x0)→ π̌∗
k (X,X0, x0) is a group isomorphism. If k = 1, then J̌∗

1 is
a surjective base point preserving function.
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Corollary 4.5. Let (X,X0, x0) be a pointed pair of metric compacta
such that π̌∗

k (X, x0) = 0 = π̌∗
k−1 (X, x0), for some k ∈ N. If k > 1, then

∂∗
k : π̌∗

k (X,X0, x0) → π̌∗
k−1 (X0, x0) is a group isomorphism. If k = 1, then

∂∗
1 is a surjective base point preserving function.

Here are some examples illustrating a method for calculating coarse
shape groups of some particular pointed pairs of metric compacta, satisfying
assumptions of the previous corollaries.

Example 4.6. Let (X,X0, x0) = lim ((Xi, X0i, x0i) , pii+1,N), where
Xi = D2 = {z ∈ C | |z| ≤ 1} , X0i = S1 = {z ∈ C | |z| = 1} , x0i = 1, and
pii+1 (z) = z2, for every i ∈ N. Since every Xi is contractible (X, x0) has the
trivial shape type. It follows that π̌∗

k (X, x0) = 0, for every k ∈ N0. Obviously
(X0, x0) is the pointed dyadic solenoid. Since all H-maps :

(

Sk, s0
)

→
(X0i, x0i) are trivial, for every k ∈ N0\ {1}, we infer that π̌∗

k (X0, x0) is
nontrivial only for k = 1 (see [4, Example 2.]). Now Corollary 4.5 yields
π̌∗
2 (X,X0, x0) ∼= π̌∗

1 (X0, x0) and π̌∗
k (X,X0, x0) = 0, for every k ∈ N\ {2} .

Example 4.7. Let (X,X0, x0) = lim ((Xi, X0i, x0i) , pii+1,N), where

Xi = S2 =
{

(r cosϕ, r sinϕ, t) ∈ R3 |
√
r2 + t2 = 1, r, t ∈ R, ϕ ∈ [0, 2π〉

}

,

X0i = S1 =
{

(cosϕ, sinϕ, 0) ∈ R3 | ϕ ∈ [0, 2π〉
}

, x0i = (1, 0, 0) , and

pii+1 ((r cosϕ, r sinϕ, t)) =







(r cos 3ϕ, r sin 3ϕ, t) , t 6= 1,−1,
(0, 0, 1) , t = 1,

(0, 0,−1) , t = −1,
for every i ∈ N. Since (X0, x0) is the pointed solenoid whose coarse shape
groups π̌∗

k (X0, x0), for every k 6= 1, vanish (see the previous example),
one obtains by Corollary 4.4 the following isomorphism π̌∗

k (X,X0, x0) ∼=
π̌∗
k (X, x0) , for every k > 3.

According to [4, Theorem 2], for every k ∈ N0, every pointed space (X, x0)
admits an embedding homomorphism j ≡ J |π̌k(X,x0) : π̌k (X, x0)→ π̌∗

k (X, x0)
of the ordinary shape group π̌k (X, x0) into the coarse shape group π̌∗

k (X, x0),
given by the restriction of the embedding functor J : Sh⋆ → Sh∗

⋆ to the group
π̌k (X, x0) . For every pointed pair, one can also define a function

j ≡ J |π̌k(X,X0,x0) : π̌k (X,X0, x0)→ π̌∗
k (X,X0, x0)

by restricting the embedding functor J : Sh2
⋆ → Sh∗2

⋆ to the group
π̌k (X,X0, x0) . The same arguments used in the proof of [4, Theorem
2] now establish the following result (it allows to consider the shape
group π̌k (X,X0, x0) as a subgroup (subset) of the coarse shape group
π̌∗
k (X,X0, x0)):

Theorem 4.8. For every pointed pair (X,X0, x0) and every k ∈ N0, j :
π̌k (X,X0, x0)→ π̌∗

k (X,X0, x0) is the embedding homomorphism of the shape
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group π̌k (X,X0, x0) to the coarse shape group π̌∗
k (X,X0, x0). Moreover, for

every shape morphism F : (X,X0, x0)→ (Y, Y0, y0), the following diagram in
the category Grp (Set⋆) commutes.

π̌k (X,X0, x0)
j→֒ π̌∗

k (X,X0, x0)

π̌k(F ) ↓ ↓π̌∗

k
(J(F ))

π̌k (Y, Y0, y0)
j→֒ π̌∗

k (Y, Y0, y0)

.

Let us denote Ǐk = π̌k (S (ι)) : π̌k (X0, x0) → π̌k (X, x0) and J̌k =
π̌k (S (j)) : π̌k (X, {x0} , x0)→ π̌k (X,X0, x0), for every k ∈ N0. The previous
theorem assures the commutativity of the diagram (4.8) below, consisting of
the shape sequence in the first row, and of the coarse shape group sequence of
a pointed pair (X,X0, x0) in the second row, where X0 is normally embedded
in X .
(4.8)

· · · π̌k (X0, x0)
Ǐk→ π̌k (X, x0)

J̌k→ π̌k (X,X0, x0)
∂k→ π̌k−1 (X0, x0) · · ·

↓ j ↓ j ↓ j ↓ j
· · · π̌∗

k (X0, x0)
Ǐ∗

k→ π̌∗
k (X, x0)

J̌∗

k→ π̌∗
k (X,X0, x0)

∂∗

k→ π̌∗
k−1 (X0, x0) · · ·

Here, ∂k : π̌k (X,X0, x0) → π̌k−1 (X0, x0) denotes the boundary homomor-
phism of the shape groups given by restricting shape morphisms A :
(Dk, Sk−1, s0)→ (X,X0, x0) to

(

Sk−1, s0
)

, i.e.,

∂k (A) = A|(Sk−1,s0) :
(

Sk−1, s0
)

→ (X0, x0) ,

for every A ∈ π̌k (X,X0, x0). For a pointed pair of metric compacta
(X,X0, x0), the first row in diagram (4.8), generally, is not exact (see the
example below or [5, Example II.3.3]), while the second row is exact.

Example 4.9. Let, for every i ∈ N, (Xi, X0i) =
(

P 2, P 1
)

be the pair

consisting of the projective 2-space P 2 and projective 1-space P 1, defined
as the quotient space of

(

D2, S1
)

= ({z ∈ C | |z| ≤ 1} , {z ∈ C | |z| = 1})
obtained by the quotient map ρ :

(

D2, S1
)

→
(

P 2, P 1
)

which identifies

antipodal points z and −z of S1. Let f :
(

P 2, P 1
)

→
(

P 2, P 1
)

be the unique

map such that ρ ◦ f̃ = f ◦ ρ, where f̃ :
(

D2, S1
)

→
(

D2, S1
)

f̃ (z) = z3.
Consider

(X,X0, x0) = lim ((Xi, X0i, x0i) , pii+1,N) ,

where pii+1 = f and x0i = ρ(1) = p0, i ∈ N. We propose to calculate
1-dimensional (coarse) shape groups of (X, x0) , (X0, x0) and (X,X0, x0) .
Since every map

(

D1, S0, s0
)

→
(

P 2, P 1, p0
)

is null homotopic, we infer that

π̌∗
1 (X,X0, x0) = π̌1 (X,X0, x0) = 0. Notice that P 1 ∼= S1 and (X0, x0) is

homeomorphic to the solenoid. Thus, π̌∗
1 (X0, x0) 6= 0 and π̌1 (X0, x0) = 0.

Since ρ : D2 → P 2 is a covering map and D2 is contractible, the elements of
π1

(

P 2, p0
)

depend only on points in the fibre ρ−1 (p0), and π1

(

P 2, p0
)

= Z2.
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Any path α̃ in D2 from 1 to −1 lifts some nontrivial loop α at p0 in P 2

representing [α] ∈ π1

(

P 2, p0
)

, [o] 6= [α]. Any loop õ at 1 in D2 lifts some

loop at p0 in P 2 representing neutral element [o] ∈ π1

(

P 2, p0
)

. Further,
[f ] ◦ [α] = [α] , [f ] ◦ [o] = [o] . Therefore, the only nontrivial pointed shape
morphism A :

(

S1, s0
)

→ (X, x0) is the one represented by the morphism

[([αi])] :
(

S1, s0
)

→ ((Xi, x0i) , [pii+1] ,N) of pro-HPol⋆, αi = α, i ∈ N. One
can easily see that every pointed coarse shape morphism F ∗ = 〈[(fn

i )]〉 :
(

S1, s0
)

→ (X, x0) is uniquely determined by the sequence (fn
1 ) consisting

of the loops [α] and (or) [o] . Sequences (fn
1 ) and (f ′n

1 ) in {[α] , [o]} represent
the same coarse shape morphism if and only if they agree in all but finitely
many terms. It follows that π̌∗

1 (X, x0) ∼=
∏

n∈N

Z2/
⊕

n∈N

Z2 and π̌1 (X, x0) = Z2.

Therefore, in the following diagram the first row (consisting of the shape
groups) is not exact, and, refering to Corollary 4.3, the second row (consisting
of the coarse shape groups) is exact.

0
Ǐ1→ Z2

J̌1→ 0
↓ j ↓ j ↓ j

π̌∗
1 (X0, x0)

Ǐ∗

1→
∏

n∈N

Z2/
⊕

n∈N

Z2
J̌∗

1→ 0

.

Let us clarify this situation. The exactness of the first row fails because the
shape morphism A ∈ π̌1 (X, x0) is contained in the ker J̌1 = Z2 although it
is not contained in the Im Ǐ1 = 0. On the other hand, the element j (A) ∈
π̌∗
1 (X, x0) is contained in the ker J̌∗

1 =
∏

n∈N

Z2/
⊕

n∈N

Z2 and, by the exactness of

the second row, it follows that j (A) ∈ Im Ǐ∗1 . Let us find a particular coarse
shape morphism B∗ ∈ π̌∗

1 (X0, x0) such that Ǐ∗1 (B
∗) = j (A) . The element

j (A) is the induced coarse shape morphism A∗ = J (A) represented by the
morphism [([αn

i ])] :
(

S1, s0
)

→ ((Xi, x0i) , [pii+1] ,N) of pro
∗-HPol⋆, α

n
i = α,

i, n ∈ N. Consider a coarse shape morphism B∗ ∈ π̌∗
1 (X0, x0) represented by

a morphism [([βn
i ])] :

(

S1, s0
)

→
(

(X0i, x0i) ,
[

pii+1|X0i+1

]

,N
)

of pro∗-HPol⋆,

[βn
i ] :

(

S1, s0
)

→ (X0i, x0i) ,

[βn
i ] =

{

[pin|X0n ] [bn] , i ≤ n,
[o] , i > n,

where [bn] :
(

S1, s0
)

→
(

P 1, p0
)

is any group generator (or any group element

having odd degree) element of π1

(

P 1, p0
)

= Z. Notice that bn can be lifted

to an arc b̃n in S1 with initial point 1 and with end point −1. Now,
Ǐ∗1 (B

∗) is represented by [([ι ◦ βn
i ])] :

(

S1, s0
)

→ ((Xi, x0i) , [pii+1] ,N) where

ι :
(

P 1, p0
)

→
(

P 2, p0
)

denotes the inclusion and ι̃ :
(

S1, 1
)

→
(

D2, 1
)

denotes
its lifting. Hence, for an arbitrary i ∈ N, it holds

(4.9) [ι ◦ βn
i ] = [αn

i ] , for every n > i.
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Indeed, given an n > i, the path ι̃ ◦ f ◦ b̃n in D2 lifts the loop ι ◦ βn
i in P 2,

which starts at 1 and ends at −1. Finally (4.9) implies that Ǐ∗1 (B
∗) = A∗.
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