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ON THE STRUCTURE OF THE AUTOMORPHISM GROUP
OF A MINIMAL NONABELIAN p-GROUP (METACYCLIC

CASE)

Izabela Malinowska

University of Bia lystok, Poland

Abstract. In this paper we find the complete structure for the
automorphism groups of metacyclic minimal nonabelian 2-groups. This,
together with [6, 7], gives the complete answer to the Question 15 from [5]
(respectively Question 20 from [4]) in the case of metacyclic groups. We
also correct some inaccuracies and extend the results from [13].

1. Introduction

All groups considered here are finite and the notation used is standard.
Finite p-groups are an important group class of finite groups. Since the

classification of finite simple groups is finally completed, the study of finite
p-groups becomes more and more active. Many leading group theorists, for
example, Berkovich, Glauberman, Janko etc., turn their attention to the study
of finite p-groups, see [1–4, 9, 10, 12]. Since a finite p-group has ”too many”
normal subgroups and, consequently, there is an extremely large number of
nonisomorphic p-groups of a given fixed order, the classification of finite p-
groups in the classical sense is impossible. In [1–3] Berkovich and Janko have
developed some techniques for working with minimal non-abelian subgroups
of finite p-groups. Roughly speaking, they show that some control over the
lattice of subgroups in p-groups can be gained by considering maximal abelian
subgroups together with minimal non-abelian subgroups. In [12] Janko points
out that in studying the structure of non-abelian p-groups G, the minimal non-
abelian subgroups of G play an important role since they generate the group
G. More precisely, if A is a maximal normal abelian subgroup of G, then
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minimal non-abelian subgroups of G cover the set G \A (see Proposition 1.6
in [12]). A p-group G is said to be minimal nonabelian (for brevity, A1-group),
if G is nonabelian, but all its proper subgroups are abelian. In [5] Berkovich
formulated 22 questions concerning p-groups. In Question 15 (respectively
Question 20 from [4]) he proposed to describe the automorphism groups of
A1-groups. The following lemma gives the classification of A1-groups.

Lemma 1.1. (L. Redei) Let G be a minimal nonabelian p-group. Then
G = 〈x, y〉 and one of the following holds

(1) xpm

= yp
n

= zp = 1, [x, y] = z, [x, z] = [y, z] = 1, m, n ∈ N, m > n >
1; where in case p = 2 we must have m > 1;

(2) xpm

= yp
n

= 1, [x, y] = xpm−1

, m, n ∈ N,m ≧ 2, n ≧ 1;
(3) a4 = 1, a2 = b2, [a, b] = a2, G ∼= Q8.

In this paper we find the complete structure for the automorphism groups
of metacyclic minimal nonabelian 2-groups. This, together with [6, 7], gives
the complete answer to the Question 15 from [5] (respectively Question 20
from [4]) in the case of metacyclic groups. In Section 2 we generalize
the results from [13] and we specify a method of finding relations in an
automorphism group, that we will use in the next Sections. In the first part
of Section 3 we state some results from [13], that we will use in the next part
of the note, but also we specify the exact statements. Unfortunately we must
point out that in Section 3 of [13] in Case A the expression ”CK(G′)” should
be replaced by ”Ωm−r(K).” In the end of Section 3 we state the relations in
the automorphism group of a split metacyclic 2-group. In this way we remove
some inaccuracies from Theorem 3.7 in [8] (see Example 1 in [13]). In Section
4 we find the complete structure of the automorphism group of a metacyclic
minimal nonabelian 2-group. These relations were not considered in [8].

If L is a subgroup of a group G, then CAutG(L) denotes the group of
those automorphisms of G that centralize L and NAutG(L) denotes the group
of those automorphisms of G that normalize L. If M and N are normal
subgroups of a group G, then AutN (G) = CAut(G)(G/N) denotes the group of

all automorphisms of G normalizing N and centralizing G/N . Also AutMN (G)
denotes AutN (G) ∩ CAutG(M). If L is a subgroup of a p-group G and l ∈ N

then we set Ωl(L) = 〈g ∈ L | gp
l

= 1〉 and ℧l(L) = 〈gp
l

| g ∈ L〉.
In [15] the authors investigated the automorphism group of a semidirect

product G = H ⋊K. They defined the following subgroups

A = {θ ∈ AutG | [K, θ] = 1 and Hθ = H},
B = {θ ∈ AutG | [H, θ] = 1 and [K, θ] j H},
C = {θ ∈ AutG | [K, θ] = 1 and [H, θ] j K},
D = {θ ∈ AutG | [H, θ] = 1 and Kθ = K}.

By definition, we have BD = B ⋊ D ≦ CAutG(K) and AC = C ⋊ A ≦
CAutG(H).
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2. Crossed homomorphisms and automorphisms

We call an ordered triple (Q,N, θ) data if N is an abelian group, Q is a
group and θ : Q → AutN is a homomorphism. If θ is a homomorphism of Q
into AutN , then Q acts on N when we define, for each x ∈ Q and a ∈ N , ax

is the image of a under xθ. If N is a normal subgroup of G, then the action of

G/N on Z(N) is given by agN = a(gN)θ = ag. Given data (Q,N, θ) a crossed
homomorphism is a function λ : Q → N such that (xy)λ = (xλ)yyλ for all
x, y ∈ Q. We denote the set of such crossed homomorphisms by Z1(Q,N).
It forms a group under the operation qλ1+λ2 = qλ1qλ2 ; if θ is trivial, then
Z1(Q,N) = Hom(Q,N).

We recall a known result ([11], Satz I,17.1) needed in the sequel:

Lemma 2.1. Let N be a normal subgroup of G. Then there is a
natural isomorphism from Z1(G/N,Z(N)) to AutNN (G) sending each crossed
homomorphism f : G/N → Z(N) to the automorphism ϕf : x 7→ x(xN)f of
G.

Lemmas 2.2–2.3 are more general versions of Lemma 2.5 and Theorem 2.6
(see also [13]).

Lemma 2.2. Let N be an normal subgroup of G. Let M be a normal
subgroup of G such that M ≤ Z(G). Assume that that L = {λ ∈
Z1(G/N,Z(N)) | (G/N)λ j M} and A = NAutG(M) ∩NAutG(N). Then

(1) A ≦ Aut(G) and L ≦ Z1(G/N,Z(N)).
(2) If α ∈ A and λ ∈ L then the function µ : G/N → Z(N) defined by

µ : gN 7→ ((gα
−1

N)λ)α is a crossed homomorphism and µ ∈ L.

Proof. The first part of (1) is obvious.
(2) Assume that α ∈ A and λ ∈ L. First let Ng1 = Ng2, then g2 = g1h

for some h ∈ N . Then

(g2N)µ = ((gα
−1

2 N)λ)α = (((g1h)α
−1

N)λ)α = ((gα
−1

1 N)λ)α = (g1N)µ

since N is normalized by α. So µ is well defined.
Let g1N, g2N ∈ G/N . We have

(g1N · g2N)µ = (g1g2N)µ = (((g1g2)α
−1

N)λ)α

= ((gα
−1

1 Ngα
−1

2 N)λ)α = (((gα
−1

1 N)λ)g
α−1

2 ((gα
−1

2 N)λ))α

= (((gα
−1

1 N)λ)α)g2((gα
−1

2 N)λ))α = ((g1N)µ)g2N · (g2N)µ.

It is evident that µ ∈ L since (G/N)µ j M .

Lemma 2.3. Let G,N,M,L and A be as in Lemma 2.2. Assume that
E := {ϕ ∈ AutNN (G) | [G,ϕ] j M}. Then
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(1) E ≦ AutG and there is a natural isomorphism from L to E sending
each crossed homomorphism f : G/N → M to the automorphism ϕf :
x 7→ x(xN)f of G;

(2) if α ∈ A and ϕ ∈ E is determined by the crossed homomorphism λ ∈ L,
then α−1λα is determined by the crossed homomorphism µ ∈ L defined

by µ : gN 7→ ((gα
−1

N)λ)α.
(3) A normalizes E and AE ≦ AutG.

Proof. (1) It is evident that E ≦ AutG. By definitions of M,L,E and
Lemma 2.1 we get the second part of the statement.

(2)-(3) Assume that α ∈ A and β ∈ E. By (1) there exists
λ ∈ Z1(G/N,Z(N)) such that hβ = h(hN)λ (h ∈ G) and (hN)λ ∈ M
for all h ∈ G. If h ∈ G then

hα−1βα = ((hα−1

)β)α = (hα−1

(hα−1

N)λ)α = h((hα−1

N)λ)α

and ((hα−1

N)λ)α ∈ M . Hence by Lemmas 2.1 and 2.2 α−1βα ∈ E, so A
normalizes E. Now it is clear that AE ≦ AutG.

For the sake of completeness we recall some results from [13]. We will use
them in this note.

Lemma 2.4 ([13]). Let N be an normal subgroup of G such that G/N is
cyclic of order n. Assume that g is an element of G with G = 〈N, g〉.

(1) If a ∈ Z(N) and ag
n−1+···+g+1 = 1, then the function λ : G/N →

Z(N), defined by (giN)λ = ag
i−1+···+g+1 (i ∈ N) and Nλ = 1,

is a crossed homomorphism.
(2) If λ ∈ Z1(G/N,Z(N)) then there exists a ∈ Z(N) such that

ag
n−1+···+g+1 = 1, (giN)λ = ag

i−1+···+g+1 (i ∈ N) and Nλ = 1.

Lemma 2.5 ([13]). Let G,N, g be as in Lemma 2.4. Let M be a normal

subgroup of G such that M ≦ Z(N) and for all a ∈ M ag
n−1+···+g+1 = 1.

Assume that L = {λ ∈ Z1(G/N,Z(N)) | (G/N)λ j M} and A = NAutG(N)∩
NAutG(M). Then

(1) A ≦ Aut(G) and L ≦ Z1(G/N,Z(N)); moreover L ∼= M .
(2) If α ∈ A and λ ∈ L then the function µ : G/N → Z(N) defined by

µ : hN 7→ ((hα−1

N)λ)α is a crossed homomorphism and µ ∈ L.

Theorem 2.6 ([13]). Let G,N,L,M, g and A be as in Lemma 2.5.

Assume that E := {ϕ ∈ AutNN (G) | [G,ϕ] j M}. Then E ≦ AutG,
L ∼= E ∼= M , A normalizes E, AE ≦ AutG and A∩E ∼= {g−1gϕ |ϕ ∈ A∩E}.

We will need the following lemma:
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Lemma 2.7. Let G be a group, g, h, z ∈ G and [h, g] = z, [g, z] = 1 = [h, z].
Assume that i, j ∈ N and α ∈ AutG. Then

(1) hgi−1+···+g+1 = hiz
i(i−1)

2 ;

(2) if gα = g, hα = hj , zα = z, then (hgi−1+···+g+1)α = hijz
i(i−1)

2 ;

(3) if gα = g, hα = hj , zα = zj, then (hgi−1+···+g+1)α = hijzj
i(i−1)

2 ;

(4) if gα = gj, hα = h, zα = zj, then (hgi−1+···+g+1)α = hizj
i(i−1)

2 ;

(5) if gα = gj, hα = h, zα = z, then (hgi−1+···+g+1)α = hiz
i(i−1)

2 .

By Lemmas 2.3, 2.4 and 2.7 we get

Lemma 2.8. Let G,N,M,E, g be as in Theorem 2.6 and i, j ∈ N, i =
j−1 mod n. Assume that λ ∈ Z1(G/N,Z(N)), (gN)λ = h for some h ∈ M
and β ∈ E is an automorphism determined by λ. Assume also that α ∈ AutG,
[h, g] = z and [g, z] = 1. Then

(1) if gα = gj, hα = h, zα = zj, then ((gα
−1

N)λ)α = hizj
i(i−1)

2 ;
in particular if z = 1, then βα = βi;

(2) if gα = gj, hα = h, zα = z, then ((gα
−1

N)λ)α = hiz
i(i−1)

2 ;
in particular if z = 1, then βα = βi;

(3) if gα = g, hα = hj , then ((gα
−1

N)λ)α = hjand βα = βj .

3. A split metacyclic 2-group

Let G = H⋊K be a split metacyclic 2-group, where H = 〈x〉 and K = 〈y〉
and let A, B, C and D be the subgroups of AutG defined in the introduction.
In this section we refer to the appropiate cases of the split metacyclic 2-
groups from [8], but occasionally we repeat some known results for readers’
convenience. In fact we consider only Case A.

Let G = H ⋊ K = 〈x, y | x2m = y2
n

= 1, xy = x1+2m−r

〉, where
m ≧ 3, n ≧ 1, 1 ≦ r ≦ min{m− 2, n}.

It is convenient to consider G in the following three subcases (see [8])

(I) m ≦ n, (II) n ≦ m− r < m, (III) m− r < n < m.

Moreover there exist two special cases. They are case (II), when m = 2r,

n = r = m−r ≧ 2 and G = 〈x, y | x22r = y2
r

= 1, xy = x1+2r 〉 and case (III),

when r = n > m − n ≧ 2 and G = 〈x, y | x2m = y2
n

= 1, xy = x1+2m−n

〉.
These are referred to as exceptional cases. We will also need the following
number theoretic result (see [8, 13]), which is easily established by induction.

Lemma 3.1. Let m,n and r be positive integers.

(1) For all m ≧ 2, n ≧ 1, (1 + 2m)2
n

≡ 1 + 2m+n (mod 22m+n−1)

and (1 + 2m)2
n−1

≡ 1 + 2m+n−1 (mod 2m+n).



158 I. MALINOWSKA

(2) For n ≧ 2, r ≧ 1 and m = n + r, let S = 1 + u + · · · + u2r−1, where
u ≡ 1 (mod 2n). Then S ≡ 2r + 2m−1 (mod 2m) if u 6≡ 1 (mod 2n+1)
and S ≡ 2r (mod 2m) if u ≡ 1 (mod 2n+1).

Using Lemma 3.1 the following lemmas are easily established.

Lemma 3.2.
(1) CH(K) = 〈x2r 〉, (2) CK(H) = 〈y2

r

〉,

(3) G′ = [H,K] = 〈x2m−r

〉, (4) G is nil 2 <=> 2r ≦ m.

Lemma 3.3. Ωm−r(K), [H,Ωm−r(K)] are given in the three cases as
follows:

(I) Ωm−r(K) = 〈y2
n−m+r

〉 ≦ Z(G), [H,Ωm−r(K)] = 1;

(II) Ωm−r(K) = 〈y〉 = CK(G′), [H,Ωm−r(K)] = 〈x2m−r

〉 = G′ ≦ Z(G);

(III) Ωm−r(K) = 〈y2
n−m+r

〉 ≦ CK(G′), [H,Ωm−r(K)] = 〈x2n〉 ≦ Z(G).

As in [14] when p was odd or by considering matrices of maps from [8]
one could find the effect of an automorphism ϕ on the generators of G.

Lemma 3.4. Let G, x, y be as above.

(1) Assume that n 6= r. Then a map ϕ : G → G is an automorphism if
and only if x−1xϕ ∈ ℧1(H)Ωm−r(K), yϕy−1 ∈ Ωn(H)CK(H);

(2) Assume that n = r. Then a map ϕ : G → G is an automorphism if
and only if either x−1xϕ ∈ ℧1(H)℧1(Ωm−r(K)), yϕy−1 ∈ Ωn(H) or

x−1xϕ ∈ ℧1(H)Ωm−r(K)\℧1(H)℧1(Ωm−r(K)), yϕy−1 ∈ Ωn(H)y2
r−1

.

By Theorem 2.6 and the definitions of A,B and D we get the following lemma.

Lemma 3.5. Let G,A,B,D be as above. Then

(1) B ∼= AutHH(G),
(2) AD = A×D normalizes B,
(3) B ∩D = 1.

For the proofs of Theorem 3.6 and Lemma 3.7 see [13].

Theorem 3.6. Let G be as above.

(1) AutG = CAutG(H)CAutG(K) if and only if r 6= n;
(2) CAutG(H) = BD;
(3) CAutG(K) = AC if and only if m ≦ n.

We set M := [H,Ωm−r(K)]Ωm−r(K), N := G′K and

E := {ϕ ∈ AutNN (G) | [H,ϕ] j M} j AutNN (G).

Lemma 3.7. Let G,M be as above and n 6= r.

(1) M is abelian and normal in G.

(2) If a ∈ M then ax
2m−r−1+···+x+1 = 1.
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Lemma 3.8. Let G,A,D,E be as above and n 6= r. Then
(1) E ≦ AutG; (2) E ∼= M ;
(3) AD = A×D normalizes E; (4) E ∩ A ∼= [H,Ωm−r(K)];
(5) CAutG(K) = AE; (6) D ∼= AutCK(H)(K).

Proof. In the proof of Lemma 3.9 in [13] we put Ωm−r(K) instead of
CK(G′).

We define c ∈ AutG by setting xc = xy, when m − r ≧ n 6= r, and

xc = xy2
n−m+r

, when m− r < n 6= r, yc = y. We also set F := 〈c〉 ≦ E.

Theorem 3.9. Let G,E,A, F be as above and n 6= r. Then

(1) F ∼= Ωm−r(K), AF = AE and A ∩ F = 1;
(2) AutG = BDAF and |AutG| = |B||D||A||F |.

Proof. In the proof of Theorem 3.10 in [13] we put Ωm−r(K) instead of
CK(G′).

By Theorem 3.9 and Lemma 3.4 it is obvious that

Theorem 3.10. Let G,A,B,D, F, T be as above. Then

(1) A ∼= AutH ∼= C2 × C2m−2 and B ∼= Ωn(H) ∼= C2min{m,n} ;
(2) D ∼= CK(H) ∼= C2n−r except if n > 1 = r when D ∼= AutK ∼= C2 ×

C2n−2 ;
(3) If n 6= r, then F ∼= Ωm−r(K) ∼= C2min{m−r,n};
(4) Assume that n = r. Then T ∼= Ωm−r(K) ∼= C2min{m−r,n} except if

r = 2 when T ∼= C2 × C2.

We define automorphisms of G on generators as follows

xa1 = x−1, xa2 = x5, ya1 = ya2 = y;

xb = x, yb =

{

xy, n ≧ m

x2m−n

y, n < m
;

xc =

{

xy, m− r ≧ n,

xy2
n−m+r

y, m− r < n
, yc = y.

Now we assume that n 6= r and r ≧ 2. In this case we define

xd = x, yd = y1+2r .

By Theorem 3.6, 3.9 and Lemma 3.8 it is clear that AutG = FABD and
each automorphism ϕ of G can be presented uniquely as ϕ = αβγδ, where
α ∈ F, β ∈ A, γ ∈ B, δ ∈ D. It is clear that A = 〈a1, a2〉, B = 〈b〉, D =
〈d〉 and AD is abelian. It is evident that G = HK = KH , so if g ∈ G, then
g = kh for some k ∈ K,h ∈ H . In the proof of Lemma 3.11 (2) we will use
this reverse notation of elements of G.
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We define i, j, k, s, t, u, w, z are such that

i = 0 in (I), 5i = 1 + 2m−r mod 2m in (II), 5i = 1 + 2n mod 2m in (III),

j = 0 in (I), 5j = 1 − 2m−r+1 mod 2m in (II),

5j = 1 − 2n+1 mod 2m in (III),

k = 1 + 2r + 2m−1 in (I), k = 1 + 2r in (II)&(III),

u = 1 − 2n−m+r in (I), u = 1 − 2m−n in (II), u = 1 − 2r in (III),

5t = (1 − 2n−1)u−1 mod 2n in (I),

5t = (1 − 22m−r−n−1)u−1 mod 2m in (II),

5t = (1 − 2m−1)u−1 mod 2m in (III),

s = u−1 mod 2n in (I), s = u−1 mod 2m in (II)&(III),

(1 + 2r)w = u mod 2n,

z = −2n−m+r + 2n−1 in (I), z = −2m−n + 2m−r+1 in (II),

z = −2r + 2n−1 in (III).

Lemma 3.11. Let a1, a2, b, c, d be as above. Assume that n 6= r and r ≧ 2.
Then

(1) ca1 = c−1ai2, ca
−1
2 = c5aj2, c

d = c1+2r ;

(2) ba1 = b−1, ba2 = b5, bd−1

= bk;
(3) cb = csa2

tbzdw.

Proof. (1) Let N = G′K and M = [H,Ωm−r(K)]Ωm−r(K). Then

a1, a2, d ∈ NAutG(N) ∩ NAutG(M), c ∈ AutNN (G) and h := x−1xc ∈ M .
By Lemmas 2.1, 2.4, 3.7 and 3.3 we get gc = g(gN)λ (g ∈ G), (xiN)λ =

hxi−1+...+x+1 (i ∈ N). By Lemma 2.8 (3) we get the last relation. Now we
use Lemma 2.8 (1) to get the first two relations: in (I) we have [h, x] =

[y2
n−m+r

, x] = 1; in (II) since [h, x] = [y, x] = x−2m−r

, we obtain

((xa1
−1

N)λ)a1 = y−1x2m−r(2m−1)(2m−1
−1) = y−1x2m−r

,

((xa2N)λ)a2
−1

= y5x−2m−r+1

;

in (III) since [h, x] = [y2
n−m+r

, x] = x−2n , by Lemma 2.8 (1) we obtain

((xa1
−1

N)λ)a1 = x2ny−2n−m+r

, ((xa2N)λ)a2
−1

= x−2n+1

y5·2
n−m+r

.

(2) Note that xb = x and yb = yx1+2m−r

in (I), yb = yx2m−n

in (II),

yb = yx2m−n+22m−n−r

in (III). Let Q = 〈x〉. Then a1, a2, d ∈ NAutG(Q), b ∈

AutQQ(G) and h := y−1yb ∈ Q. By Lemmas 2.1, 2.4, 3.7 and 3.3 we get

gb = g(gQ)λ (g ∈ G), (yiQ)λ = hyi−1+...+y+1 (i ∈ N). By Lemma 2.8 (3)
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we obtain the first two relations. Now we use Lemma 2.8 (2) to get the last

relation: in (I) since [h, y] = [x1+2m−r

, y] = x2m−r(1+2m−r) we obtain

((ydN)λ)d
−1

= (x1+2m−r

)1+2r · x2m−r(1+2m−r)2r−1(2r+1)

= x(1+2m−r)(1+2r+2m−1);

in (II) we get [h, y] = [x2m−n

, y] = 1; in (III) since [h, y] = [x2m−n+22m−n−r

, y]

= x2m−r(2m−n+22m−n−r) we obtain

((ydN)λ)d
−1

= (x2m−n+22m−n−r

)1+2rx2m−r(2m−n+22m−n−r)(2r+1)2r−1

= (x2m−n+22m−n−r

)1+2r .

(3) The direct computations with the help of Lemma 3.1 give the relation.

Theorem 3.12. Let G be as above and m ≧ 3, n ≧ 1, 1 ≦ r ≦
min{m − 2, n}, n 6= r and r ≧ 2. Then AutG can be given by the following
presentation, where the relations with commuting generators are omitted:

AutG = 〈a1, a2, b, c, d | a1
2 = a2

2m−2

= b2min {m,n}

= c2
min {m−r,n}

= d2n−r

=

1, ca1 = c−1ai2, ca
−1
2 = c5aj2, c

d = c1+2r , ba1 = b−1, ba2 = b5, bd−1

= bk, cb =
csa2

tbzdw〉.

4. Metacyclic minimal nonabelian 2-groups

In this section we will deal with groups G = 〈x, y | x2m = y2
n

= 1, xy =

x1+2m−1

〉; where m,n ∈ N, m ≧ 2, n ≧ 1. So G = H ⋊K is a split metacyclic
2-group, where H = 〈x〉 and K = 〈y〉.

First assume that n ≧ m ≧ 3. We define automorphisms of G on
generators as follows

xa1 = x−1, xa2 = x5, ya1 = ya2 = y;

xb = x, yb =

{

xy, n ≧ m

x2m−n

y, n < m
;

xc =

{

xy, m > n

xy2
n−m+1

y, m ≦ n
, yc = y;

xd1 = xd2 = x, yd1 = y−1, yd2 = y5.

By Theorems 3.6, 3.9 and Lemma 3.8 it is clear that AutG = FABD and
each automorphism ϕ of G can be presented uniquely as ϕ = αβγδ, where
α ∈ F, β ∈ A, γ ∈ B, δ ∈ D. It is clear that A = 〈a1, a2〉, B = 〈b〉, D =
〈d1, d2〉 and AD is abelian. It is evident that G = HK = KH , so if g ∈ G,
then g = kh for some k ∈ K,h ∈ H . In the proof of Lemma 4.1(2) we will
use also this reverse notation of elements of G.



162 I. MALINOWSKA

Lemma 4.1. Let a1, a2, b, c, d1, d2 be as above. Assume that m ≧ 3, n ≧ 3.
Then

(1) ca1 = c−1a2
i, ca2

−1

= c5, cd1 = c−1, cd2 = c5, where i = 0 when m > n
and i = 2m−3 when m ≦ n;

(2) ba1 = b−1, ba2 = b5, bd1 = b−1, bd2
−1

= b5;

(3) if n−m ≥ 1, then cb = csa2
tb−2n−m+1

d2
w, where s, t, w are such that

s = 5t = (1 − 2n−m+1)−1 mod 2m, 5w = 1 − 2n−m+1 mod 2n;

(4) if m = n, then cb = c−1a1a2
2m−3

b−2+2m−1

d1;

(5) if m − n > 1, then cb = csa2
tb−2m−n

dw
2 , where s, t, w are such that

s = 5t = (1 − 2m−n)−1 mod 2m, 5w = 1 − 2m−n mod 2n;

(6) if m = n + 1, then cb = c−1a1a2
2m−3

b−2+2m−2

d1.

Proof. (1) Let N = G′K and M = [H,Ωm−r(K)]Ωm−r(K). Then

ak, dk ∈ NAutG(N) ∩NAutG(M) (k = 1, 2) , c ∈ AutNN (G) and h := x−1xc ∈
M . By Lemmas 2.1, 2.4, 3.7 and 3.3 we get gc = g(gN)λ (g ∈ G), (xiN)λ =

hxi−1+...+x+1 (i ∈ N). For the first two relations see the proof of Lemma 3.11
(1) with r = 1. By Lemma 2.8 (3) we obtain the last two relation.

(2) Note that xb = x and yb = yx1+2m−1

when n ≧ m, yb =

yx2m−n

when m > n. Let Q = 〈x〉. Then ak, dk ∈ NAutG(Q) (k =

1, 2), b ∈ AutQQ(G) and y−1yb ∈ Q. By Lemmas 2.1, 2.4, 3.7 and 3.3

we get gb = g(gQ)λ (g ∈ G), (yiQ)λ = hyi−1+...+y+1 (i ∈ N). By
Lemma 2.8 (3) we obtain the first two relations. Now we will use Lemma

2.8 (2) to get the last two relations: if m > n then [y2
m−n

, y] = 1,

so we get the last two relations; if m ≦ n, then [x1+2m−1

, y] = x2m−1

and we get ((yd
−1
1 N)λ)d1 = (x1+2m−1

)2
n
−1x2m−1(2n−1)(2n−1

−1) = x−1 and

((yd2N)λ)d
−1
2 = (x1+2m−1

)5x2m−110 = (x1+2m−1

)5.
(3)-(6) The direct computations with the help of Lemma 3.1 give the

relations.

In the next theorems the relations with commuting generators are
omitted.

Theorem 4.2. Let G be as above and m,n ≧ 3. Then AutG can be given

by the following presentation: AutG = 〈a1, a2, b, c, d1, d2 | a1
2 = a2

2m−2

=

b2min {m,n}

= c2
min {m−r,n}

= d2n−r

= 1, ca1 = c−1a2
i, ca2

−1

= c5, cd1 =

c−1, cd2 = c5, ba1 = b−1, ba2 = b5, bd1 = b−1, bd2
−1

= b5, cb = α〉, where i
is given in Lemma 4.1 and α is the appropriate relation in (3)-(4) of Lemma
4.1.

If m = 2 and n = 1, then G ∼= AutG is dihedral of order 8.
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Now assume that m > n = 2. We define automorphisms of G on
generators as follows

xa1 = x−1, xa2 = x5, ya1 = ya2 = y; xb = x, yb = x2m−2

y;

xc = xy, yc = y; xd = x, yd = y−1.

Theorem 4.3. Let G be as above and m > n = 2. Then AutG can be
given by the following presentation:

(1) if m > 3, then AutG = 〈a1, a2, b, c, d | a1
2 = a2

2m−2

= b4 = c4 = d2 =

1, ca1 = c−1a2
2m−3

, cd = c−1, ba1 = b−1, bd = b−1, bc = ba2
t〉, where

5t = 1 − 2m−2 mod 2m;
(2) if m = 3, then AutG = 〈a1, a2, b, c, d | a1

2 = a2
2 = b4 = c4 = d2 =

1, ca1 = c−1a2, cd = c−1, ba1 = b−1, bd = b−1, cb = c−1a1a2d〉.

Now assume that m ≧ 3, n = 1. We define automorphisms of G on
generators as follows

xa1 = x−1, xa2 = x5, ya1 = ya2 = y;

xb = x, yb = x2m−1

y; xc = xy, yc = y.

Theorem 4.4. Let G be as above and m ≧ 3, n = 1. Then AutG can

be given by the following presentation: AutG = 〈a1, a2, b, c | a1
2 = a2

2m−2

=

b2 = c2 = 1, ca1 = ca2
2m−3

, cb = ca2
2m−3

〉.

Now assume that m = n = 2. We define automorphisms of G on
generators as follows

xa = x−1, ya = y; xb = x, yb = xy;

xc = xy2, yc = y; xd = x, yd = y−1.

Theorem 4.5. Let G be as above and m = n = 2. Then AutG can be
given by the following presentation: AutG = 〈a, b, c, d | a2 = b4 = c2 = d2 =
1, ba = b−1, bc = bd〉.
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