ON THE STRUCTURE OF THE AUTOMORPHISM GROUP OF A MINIMAL NONABELIAN p-GROUP (METACYCLIC CASE)

Izabela Malinowska
University of Białystok, Poland

Abstract

In this paper we find the complete structure for the automorphism groups of metacyclic minimal nonabelian 2-groups. This, together with [6,7], gives the complete answer to the Question 15 from [5] (respectively Question 20 from [4]) in the case of metacyclic groups. We also correct some inaccuracies and extend the results from [13].

1. Introduction

All groups considered here are finite and the notation used is standard.
Finite p-groups are an important group class of finite groups. Since the classification of finite simple groups is finally completed, the study of finite p-groups becomes more and more active. Many leading group theorists, for example, Berkovich, Glauberman, Janko etc., turn their attention to the study of finite p-groups, see $[1-4,9,10,12]$. Since a finite p-group has "too many" normal subgroups and, consequently, there is an extremely large number of nonisomorphic p-groups of a given fixed order, the classification of finite pgroups in the classical sense is impossible. In [1-3] Berkovich and Janko have developed some techniques for working with minimal non-abelian subgroups of finite p-groups. Roughly speaking, they show that some control over the lattice of subgroups in p-groups can be gained by considering maximal abelian subgroups together with minimal non-abelian subgroups. In [12] Janko points out that in studying the structure of non-abelian p-groups G, the minimal nonabelian subgroups of G play an important role since they generate the group G. More precisely, if A is a maximal normal abelian subgroup of G, then

[^0]minimal non-abelian subgroups of G cover the set $G \backslash A$ (see Proposition 1.6 in [12]). A p-group G is said to be minimal nonabelian (for brevity, \mathcal{A}_{1}-group), if G is nonabelian, but all its proper subgroups are abelian. In [5] Berkovich formulated 22 questions concerning p-groups. In Question 15 (respectively Question 20 from [4]) he proposed to describe the automorphism groups of \mathcal{A}_{1}-groups. The following lemma gives the classification of \mathcal{A}_{1}-groups.

Lemma 1.1. (L. Redei) Let G be a minimal nonabelian p-group. Then $G=\langle x, y\rangle$ and one of the following holds
(1) $x^{p^{m}}=y^{p^{n}}=z^{p}=1,[x, y]=z,[x, z]=[y, z]=1, m, n \in \mathbb{N}, m \geqslant n \geqslant$ 1; where in case $p=2$ we must have $m>1$;
(2) $x^{p^{m}}=y^{p^{n}}=1,[x, y]=x^{p^{m-1}}, m, n \in \mathbb{N}, m \geqq 2, n \geqq 1$;
(3) $a^{4}=1, a^{2}=b^{2},[a, b]=a^{2}, G \cong Q_{8}$.

In this paper we find the complete structure for the automorphism groups of metacyclic minimal nonabelian 2 -groups. This, together with $[6,7]$, gives the complete answer to the Question 15 from [5] (respectively Question 20 from [4]) in the case of metacyclic groups. In Section 2 we generalize the results from [13] and we specify a method of finding relations in an automorphism group, that we will use in the next Sections. In the first part of Section 3 we state some results from [13], that we will use in the next part of the note, but also we specify the exact statements. Unfortunately we must point out that in Section 3 of [13] in Case A the expression " $C_{K}\left(G^{\prime}\right)$ " should be replaced by " $\Omega_{m-r}(K)$." In the end of Section 3 we state the relations in the automorphism group of a split metacyclic 2-group. In this way we remove some inaccuracies from Theorem 3.7 in [8] (see Example 1 in [13]). In Section 4 we find the complete structure of the automorphism group of a metacyclic minimal nonabelian 2-group. These relations were not considered in [8].

If L is a subgroup of a group G, then $C_{\text {Aut }}(L)$ denotes the group of those automorphisms of G that centralize L and $N_{\text {Aut } G}(L)$ denotes the group of those automorphisms of G that normalize L. If M and N are normal subgroups of a group G, then $\operatorname{Aut}_{N}(G)=C_{\operatorname{Aut}(G)}(G / N)$ denotes the group of all automorphisms of G normalizing N and centralizing G / N. Also $\operatorname{Aut}_{N}^{M}(G)$ denotes $\operatorname{Aut}_{N}(G) \cap C_{\text {Aut }}(M)$. If L is a subgroup of a p-group G and $l \in \mathbb{N}$ then we set $\Omega_{l}(L)=\left\langle g \in L \mid g^{p^{l}}=1\right\rangle$ and $\mho_{l}(L)=\left\langle g^{p^{l}} \mid g \in L\right\rangle$.

In [15] the authors investigated the automorphism group of a semidirect product $G=H \rtimes K$. They defined the following subgroups

$$
\begin{aligned}
& A=\left\{\theta \in \operatorname{Aut} G \mid[K, \theta]=1 \text { and } H^{\theta}=H\right\}, \\
& B=\{\theta \in \operatorname{Aut} G \mid[H, \theta]=1 \text { and }[K, \theta] \subseteq H\}, \\
& C=\{\theta \in \operatorname{Aut} G \mid[K, \theta]=1 \text { and }[H, \theta] \subseteq K\}, \\
& D=\left\{\theta \in \operatorname{Aut} G \mid[H, \theta]=1 \text { and } K^{\theta}=K\right\} .
\end{aligned}
$$

By definition, we have $B D=B \rtimes D \leqq C_{\text {Aut } G}(K)$ and $A C=C \rtimes A \leqq$ $C_{\text {Aut } G}(H)$.

2. Crossed homomorphisms and automorphisms

We call an ordered triple (Q, N, θ) data if N is an abelian group, Q is a group and $\theta: Q \rightarrow$ Aut N is a homomorphism. If θ is a homomorphism of Q into Aut N, then Q acts on N when we define, for each $x \in Q$ and $a \in N, a^{x}$ is the image of a under x^{θ}. If N is a normal subgroup of G, then the action of G / N on $Z(N)$ is given by $a^{g N}=a^{(g N)^{\theta}}=a^{g}$. Given data (Q, N, θ) a crossed homomorphism is a function $\lambda: Q \rightarrow N$ such that $(x y)^{\lambda}=\left(x^{\lambda}\right)^{y} y^{\lambda}$ for all $x, y \in Q$. We denote the set of such crossed homomorphisms by $Z^{1}(Q, N)$. It forms a group under the operation $q^{\lambda_{1}+\lambda_{2}}=q^{\lambda_{1}} q^{\lambda_{2}}$; if θ is trivial, then $Z^{1}(Q, N)=\operatorname{Hom}(Q, N)$.

We recall a known result ([11], Satz I,17.1) needed in the sequel:
Lemma 2.1. Let N be a normal subgroup of G. Then there is a natural isomorphism from $Z^{1}(G / N, Z(N))$ to $A u t_{N}^{N}(G)$ sending each crossed homomorphism $f: G / N \rightarrow Z(N)$ to the automorphism $\varphi_{f}: x \mapsto x(x N)^{f}$ of G.

Lemmas 2.2-2.3 are more general versions of Lemma 2.5 and Theorem 2.6 (see also [13]).

Lemma 2.2. Let N be an normal subgroup of G. Let M be a normal subgroup of G such that $M \leq Z(G)$. Assume that that $L=\{\lambda \in$ $\left.Z^{1}(G / N, Z(N)) \mid(G / N)^{\lambda} \subseteq M\right\}$ and $A=N_{\text {Aut } G}(M) \cap N_{\text {Aut } G}(N)$. Then
(1) $A \leqq \operatorname{Aut}(G)$ and $L \leqq Z^{1}(G / N, Z(N))$.
(2) If $\alpha \in A$ and $\lambda \in L$ then the function $\mu: G / N \rightarrow Z(N)$ defined by $\mu: g N \mapsto\left(\left(g^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha}$ is a crossed homomorphism and $\mu \in L$.

Proof. The first part of (1) is obvious.
(2) Assume that $\alpha \in A$ and $\lambda \in L$. First let $N g_{1}=N g_{2}$, then $g_{2}=g_{1} h$ for some $h \in N$. Then

$$
\left(g_{2} N\right)^{\mu}=\left(\left(g_{2}^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha}=\left(\left(\left(g_{1} h\right)^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha}=\left(\left(g_{1}^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha}=\left(g_{1} N\right)^{\mu}
$$

since N is normalized by α. So μ is well defined.
Let $g_{1} N, g_{2} N \in G / N$. We have

$$
\begin{aligned}
\left(g_{1} N \cdot g_{2} N\right)^{\mu} & =\left(g_{1} g_{2} N\right)^{\mu}=\left(\left(\left(g_{1} g_{2}\right)^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha} \\
& =\left(\left(g_{1}^{\alpha^{-1}} N g_{2}^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha}=\left(\left(\left(g_{1}^{\alpha^{-1}} N\right)^{\lambda}\right)^{g_{2}^{\alpha^{-1}}}\left(\left(g_{2}^{\alpha^{-1}} N\right)^{\lambda}\right)\right)^{\alpha} \\
& \left.=\left(\left(\left(g_{1}^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha}\right)^{g_{2}}\left(\left(g_{2}^{\alpha^{-1}} N\right)^{\lambda}\right)\right)^{\alpha}=\left(\left(g_{1} N\right)^{\mu}\right)^{g_{2} N} \cdot\left(g_{2} N\right)^{\mu} .
\end{aligned}
$$

It is evident that $\mu \in L$ since $(G / N)^{\mu} \subseteq M$.
Lemma 2.3. Let G, N, M, L and A be as in Lemma 2.2. Assume that $E:=\left\{\varphi \in \operatorname{Aut}_{N}^{N}(G) \mid[G, \varphi] \subseteq M\right\}$. Then
(1) $E \leqq$ Aut G and there is a natural isomorphism from L to E sending each crossed homomorphism $f: G / N \rightarrow M$ to the automorphism φ_{f} : $x \mapsto x(x N)^{f}$ of G;
(2) if $\alpha \in A$ and $\varphi \in E$ is determined by the crossed homomorphism $\lambda \in L$, then $\alpha^{-1} \lambda \alpha$ is determined by the crossed homomorphism $\mu \in L$ defined by $\mu: g N \mapsto\left(\left(g^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha}$.
(3) A normalizes E and $A E \leqq$ Aut G.

Proof. (1) It is evident that $E \leqq$ Aut G. By definitions of M, L, E and Lemma 2.1 we get the second part of the statement.
(2)-(3) Assume that $\alpha \in A$ and $\beta \in E . \quad$ By (1) there exists $\lambda \in Z^{1}(G / N, Z(N))$ such that $h^{\beta}=h(h N)^{\lambda}(h \in G)$ and $(h N)^{\lambda} \in M$ for all $h \in G$. If $h \in G$ then

$$
h^{\alpha^{-1} \beta \alpha}=\left(\left(h^{\alpha^{-1}}\right)^{\beta}\right)^{\alpha}=\left(h^{\alpha^{-1}}\left(h^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha}=h\left(\left(h^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha}
$$

and $\left(\left(h^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha} \in M$. Hence by Lemmas 2.1 and $2.2 \alpha^{-1} \beta \alpha \in E$, so A normalizes E. Now it is clear that $A E \leqq$ Aut G.

For the sake of completeness we recall some results from [13]. We will use them in this note.

Lemma 2.4 ([13]). Let N be an normal subgroup of G such that G / N is cyclic of order n. Assume that g is an element of G with $G=\langle N, g\rangle$.
(1) If $a \in Z(N)$ and $a^{g^{n-1}+\cdots+g+1}=1$, then the function $\lambda: G / N \rightarrow$ $Z(N)$, defined by $\quad\left(g^{i} N\right)^{\lambda}=a^{g^{i-1}+\cdots+g+1} \quad(i \in \mathbb{N}) \quad$ and $\quad N^{\lambda}=1$, is a crossed homomorphism.
(2) If $\lambda \in Z^{1}(G / N, Z(N))$ then there exists $a \in Z(N)$ such that $a^{g^{n-1}+\cdots+g+1}=1, \quad\left(g^{i} N\right)^{\lambda}=a^{g^{i-1}+\cdots+g+1} \quad(i \in \mathbb{N}) \quad$ and $\quad N^{\lambda}=1$.

Lemma 2.5 ([13]). Let G, N, g be as in Lemma 2.4. Let M be a normal subgroup of G such that $M \leqq Z(N)$ and for all $a \in M a^{g^{n-1}+\cdots+g+1}=1$. Assume that $L=\left\{\lambda \in Z^{1}(G / N, Z(N)) \mid(G / N)^{\lambda} \subseteq M\right\}$ and $A=N_{\text {Aut } G}(N) \cap$ $N_{\text {Aut } G}(M)$. Then
(1) $A \leqq \operatorname{Aut}(G)$ and $L \leqq Z^{1}(G / N, Z(N))$; moreover $L \cong M$.
(2) If $\alpha \in A$ and $\lambda \in L$ then the function $\mu: G / N \rightarrow Z(N)$ defined by $\mu: h N \mapsto\left(\left(h^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha}$ is a crossed homomorphism and $\mu \in L$.

Theorem 2.6 ([13]). Let G, N, L, M, g and A be as in Lemma 2.5. Assume that $E:=\left\{\varphi \in \operatorname{Aut}_{N}^{N}(G) \mid[G, \varphi] \leqq M\right\}$. Then $E \leqq$ Aut G, $L \cong E \cong M$, A normalizes $E, A E \leqq$ Aut G and $A \cap E \cong\left\{g^{-1} g^{\varphi} \mid \varphi \in A \cap E\right\}$.

We will need the following lemma:

Lemma 2.7. Let G be a group, $g, h, z \in G$ and $[h, g]=z,[g, z]=1=[h, z]$. Assume that $i, j \in \mathbb{N}$ and $\alpha \in$ Aut G. Then
(1) $h^{g^{i-1}+\cdots+g+1}=h^{i} z^{\frac{i(i-1)}{2}}$;
(2) if $g^{\alpha}=g, h^{\alpha}=h^{j}, z^{\alpha}=z$, then $\left(h^{g^{i-1}+\cdots+g+1}\right)^{\alpha}=h^{i j} z^{\frac{i(i-1)}{2}}$;
(3) if $g^{\alpha}=g, h^{\alpha}=h^{j}, z^{\alpha}=z^{j}$, then $\left(h^{g^{i-1}+\cdots+g+1}\right)^{\alpha}=h^{i j} z^{j \frac{i(i-1)}{2}}$;
(4) if $g^{\alpha}=g^{j}, h^{\alpha}=h, z^{\alpha}=z^{j}$, then $\left(h^{g^{i-1}+\cdots+g+1}\right)^{\alpha}=h^{i} z^{j \frac{i(i-1)}{2}}$;
(5) if $g^{\alpha}=g^{j}, h^{\alpha}=h, z^{\alpha}=z$, then $\left(h^{g^{i-1}+\cdots+g+1}\right)^{\alpha}=h^{i} z^{\frac{i(i-1)}{2}}$.

By Lemmas 2.3, 2.4 and 2.7 we get
Lemma 2.8. Let G, N, M, E, g be as in Theorem 2.6 and $i, j \in \mathbb{N}, i=$ $j^{-1} \bmod n$. Assume that $\lambda \in Z^{1}(G / N, Z(N)), \quad(g N)^{\lambda}=h$ for some $h \in M$ and $\beta \in E$ is an automorphism determined by λ. Assume also that $\alpha \in$ Aut G, $[h, g]=z$ and $[g, z]=1$. Then
(1) if $g^{\alpha}=g^{j}, h^{\alpha}=h, z^{\alpha}=z^{j}$, then $\left(\left(g^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha}=h^{i} z^{j \frac{i(i-1)}{2}}$; in particular if $z=1$, then $\beta^{\alpha}=\beta^{i}$;
(2) if $g^{\alpha}=g^{j}, h^{\alpha}=h, z^{\alpha}=z$, then $\left(\left(g^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha}=h^{i} z^{\frac{i(i-1)}{2}}$;
in particular if $z=1$, then $\beta^{\alpha}=\beta^{i}$;
(3) if $g^{\alpha}=g, h^{\alpha}=h^{j}$, then $\left(\left(g^{\alpha^{-1}} N\right)^{\lambda}\right)^{\alpha}=h^{j}$ and $\beta^{\alpha}=\beta^{j}$.

3. A SPlit metacyclic 2-GROUP

Let $G=H \rtimes K$ be a split metacyclic 2-group, where $H=\langle x\rangle$ and $K=\langle y\rangle$ and let A, B, C and D be the subgroups of Aut G defined in the introduction. In this section we refer to the appropiate cases of the split metacyclic 2groups from [8], but occasionally we repeat some known results for readers' convenience. In fact we consider only Case A.

Let $G=H \rtimes K=\left\langle x, y \mid x^{2^{m}}=y^{2^{n}}=1, x^{y}=x^{1+2^{m-r}}\right\rangle$, where $m \geqq 3, n \geqq 1,1 \leqq r \leqq \min \{m-2, n\}$.

It is convenient to consider G in the following three subcases (see [8])
(I) $m \leqq n$,
(II) $n \leqq m-r<m$,
(III) $m-r<n<m$.

Moreover there exist two special cases. They are case (II), when $m=2 r$, $n=r=m-r \geqq 2$ and $G=\left\langle x, y \mid x^{2^{2 r}}=y^{2^{r}}=1, x^{y}=x^{1+2^{r}}\right\rangle$ and case (III), when $r=n>m-n \geqq 2$ and $G=\left\langle x, y \mid x^{2^{m}}=y^{2^{n}}=1, x^{y}=x^{1+2^{m-n}}\right\rangle$. These are referred to as exceptional cases. We will also need the following number theoretic result (see $[8,13]$), which is easily established by induction.

Lemma 3.1. Let m, n and r be positive integers.
(1) For all $m \geqq 2, n \geqq 1,\left(1+2^{m}\right)^{2^{n}} \equiv 1+2^{m+n}\left(\bmod 2^{2 m+n-1}\right)$ and $\left(1+2^{m}\right)^{2^{n-1}} \equiv 1+2^{m+n-1}\left(\bmod 2^{m+n}\right)$.
(2) For $n \geqq 2, r \geqq 1$ and $m=n+r$, let $S=1+u+\cdots+u^{2^{r}-1}$, where $u \equiv 1\left(\bmod 2^{n}\right)$. Then $S \equiv 2^{r}+2^{m-1}\left(\bmod 2^{m}\right)$ if $u \not \equiv 1\left(\bmod 2^{n+1}\right)$ and $S \equiv 2^{r}\left(\bmod 2^{m}\right)$ if $u \equiv 1\left(\bmod 2^{n+1}\right)$.

Using Lemma 3.1 the following lemmas are easily established.
Lemma 3.2.
(1) $C_{H}(K)=\left\langle x^{2^{r}}\right\rangle$,
(2) $C_{K}(H)=\left\langle y^{2^{r}}\right\rangle$,
(3) $G^{\prime}=[H, K]=\left\langle x^{2^{m-r}}\right\rangle$,
(4) G is nil $2<=>2 r \leqq m$.

Lemma 3.3. $\Omega_{m-r}(K),\left[H, \Omega_{m-r}(K)\right]$ are given in the three cases as follows:
(I) $\Omega_{m-r}(K)=\left\langle y^{2^{n-m+r}}\right\rangle \leqq Z(G), \quad\left[H, \Omega_{m-r}(K)\right]=1$;
(II) $\Omega_{m-r}(K)=\langle y\rangle=C_{K}\left(G^{\prime}\right), \quad\left[H, \Omega_{m-r}(K)\right]=\left\langle x^{2^{m-r}}\right\rangle=G^{\prime} \leqq Z(G)$;
(III) $\Omega_{m-r}(K)=\left\langle y^{2^{n-m+r}}\right\rangle \leqq C_{K}\left(G^{\prime}\right), \quad\left[H, \Omega_{m-r}(K)\right]=\left\langle x^{2^{n}}\right\rangle \leqq Z(G)$.

As in [14] when p was odd or by considering matrices of maps from [8] one could find the effect of an automorphism φ on the generators of G.

Lemma 3.4. Let G, x, y be as above.
(1) Assume that $n \neq r$. Then a map $\varphi: G \rightarrow G$ is an automorphism if and only if $x^{-1} x^{\varphi} \in \mho_{1}(H) \Omega_{m-r}(K), \quad y^{\varphi} y^{-1} \in \Omega_{n}(H) C_{K}(H)$;
(2) Assume that $n=r$. Then a map $\varphi: G \rightarrow G$ is an automorphism if and only if either $x^{-1} x^{\varphi} \in \mho_{1}(H) \mho_{1}\left(\Omega_{m-r}(K)\right), y^{\varphi} y^{-1} \in \Omega_{n}(H)$ or $x^{-1} x^{\varphi} \in \mho_{1}(H) \Omega_{m-r}(K) \backslash \mho_{1}(H) \mho_{1}\left(\Omega_{m-r}(K)\right), y^{\varphi} y^{-1} \in \Omega_{n}(H) y^{2^{r-1}}$.

By Theorem 2.6 and the definitions of A, B and D we get the following lemma.
Lemma 3.5. Let G, A, B, D be as above. Then
(1) $B \cong \operatorname{Aut}_{H}^{H}(G)$,
(2) $A D=A \times D$ normalizes B,
(3) $B \cap D=1$.

For the proofs of Theorem 3.6 and Lemma 3.7 see [13].
Theorem 3.6. Let G be as above.
(1) Aut $G=C_{\operatorname{Aut} G}(H) C_{\operatorname{Aut} G}(K)$ if and only if $r \neq n$;
(2) $C_{\text {Aut } G}(H)=B D$;
(3) $C_{\operatorname{Aut} G}(K)=A C$ if and only if $m \leqq n$.

We set $M:=\left[H, \Omega_{m-r}(K)\right] \Omega_{m-r}(K), N:=G^{\prime} K$ and

$$
E:=\left\{\varphi \in \operatorname{Aut}_{N}^{N}(G) \mid[H, \varphi] \subseteq M\right\} \subseteq \operatorname{Aut}_{N}^{N}(G)
$$

Lemma 3.7. Let G, M be as above and $n \neq r$.
(1) M is abelian and normal in G.
(2) If $a \in M$ then $a^{x^{2 m-r}-1}+\cdots+x+1=1$.

Lemma 3.8. Let G, A, D, E be as above and $n \neq r$. Then
(1) $E \leqq$ Aut G;
(2) $E \cong M$;
(3) $A D=A \times D$ normalizes E;
(4) $E \cap A \cong\left[H, \Omega_{m-r}(K)\right]$;
(5) $C_{\mathrm{Aut} G}(K)=A E$;
(6) $D \cong \operatorname{Aut}_{C_{K}(H)}(K)$.

Proof. In the proof of Lemma 3.9 in [13] we put $\Omega_{m-r}(K)$ instead of $C_{K}\left(G^{\prime}\right)$.

We define $\mathrm{c} \in$ Aut G by setting $x^{c}=x y$, when $m-r \geqq n \neq r$, and $x^{\mathrm{c}}=x y^{2^{n-m+r}}$, when $m-r<n \neq r, y^{\mathrm{c}}=y$. We also set $F:=\langle\mathrm{c}\rangle \leqq E$.

Theorem 3.9. Let G, E, A, F be as above and $n \neq r$. Then
(1) $F \cong \Omega_{m-r}(K), A F=A E$ and $A \cap F=1$;
(2) Aut $G=B D A F$ and \mid Aut $G|=|B|| D \| A| | F \mid$.

Proof. In the proof of Theorem 3.10 in [13] we put $\Omega_{m-r}(K)$ instead of $C_{K}\left(G^{\prime}\right)$.

By Theorem 3.9 and Lemma 3.4 it is obvious that
Theorem 3.10. Let G, A, B, D, F, T be as above. Then
(1) $A \cong A u t H \cong C_{2} \times C_{2^{m-2}} \quad$ and $\quad B \cong \Omega_{n}(H) \cong C_{2^{\min \{m, n\}}}$;
(2) $D \cong C_{K}(H) \cong C_{2^{n-r}}$ except if $n>1=r$ when $D \cong$ Aut $K \cong C_{2} \times$ $C_{2^{n-2}}$;
(3) If $n \neq r$, then $F \cong \Omega_{m-r}(K) \cong C_{2^{\min \{m-r, n\}}}$;
(4) Assume that $n=r$. Then $T \cong \Omega_{m-r}(K) \cong C_{2^{\min \{m-r, n\}}}$ except if $r=2$ when $T \cong C_{2} \times C_{2}$.

We define automorphisms of G on generators as follows

$$
\begin{aligned}
& x^{\mathrm{a}_{1}}=x^{-1}, \quad x^{\mathrm{a}_{2}}=x^{5}, \quad y^{\mathrm{a}_{1}}=y^{\mathrm{a}_{2}}=y ; \\
& x^{\mathrm{b}}=x, \quad y^{\mathrm{b}}=\left\{\begin{array}{ll}
x y, & n \geqq m \\
x^{2^{m-n}} y, & n<m
\end{array} ;\right. \\
& x^{\mathrm{c}}=\left\{\begin{array}{ll}
x y, & m-r \geqq n, \\
x y^{2^{n-m+r}} y, & m-r<n
\end{array}, \quad y^{\mathrm{c}}=y .\right.
\end{aligned}
$$

Now we assume that $n \neq r$ and $r \geqq 2$. In this case we define

$$
x^{\mathrm{d}}=x, \quad y^{\mathrm{d}}=y^{1+2^{r}} .
$$

By Theorem 3.6, 3.9 and Lemma 3.8 it is clear that Aut $G=F A B D$ and each automorphism φ of G can be presented uniquely as $\varphi=\alpha \beta \gamma \delta$, where $\alpha \in F, \beta \in A, \gamma \in B, \delta \in D$. It is clear that $A=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}\right\rangle, \quad B=\langle\mathrm{b}\rangle, \quad D=$ $\langle\mathrm{d}\rangle$ and $A D$ is abelian. It is evident that $G=H K=K H$, so if $g \in G$, then $g=k h$ for some $k \in K, h \in H$. In the proof of Lemma 3.11 (2) we will use this reverse notation of elements of G.

We define i, j, k, s, t, u, w, z are such that
$i=0$ in (I), $5^{i}=1+2^{m-r} \bmod 2^{m}$ in (II), $5^{i}=1+2^{n} \bmod 2^{m}$ in (III),
$j=0$ in (I), $5^{j}=1-2^{m-r+1} \bmod 2^{m}$ in (II),
$5^{j}=1-2^{n+1} \bmod 2^{m}$ in (III),
$k=1+2^{r}+2^{m-1}$ in (I), $k=1+2^{r}$ in (II) \&(III),
$u=1-2^{n-m+r}$ in (I), $u=1-2^{m-n}$ in (II), $u=1-2^{r}$ in (III),
$5^{t}=\left(1-2^{n-1}\right) u^{-1} \bmod 2^{n}$ in (I),
$5^{t}=\left(1-2^{2 m-r-n-1}\right) u^{-1} \bmod 2^{m}$ in (II),
$5^{t}=\left(1-2^{m-1}\right) u^{-1} \bmod 2^{m}$ in (III),
$s=u^{-1} \bmod 2^{n}$ in (I), $s=u^{-1} \bmod 2^{m}$ in (II) $\&$ (III),
$\left(1+2^{r}\right)^{w}=u \bmod 2^{n}$,
$z=-2^{n-m+r}+2^{n-1}$ in (I), $z=-2^{m-n}+2^{m-r+1}$ in (II),
$z=-2^{r}+2^{n-1}$ in (III).
Lemma 3.11. Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}, \mathrm{c}, \mathrm{d}$ be as above. Assume that $n \neq r$ and $r \geqq 2$. Then
(1) $\mathrm{c}^{\mathrm{a}_{1}}=\mathrm{c}^{-1} a_{2}^{i}, \mathrm{c}^{\mathrm{a}_{2}^{-1}}=\mathrm{c}^{5} a_{2}^{j}, \mathrm{c}^{\mathrm{d}}=\mathrm{c}^{1+2^{r}}$;
(2) $\mathrm{b}^{\mathrm{a}_{1}}=\mathrm{b}^{-1}, \mathrm{~b}^{\mathrm{a}_{2}}=\mathrm{b}^{5}, \mathrm{~b}^{\mathrm{d}^{-1}}=\mathrm{b}^{k}$;
(3) $\mathrm{c}^{\mathrm{b}}=\mathrm{c}^{s} \mathrm{a}_{2}{ }^{t} \mathrm{~b}^{z} \mathrm{~d}^{w}$.

Proof. (1) Let $N=G^{\prime} K$ and $M=\left[H, \Omega_{m-r}(K)\right] \Omega_{m-r}(K)$. Then $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~d} \in N_{\text {Aut } G}(N) \cap N_{\text {Aut } G}(M)$, c $\in \operatorname{Aut}_{N}^{N}(G)$ and $h:=x^{-1} x^{\mathrm{c}} \in M$. By Lemmas 2.1, 2.4, 3.7 and 3.3 we get $g^{\mathrm{c}}=g(g N)^{\lambda}(g \in G),\left(x^{i} N\right)^{\lambda}=$ $h^{x^{i-1}+\ldots+x+1}(i \in \mathbb{N})$. By Lemma 2.8 (3) we get the last relation. Now we use Lemma 2.8 (1) to get the first two relations: in (I) we have $[h, x]=$ $\left[y^{2^{n-m+r}}, x\right]=1$; in (II) since $[h, x]=[y, x]=x^{-2^{m-r}}$, we obtain

$$
\begin{aligned}
& \left(\left(x^{\mathrm{a}_{1}-1} N\right)^{\lambda}\right)^{\mathrm{a}_{1}}=y^{-1} x^{2^{m-r}\left(2^{m}-1\right)\left(2^{m-1}-1\right)}=y^{-1} x^{2^{m-r}}, \\
& \left(\left(x^{\mathrm{a}_{2}} N\right)^{\lambda}\right)^{\mathrm{a}_{2}-1}=y^{5} x^{-2^{m-r+1}} ;
\end{aligned}
$$

in (III) since $[h, x]=\left[y^{2^{n-m+r}}, x\right]=x^{-2^{n}}$, by Lemma 2.8 (1) we obtain

$$
\left(\left(x^{\mathrm{a}_{1}-1} N\right)^{\lambda}\right)^{\mathrm{a}_{1}}=x^{2^{n}} y^{-2^{n-m+r}}, \quad\left(\left(x^{\mathrm{a}_{2}} N\right)^{\lambda}\right)^{\mathrm{a}_{2}^{-1}}=x^{-2^{n+1}} y^{5 \cdot 2^{n-m+r}} .
$$

(2) Note that $x^{\mathrm{b}}=x$ and $y^{\mathrm{b}}=y x^{1+2^{m-r}}$ in (I), $y^{\mathrm{b}}=y x^{2^{m-n}}$ in (II), $y^{\mathrm{b}}=y x^{2^{m-n}+2^{2 m-n-r}}$ in (III). Let $Q=\langle x\rangle$. Then $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~d} \in N_{\text {Aut } G}(Q), \mathrm{b} \in$ $\operatorname{Aut}_{Q}^{Q}(G)$ and $h:=y^{-1} y^{\mathrm{b}} \in Q$. By Lemmas 2.1, 2.4, 3.7 and 3.3 we get $g^{\mathrm{b}}=g(g Q)^{\lambda}(g \in G),\left(y^{i} Q\right)^{\lambda}=h^{y^{i-1}+\ldots+y+1}(i \in \mathbb{N})$. By Lemma 2.8 (3)
we obtain the first two relations. Now we use Lemma 2.8 (2) to get the last relation: in (I) since $[h, y]=\left[x^{1+2^{m-r}}, y\right]=x^{2^{m-r}\left(1+2^{m-r}\right)}$ we obtain

$$
\begin{aligned}
\left(\left(y^{\mathrm{d}} N\right)^{\lambda}\right)^{\mathrm{d}^{-1}} & =\left(x^{1+2^{m-r}}\right)^{1+2^{r}} \cdot x^{2^{m-r}\left(1+2^{m-r}\right) 2^{r-1}\left(2^{r}+1\right)} \\
& =x^{\left(1+2^{m-r}\right)\left(1+2^{r}+2^{m-1}\right)} ;
\end{aligned}
$$

in (II) we get $[h, y]=\left[x^{2^{m-n}}, y\right]=1$; in (III) since $[h, y]=\left[x^{2^{m-n}+2^{2 m-n-r}}, y\right]$ $=x^{2^{m-r}\left(2^{m-n}+2^{2 m-n-r}\right)}$ we obtain

$$
\begin{aligned}
\left(\left(y^{\mathrm{d}} N\right)^{\lambda}\right)^{\mathrm{d}^{-1}} & =\left(x^{2^{m-n}+2^{2 m-n-r}}\right)^{1+2^{r}} x^{2^{m-r}\left(2^{m-n}+2^{2 m-n-r}\right)\left(2^{r}+1\right) 2^{r-1}} \\
& =\left(x^{2^{m-n}+2^{2 m-n-r}}\right)^{1+2^{r}} .
\end{aligned}
$$

(3) The direct computations with the help of Lemma 3.1 give the relation.

THEOREM 3.12. Let G be as above and $m \geqq 3, n \geqq 1,1 \leqq r \leqq$ $\min \{m-2, n\}, n \neq r$ and $r \geqq 2$. Then Aut G can be given by the following presentation, where the relations with commuting generators are omitted: Aut $G=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}, \mathrm{c}, \mathrm{d}\right| \mathrm{a}_{1}^{2}=\mathrm{a}_{2} 2^{m-2}=\mathrm{b}^{2^{\min \{m, n\}}}=\mathrm{c}^{2^{\min \{m-r, n\}}}=\mathrm{d}^{2^{n-r}}=$ $1, \mathrm{c}^{\mathrm{a}_{1}}=\mathrm{c}^{-1} a_{2}^{i}, \mathrm{c}^{\mathrm{a}_{2}^{-1}}=\mathrm{c}^{5} a_{2}^{j}, \mathrm{c}^{\mathrm{d}}=\mathrm{c}^{1+2^{r}}, \mathrm{~b}^{\mathrm{a}_{1}}=\mathrm{b}^{-1}, \mathrm{~b}^{\mathrm{a}_{2}}=\mathrm{b}^{5}, \mathrm{~b}^{\mathrm{d}^{-1}}=\mathrm{b}^{k}, \mathrm{c}^{\mathrm{b}}=$ $\left.\mathrm{c}^{s} \mathrm{a}_{2}{ }^{t} \mathrm{~b}^{z} \mathrm{~d}^{w}\right\rangle$.

4. Metacyclic minimal nonabelian 2-GROUPS

In this section we will deal with groups $G=\langle x, y| x^{2^{m}}=y^{2^{n}}=1, x^{y}=$ $\left.x^{1+2^{m-1}}\right\rangle$; where $m, n \in \mathbb{N}, m \geqq 2, n \geqq 1$. So $G=H \rtimes K$ is a split metacyclic 2-group, where $H=\langle x\rangle$ and $K=\langle y\rangle$.

First assume that $n \geqq m \geqq 3$. We define automorphisms of G on generators as follows

$$
\begin{aligned}
& x^{\mathrm{a}_{1}}=x^{-1}, \quad x^{\mathrm{a}_{2}}=x^{5}, \quad y^{\mathrm{a}_{1}}=y^{\mathrm{a}_{2}}=y ; \\
& x^{\mathrm{b}}=x, \quad y^{\mathrm{b}}= \begin{cases}x y, & n \geqq m \\
x^{2^{m-n}} y, & n<m\end{cases} \\
& x^{\mathrm{c}}=\left\{\begin{array}{ll}
x y, & m>n \\
x y^{2^{n-m+1}} y, & m \leqq n
\end{array}, \quad y^{\mathrm{c}}=y ;\right.
\end{aligned}, \begin{aligned}
& x^{\mathrm{d}_{1}}=x^{d_{2}}=x, \quad y^{\mathrm{d}_{1}}=y^{-1}, \quad y^{\mathrm{d}_{2}}=y^{5} .
\end{aligned}
$$

By Theorems 3.6, 3.9 and Lemma 3.8 it is clear that Aut $G=F A B D$ and each automorphism φ of G can be presented uniquely as $\varphi=\alpha \beta \gamma \delta$, where $\alpha \in F, \beta \in A, \gamma \in B, \delta \in D$. It is clear that $A=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}\right\rangle, \quad B=\langle\mathrm{b}\rangle, \quad D=$ $\left\langle\mathrm{d}_{1}, \mathrm{~d}_{2}\right\rangle$ and $A D$ is abelian. It is evident that $G=H K=K H$, so if $g \in G$, then $g=k h$ for some $k \in K, h \in H$. In the proof of Lemma 4.1(2) we will use also this reverse notation of elements of G.

Lemma 4.1. Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}, \mathrm{c}, \mathrm{d}_{1}, \mathrm{~d}_{2}$ be as above. Assume that $m \geqq 3, n \geqq 3$. Then
(1) $\mathrm{c}^{\mathrm{a}_{1}}=\mathrm{c}^{-1} \mathrm{a}_{2}{ }^{i}, \mathrm{c}^{\mathrm{a}_{2}-1}=\mathrm{c}^{5}, \mathrm{c}^{\mathrm{d}_{1}}=\mathrm{c}^{-1}, \mathrm{c}^{\mathrm{d}_{2}}=\mathrm{c}^{5}$, where $i=0$ when $m>n$ and $i=2^{m-3}$ when $m \leqq n$;
(2) $\mathrm{b}^{\mathrm{a}_{1}}=\mathrm{b}^{-1}, \mathrm{~b}^{\mathrm{a}_{2}}=\mathrm{b}^{5}, \mathrm{~b}^{\mathrm{d}_{1}}=\mathrm{b}^{-1}, \mathrm{~b}^{\mathrm{d}_{2}-1}=\mathrm{b}^{5}$;
(3) if $n-m \geq 1$, then $\mathrm{c}^{\mathrm{b}}=\mathrm{c}^{s} \mathrm{a}_{2}{ }^{t} \mathrm{~b}^{-2^{n-m+1}} \mathrm{~d}_{2}{ }^{w}$, where s, t, w are such that $s=5^{t}=\left(1-2^{n-m+1}\right)^{-1} \bmod 2^{m}, 5^{w}=1-2^{n-m+1} \bmod 2^{n}$;
(4) if $m=n$, then $\mathrm{c}^{\mathrm{b}}=\mathrm{c}^{-1} \mathrm{a}_{1} \mathrm{a}_{2} 2^{m-3} \mathrm{~b}^{-2+2^{m-1}} \mathrm{~d}_{1}$;
(5) if $m-n>1$, then $\mathrm{c}^{\mathrm{b}}=\mathrm{c}^{s} \mathrm{a}_{2}{ }^{t} \mathrm{~b}^{-2^{m-n}} \mathrm{~d}_{2}^{w}$, where s, t, w are such that $s=5^{t}=\left(1-2^{m-n}\right)^{-1} \bmod 2^{m}, 5^{w}=1-2^{m-n} \bmod 2^{n}$;
(6) if $m=n+1$, then $\mathrm{c}^{\mathrm{b}}=\mathrm{c}^{-1} \mathrm{a}_{1} \mathrm{a}_{2} 2^{2^{m-3}} \mathrm{~b}^{-2+2^{m-2}} \mathrm{~d}_{1}$.

Proof. (1) Let $N=G^{\prime} K$ and $M=\left[H, \Omega_{m-r}(K)\right] \Omega_{m-r}(K)$. Then $\mathrm{a}_{\mathrm{k}}, \mathrm{d}_{\mathrm{k}} \in N_{\text {Aut } G}(N) \cap N_{\text {Aut } G}(M)(k=1,2), \mathrm{c} \in \operatorname{Aut}_{N}^{N}(G)$ and $h:=x^{-1} x^{\mathrm{c}} \in$ M. By Lemmas 2.1, 2.4, 3.7 and 3.3 we get $g^{\mathrm{c}}=g(g N)^{\lambda}(g \in G),\left(x^{i} N\right)^{\lambda}=$ $h^{x^{i-1}+\ldots+x+1}(i \in \mathbb{N})$. For the first two relations see the proof of Lemma 3.11 (1) with $r=1$. By Lemma 2.8 (3) we obtain the last two relation.
(2) Note that $x^{\mathrm{b}}=x$ and $y^{\mathrm{b}}=y x^{1+2^{m-1}}$ when $n \geqq m, y^{\mathrm{b}}=$ $y x^{2^{m-n}}$ when $m>n$. Let $Q=\langle x\rangle$. Then $\mathrm{a}_{\mathrm{k}}, \mathrm{d}_{\mathrm{k}} \in N_{\mathrm{Aut} G}(Q)(k=$ $1,2), \mathrm{b} \in \operatorname{Aut}_{Q}^{Q}(G)$ and $y^{-1} y^{\mathrm{b}} \in Q$. By Lemmas 2.1, 2.4, 3.7 and 3.3 we get $g^{\mathrm{b}}=g(g Q)^{\lambda}(g \in G)$, $\left(y^{i} Q\right)^{\lambda}=h^{y^{i-1}+\ldots+y+1}(i \in \mathbb{N})$. By Lemma 2.8 (3) we obtain the first two relations. Now we will use Lemma 2.8 (2) to get the last two relations: if $m>n$ then $\left[y^{2^{m-n}}, y\right]=1$, so we get the last two relations; if $m \leqq n$, then $\left[x^{1+2^{m-1}}, y\right]=x^{2^{m-1}}$ and we get $\left(\left(y^{\mathrm{d}_{1}^{-1}} N\right)^{\lambda}\right)^{\mathrm{d}_{1}}=\left(x^{1+2^{m-1}}\right)^{2^{n}-1} x^{2^{m-1}\left(2^{n}-1\right)\left(2^{n-1}-1\right)}=x^{-1}$ and $\left(\left(y^{\mathrm{d}_{2}} N\right)^{\lambda}\right)^{\mathrm{d}_{2}^{-1}}=\left(x^{1+2^{m-1}}\right)^{5} x^{2^{m-1} 10}=\left(x^{1+2^{m-1}}\right)^{5}$.
(3)-(6) The direct computations with the help of Lemma 3.1 give the relations.

In the next theorems the relations with commuting generators are omitted.

Theorem 4.2. Let G be as above and $m, n \geqq 3$. Then Aut G can be given by the following presentation: Aut $G=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}, \mathrm{c}, \mathrm{d}_{1}, \mathrm{~d}_{2}\right| \mathrm{a}_{1}{ }^{2}=\mathrm{a}_{2} 2^{2^{m-2}}=$ $\mathrm{b}^{2^{\min \{m, n\}}}=\mathrm{c}^{2^{\min \{m-r, n\}}}=\mathrm{d}^{2^{n-r}}=1, \mathrm{c}^{\mathrm{a}_{1}}=\mathrm{c}^{-1} \mathrm{a}_{2}{ }^{i}, \mathrm{c}^{\mathrm{a}_{2}{ }^{-1}}=\mathrm{c}^{5}, \mathrm{c}^{\mathrm{d}_{1}}=$ $\left.\mathrm{c}^{-1}, \mathrm{c}^{\mathrm{d}_{2}}=\mathrm{c}^{5}, \mathrm{~b}^{\mathrm{a}_{1}}=\mathrm{b}^{-1}, \mathrm{~b}^{\mathrm{a}_{2}}=\mathrm{b}^{5}, \mathrm{~b}^{\mathrm{d}_{1}}=\mathrm{b}^{-1}, \mathrm{~b}^{\mathrm{d}_{2}-1}=\mathrm{b}^{5}, \mathrm{c}^{\mathrm{b}}=\alpha\right\rangle$, where i is given in Lemma 4.1 and α is the appropriate relation in (3)-(4) of Lemma 4.1.

If $m=2$ and $n=1$, then $G \cong$ Aut G is dihedral of order 8 .

Now assume that $m>n=2$. We define automorphisms of G on generators as follows

$$
\begin{aligned}
& x^{\mathrm{a}_{1}}=x^{-1}, \quad x^{\mathrm{a}_{2}}=x^{5}, \quad y^{\mathrm{a}_{1}}=y^{\mathrm{a}_{2}}=y ; \quad x^{\mathrm{b}}=x, \quad y^{\mathrm{b}}=x^{2^{m-2}} y \\
& x^{\mathrm{c}}=x y, \quad y^{\mathrm{c}}=y ; \quad x^{\mathrm{d}}=x, \quad y^{\mathrm{d}}=y^{-1}
\end{aligned}
$$

THEOREM 4.3. Let G be as above and $m>n=2$. Then Aut G can be given by the following presentation:
(1) if $m>3$, then Aut $G=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}, \mathrm{c}, \mathrm{d}\right| \mathrm{a}_{1}{ }^{2}=\mathrm{a}_{2} 2^{2^{m-2}}=\mathrm{b}^{4}=\mathrm{c}^{4}=\mathrm{d}^{2}=$ $\left.1, \mathrm{c}^{\mathrm{a}_{1}}=\mathrm{c}^{-1} \mathrm{a}_{2} 2^{m-3}, \mathrm{c}^{\mathrm{d}}=\mathrm{c}^{-1}, \mathrm{~b}^{\mathrm{a}_{1}}=\mathrm{b}^{-1}, \mathrm{~b}^{\mathrm{d}}=\mathrm{b}^{-1}, \mathrm{~b}^{\mathrm{c}}=\mathrm{ba}_{2}{ }^{t}\right\rangle$, where $5^{t}=1-2^{m-2} \bmod 2^{m}$;
(2) if $m=3$, then Aut $G=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}, \mathrm{c}, \mathrm{d}\right| \mathrm{a}_{1}{ }^{2}=\mathrm{a}_{2}{ }^{2}=\mathrm{b}^{4}=\mathrm{c}^{4}=\mathrm{d}^{2}=$ $\left.1, c^{a_{1}}=c^{-1} a_{2}, c^{d}=c^{-1}, b^{a_{1}}=b^{-1}, b^{d}=b^{-1}, c^{b}=c^{-1} a_{1} a_{2} d\right\rangle$.

Now assume that $m \geqq 3, n=1$. We define automorphisms of G on generators as follows

$$
\begin{aligned}
& x^{\mathrm{a}_{1}}=x^{-1}, \quad x^{\mathrm{a}_{2}}=x^{5}, \quad y^{\mathrm{a}_{1}}=y^{\mathrm{a}_{2}}=y \\
& x^{\mathrm{b}}=x, \quad y^{\mathrm{b}}=x^{2^{m-1}} y ; \quad x^{\mathrm{c}}=x y, \quad y^{\mathrm{c}}=y
\end{aligned}
$$

THEOREM 4.4. Let G be as above and $m \geqq 3, n=1$. Then Aut G can be given by the following presentation: Aut $G=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}, \mathrm{c}\right| \mathrm{a}_{1}{ }^{2}=\mathrm{a}_{2} 2^{{ }^{m-2}}=$ $\left.\mathrm{b}^{2}=\mathrm{c}^{2}=1, \mathrm{c}^{\mathrm{a}_{1}}=\mathrm{ca}_{2} 2^{2^{m-3}}, \mathrm{c}^{\mathrm{b}}=\mathrm{ca}_{2} 2^{m-3}\right\rangle$.

Now assume that $m=n=2$. We define automorphisms of G on generators as follows

$$
\begin{array}{lll}
x^{\mathrm{a}}=x^{-1}, & y^{\mathrm{a}}=y ; & x^{\mathrm{b}}=x, \\
x^{\mathrm{c}}=x y^{2}, & y^{\mathrm{c}}=y ; & x^{\mathrm{d}}=x,
\end{array} y^{\mathrm{d}}=y^{-1} .
$$

THEOREM 4.5. Let G be as above and $m=n=2$. Then Aut G can be given by the following presentation: Aut $G=\langle\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}| \mathrm{a}^{2}=\mathrm{b}^{4}=\mathrm{c}^{2}=\mathrm{d}^{2}=$ $\left.1, \mathrm{~b}^{\mathrm{a}}=\mathrm{b}^{-1}, \mathrm{~b}^{\mathrm{c}}=\mathrm{bd}\right\rangle$.

References

[1] Y. Berkovich, Groups of prime power order, vol. 1, Walter de Gruyter, 2008.
[2] Y. Berkovich and Z. Janko, Groups of prime power order, vol. 2, Walter de Gruyter, 2008.
[3] Y. Berkovich and Z. Janko, Groups of prime power order, vol. 3, Walter de Gruyter, 2011.
[4] Y. Berkovich and Z. Janko, On subgroups of finite p-groups, Israel J. Math. 171 (2009), 29-49.
[5] Y. Berkovich and Z. Janko, Structure of finite p-groups with given subgroups, Contemp. Math. 402, 2006, 13-93.
[6] J. N. S. Bidwell and M. J. Curran, The automorphism group of a split metacyclic p-group, Arch. Math. (Basel) 87 (2006), 488-497.
[7] J. N. S. Bidwell and M. J. Curran, Corrigenum to "The automorphism group of a split metacyclic p-group" Arch. Math. 87 (2006), 488-497, Arch. Math. (Basel) 92 (2009), 14-18.
[8] M. J. Curran, The automorphism group of a split metacyclic 2-group, Arch. Math. (Basel) 89 (2007), 10-23.
[9] G. Glauberman, Abelian subgroups of small index in finite p-groups, J. Group Theory 8 (2005), 539-560.
[10] G. Glauberman, Centrally large subgroups of finite p-groups, J. Algebra 300 (2006), 480-508.
[11] B. Huppert, Endliche Gruppen. I, Berlin-Heidelberg-NewYork, Springer 1967.
[12] Z. Janko, On minimal non-abelian subgroups in finite p-groups, J. Group Theory 12 (2009), 289-303.
[13] I. Malinowska, The automorphism group of a split metacyclic 2-group and some groups of crossed homomorphisms, Arch. Math. (Basel) 93 (2009), 99-109.
[14] F. Menegazzo, Automorphisms of p-groups with cyclic commutator subgroup, Rend. Sem. Mat. Univ. Padova 90 (1993), 81-101.
[15] F. Zhou and H. Liu, Automorphism groups of semidirect products, Arch. Math. (Basel) 91 (2008), 193-198.
I. Malinowska

Institute of Mathematics
University of Białystok,
ul. Akademicka 2, 15-267 Białystok
Poland
E-mail: izabelam@math.uwb.edu.pl
Received: 30.11.2010.
Revised: 8.12.2010.

[^0]: 2010 Mathematics Subject Classification. 20D45, 20D15.
 Key words and phrases. Automorphisms, p-groups.

